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Bounded time series consisting of rates or proportions are often
encountered in applications. This manuscript proposes a practical
approach to analyze bounded time series, through a beta regression
model. The method allows the direct interpretation of the regression
parameters on the original response scale, while properly accounting
for the heteroskedasticity typical of bounded variables. The serial de-
pendence is modeled by a Gaussian copula, with a correlation matrix
corresponding to a stationary autoregressive and moving average pro-
cess. It is shown that inference, prediction, and control can be carried
out straightforwardly, with minor modifications to standard analysis
of autoregressive and moving average models. The methodology is
motivated by an application to the influenza-like-illness incidence es-
timated by the GoogleR© Flu Trends project.

1. Introduction. Continuous bounded response variables, such as pro-
portions and rates, are frequently encountered in many areas of statistical
practice. This kind of data is usually examined through linear regression af-
ter a logistic transformation. Despite its feasibility, such a modeling strategy
can suffer from some shortcomings, the most relevant being that regression
parameters are not directly interpretable on the original response scale, as
a consequence of the Jensen’s inequality. See Kieschnick and McCullough
(2003) and Cribari-Neto and Zeileis (2010) for detailed discussions.

An alternative to linear modeling after logistic transformation consists in
a direct analysis of the bounded responses on their original scale. To this
purpose, the beta regression model has attracted increasing interest in recent
years, as a consequence of the flexibility of the beta distribution in accommo-
dating a variety of distributional shapes over the unit interval. Beta regres-
sion modeling of independent observations has been illustrated in Paolino
(2001), Ferrari and Cribari-Neto (2004), and Smithson and Verkuilen (2006).
Recent applications of beta regression in life sciences have been encountered
in clinical medicine (Zou, Carlsson, and Quinn, 2010; Wang et al., 2011),
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neuroscience (Wang, 2012), pharmacometrics (Rogers et al., 2012), and vi-
rology (Love et al., 2010).

Recent developments of beta regression analysis of bounded time series
have been addressed to observation-driven models (Rocha and Cribari-Neto,
2009; Casarin, Dalla Valle, and Leisen, 2012) and to parameter-driven mod-
els (Da-Silva and Migon, 2012). Straightforward likelihood inference makes
the observation-driven model appealing. A possible drawback arises in case
of regression analysis, since the interpretation of the coefficients depends on
past transformed observations in the mean. Parameter-driven models are
attractive given their hierarchical construction. Nevertheless, inference and
prediction are complicated by the presence of correlated latent variables.

As an alternative to the conditional observation- and parameter-driven
models, we suggest a marginal regression approach, through the specifica-
tion of a convenient class of beta regression models with autoregressive and
moving average errors. The serial dependence is modeled by a Gaussian
copula. Likelihood inference, prediction, and control are carried out in a
straightforward manner, with a computational complexity similar to that of
an ordinary ARMA model. In addition, the approach allows an attractive
interpretation of model components.

This article is motivated by surveillance of influenza through analysis
of influenza-like-illness percentage estimated from aggregated web search
queries by the GoogleR© Flu Trends project. Analysis of influenza time series
is a key step in disease surveillance for monitoring the progress of epidemics,
early identification of pandemics, and ascertainment of factors associated to
unexpected changes in flu levels.

The plan of the article is as follows. Section 2 describes the motivating
GoogleR© Flu Trends data. Section 3 summarizes beta regression modeling
and some extensions for time series analysis. The proposed methodology
is detailed in Section 4 and its finite sample performance is investigated
through simulation in Section 5. Section 6 describes on-line monitoring of
influenza outbreaks through control charts applied to beta regression pre-
dictive quantile residuals. The application to the real data set of interest is
given in Section 7. Final remarks in Section 8 conclude.

Methods described in the paper are implemented within the more general
R (R Core Team, 2012) package gcmr “Gaussian copula marginal regres-
sion”, version 0.6.1. The package is freely available at the CRAN repository,
URL http://cran.r-project.org/web/packages/gcmr.

2. Motivating example. The GoogleR© Flu Trends project aims at
early detection of influenza-like-illness (ILI) activity around the world. The

http://cran.r-project.org/web/packages/gcmr
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ILI activity is measured in terms of cases per 100 000 persons. The number of
cases is reconstructed starting from aggregated GoogleR© search queries re-
lated to the disease, such as, for example, influenza complication, flu remedy,
influenza symptoms, and antiviral medication. See Ginsberg et al. (2009) for
details about ILI counts estimation. The GoogleR© estimated ILI time series
are publicly available at URL www.google.org/flutrends. Data start on
the last week of 2002 for Brazil and Peru. Information has been successively
extended to other 26 countries all around the world. Researchers at the U.S.
Centers for Disease Control and Prevention consider GoogleR© Flu Trends
as an early warning of an outbreak, although not a substitute for traditional
epidemiological surveillance networks. In fact, recent data from U.S. indicate
that peak influenza levels in Winter 2012-2013 have been overestimated, as
a consequence of an increased number of search queries related to influenza
strains which caused more serious illness and deaths than usual (Butler,
2013).
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Fig 1. GoogleR© Flu Trends estimated ILI percentage for Canada. Circles denote Christ-
mas/New Year holidays. Data source: www. google. org/ flutrends .

Figure 1 displays the time series of GoogleR© estimated ILI percentage,
obtained as estimated ILI counts divided by 100 000 persons, for Canada.
The time series covers 510 consecutive weeks in the period October 2003 -
June 2013. Canada has been chosen since GoogleR© estimated ILI percent-
age highlights three epidemic peaks in December 2003, October - November
2009, and December 2012 - January 2013. In these periods, ILI peaked at
about 7.5%, 9.7%, and 7.7% of Canadians, respectively, against normal sea-

www.google.org/flutrends
www.google.org/flutrends
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sonal influenza peaks of about 3.5%.

3. Beta regression. Let Yt be a response variable bounded on the unit
interval (0, 1), t = 1, . . . , n, and let xt be a vector of p concomitant covari-
ates. According to Paolino (2001) and Ferrari and Cribari-Neto (2004), beta
regression assumes that Yt given xt follows a beta distribution Beta(µt, κt)
parametrized in terms of the mean parameter 0 < µt < 1 and the precision
parameter κt > 0. It follows that var(Yt) = µt(1 − µt)/(1 + κt) and the
density function of Yt is

(3.1) pt(yt;β) =
Γ(κt)

Γ(µtκt)Γ {(1− µt)κt}
yµtκt−1
t (1− yt)

(1−µt)κt−1,

where Γ(·) denotes the Gamma function and subscript t in pt(·) emphasizes
the time dependence of the beta density through µt and κt.

Dependence of the response Yt on the covariates xt is obtained by as-
suming a logit-linear model for the mean parameter, logit(µt) = x⊤

t βx,
where βx is a p-dimensional vector of coefficients. Alternative link func-
tions g : (0, 1) → R are allowed, provided that they are monotonic and
differentiable, such as, for example, probit and log-log. Since the distribu-
tion of bounded variables is characterized by heterogeneity, it is reasonable
to model the precision parameter with a log-linear model log(κt) = z⊤t βz,
where z is a set of q covariates with associated vector of coefficients βz.
Implementations of beta regression analysis for independent observations
are available through R packages betareg (Cribari-Neto and Zeileis, 2010;
Grün, Kosmidis, and Zeileis, 2012) and gamlss (Stasinopoulos and Rigby,
2007).

Within the time series framework, serial correlation in nonlinear regression
analysis can be accounted for through conditional or marginal models. Fol-
lowing Cox (1981), conditional models are further classified as observation-
and parameter-driven models. Rocha and Cribari-Neto (2009) consider
observation-driven beta regression models where the response Yt is mod-
eled as a function of past information,

Yt|{yt−1, . . . , y1} ∼ Beta(µt, κt),

with µt depending on both covariates xt and logit-past transformed obser-
vations through the ARMA(p, q) model

logit(µt) = x
⊤
t βx +

p
∑

i=1

ψt

{

logit(yt−i)− x
⊤
t−iβx

}

+

q
∑

j=1

λjǫt−j .
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In the expression above, ǫt is a random error and ψ = (ψ1, . . . , ψp)
⊤ and λ =

(λ1, . . . , λq)
⊤ are the autoregressive and moving average parameter vectors,

respectively. Straightforward likelihood inference makes the observation-
driven model appealing, although the interpretation of the regression co-
efficients is complicated by the presence of past transformed observations
in the mean. Casarin, Dalla Valle, and Leisen (2012) develop Bayesian in-
ference for purely autoregressive beta regression observation-driven models
and discuss selection of the optimal order.

Da-Silva and Migon (2012) investigate parameter-driven beta regression
models, extending Da-Silva, Migon, and Correia (2011). Da-Silva and Migon
(2012) suppose responses distributed as independent beta random variables
conditionally on latent variables. Serial correlation is accounted for by as-
suming that the latent variables evolve in time according to a state-space
model. Although the hierarchical model construction is attractive, likelihood
computation is complicated by the presence of n correlated latent variables.
Likelihood approximation can be based on sequential simulation methods,
such as, for example, the Markov chain Monte Carlo approach discussed by
Da-Silva and Migon (2012).

4. Marginal beta regression time series modeling. In this paper,
we develop a marginal extension of the beta regression model for time series
analysis which avoids the difficulties of interpretation of the observation-
driven models and the computational complications of the parameter-driven
models. Thereafter, the cumulative distribution function of a non-standard
normal variable with meanm and variance s2 will be denoted by Φ(·;m, s). A
similar notation will be used for the density function φ(·;m, s). The common
simplified notation Φ(·) = Φ(·; 0, 1) and φ(·) = φ(·; 0, 1) is adopted for a
standard normal variable.

The proposed marginal beta regression model exploits the probability
integral transformation to relate response Yt to covariates xt and zt and to
a standard normal error ǫt,

(4.1) Yt = F−1
t {Φ(ǫt);β} ,

where Ft(·;β) is the cumulative distribution function associated to density
(3.1), β = (β⊤

x ,β
⊤
z )

⊤. The probability integral transformation implies that
Yt is marginally beta distributed, Yt ∼ Beta(µt, κt). Remaining serial cor-
relation not accounted for by covariates xt and zt is modeled by assuming
that errors ǫt follow a stationary ARMA(p, q) process,

(4.2) ǫt =

p
∑

i=1

ψiǫt−i +

q
∑

j=1

λjηt−j + ηt,



6 GUOLO AND VARIN

where ηt are independent zero-mean normal variables. In order to assure ǫt
having unit variance, the variance of ηt is an appropriate function of the
autoregressive parameter vector ψ and moving average parameter vector
λ. For example, if errors follow the AR(1) process ǫt = ψǫt−1 + ηt, then
var(ηt) = 1− ψ2.

The proposed beta regression model expressed by equations (4.1)-(4.2)
has the advantage of separating the time series component ǫt from the re-
gression part. This allows a straightforward interpretation of the regres-
sion coefficients as if observations were independent. Model (4.1)-(4.2) is
an instance of Gaussian copula marginal regression (Song, 2007, Chapter 6;
Masarotto and Varin, 2012).

Let θ denote the whole parameter vector formed by the regression pa-
rameter vector β and the ARMA parameter vectors ψ and λ. Inference on
θ, diagnostics of departures from model assumptions, and prediction of fu-
ture outcomes require the specification of the k-lags ahead predictive density
pt+k(yt+k|yt, . . . , y1;θ). Such a density can be obtained by standard trans-
formation rules as the product of the k-lags ahead predictive density of the
errors and the Jacobian of the transformation ǫt+k = Φ−1{Ft+k(yt+k;β)},

pt+k(yt+k|yt, . . . , y1;θ) = p(ǫt+k|ǫt, . . . , ǫ1;θ)

∣

∣

∣

∣

dǫt+k

dyt+k

∣

∣

∣

∣

= pt+k(yt+k;β)
p(ǫt+k|ǫt, . . . , ǫ1;θ)

p(ǫt+k;β)

= pt+k(yt+k;β)
φ(ǫt+k; mt+k|t, st+k|t)

φ(ǫt+k)
,(4.3)

where mt+k|t = E(ǫt+k|ǫt, . . . , ǫ1;θ) and s
2
t+k|t = var(ǫt+k|ǫt, . . . , ǫ1;θ). Both

conditional expectations can be efficiently evaluated in a linear number of
operations via Kalman filter recursions.

Expression (4.3) is particularly attractive in terms of interpretability,
since it separates the marginal density associated to the future observa-
tion, pt+k(yt+k;β), from a measure of the serial correlation within the er-
rors. Figure 2 provides an illustration of the beta regression model with
ARMA(2, 1) errors used for the simulation study in Section 5. The marginal
density pt+k(yt+k;β) and the predictive density pt+k(yt+k|yt, . . . , y1;θ) sub-
stantially differ for short time prediction, with the predictive density being
more peaked since it accounts for the information in the past observations.
As the prediction lag increases, past data become less informative, thus
making the predictive density closer to the marginal density, as expected.

Basic properties of the ARMA(p, q) process are inherited by the proposed
model. In fact, it is immediate from (4.3) that if errors ǫt follow a MA(q)
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Fig 2. Predictive density (solid line) and marginal density (dashed line) at different lags
ahead for the marginal beta regression model with ARMA(2,1) errors described in the
simulation study, Section 5.

process, then observations far apart more than q units are independent.
Moreover, if errors ǫt follow an AR(p) process, then observations follow a
Markovian process of order p.

By model construction, the predictive cumulative distribution function of
Yt+k given {yt, . . . , y1} coincides with the predictive cumulative distribution
function of ǫt+k given {ǫt, . . . , ǫ1},

Ft+k(yt+k|yt, . . . , y1;θ) =

∫ yt+k

0
pt+k(u|yt, . . . , y1;θ)du

=

∫ Φ−1{Ft+k(yt+k;β)}

−∞
p(ǫt+k|ǫt, . . . , ǫ1;θ)dǫt+k

= Φ
(

ǫt+k; mt+k|t, st+k|t

)

.(4.4)

Accordingly, the α-quantile of the predictive distribution is

yt+k|t;α = F−1
t+k

[

Φ
{

mt+k|t +Φ−1(α) st+k|t

}

;β
]

.

4.1. Likelihood inference. We suggest to perform inference by relying on
maximum likelihood estimation. Let Lind(β;y) =

∏n
t=1 pt(yt;β) denote the

likelihood constructed under the assumption of independence. Then, given
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the result in (4.3), the likelihood function for θ is

L(θ;y) = p1(y1;β)

n
∏

t=2

pt(yt|yt−1, . . . , y1;θ)

= Lind(β;y)
n
∏

t=2

p(ǫt|ǫt−1, . . . , ǫ1;θ)

p(ǫt;β)
.

The likelihood function is the product of the independence likelihood Lind

and a calibration term accounting for the presence of dependence of ǫt on
past values. A calibration term significantly different from one is indicative
of dependence.

From a practical point of view, the closed-form of the likelihood implies an
effortless computation. As already noted for the predictive density, Kalman
filter can be employed for efficient computation of the predictive densities of
the ARMA(p, q) errors, p(ǫt|ǫt−1, . . . , ǫ1;θ), thus making the computational
complexity of likelihood evaluation of linear order.

4.2. Predictive quantile residuals. Following Dunn and Smyth (1996) and
Masarotto and Varin (2012), model validation can be based on the analysis
of the predictive quantile residuals

rt = Φ−1
{

Ft(yt|yt−1, . . . , y1; θ̂)
}

,

where θ̂ denotes the maximum likelihood estimate of θ. Given (4.4), predic-
tive quantile residuals rt assume the familiar form

rt =
ǫ̂t − m̂t|t−1

ŝt|t−1
,

where ǫ̂t, m̂t|t−1 and ŝt|t−1 are evaluated at θ̂. Residuals rt are realizations
of n independent standard normal variables if the model assumptions are
met.

5. Simulation study. A simulation study has been performed in or-
der to evaluate maximum likelihood estimation and prediction for the pro-
posed marginal beta regression model. The simulation set-up consists of
1 000 weekly time series from the marginal beta regression model specified
as follows. The length of the time series is set equal to 368, with the first
n = 52×7 = 364 observations used for model fitting and the remaining four
observations used for prediction. Following common practice in surveillance
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literature (Unkel et al., 2012), mean µt and precision κt include linear trend
and annual seasonal components representing temperature variations,

logit(µt) = β0x + β1xt̃+ β2x sin

(

2πt

52

)

+ β3x cos

(

2πt

52

)

,

log(κt) = β0z + β1z t̃+ β2z sin

(

2πt

52

)

+ β3z cos

(

2πt

52

)

,(5.1)

where t̃ indicates the time index t centered and scaled by factor 100 in
such a way to avoid numerical instabilities. The residual serial correlation
is modeled by assuming an ARMA(2,1) process for the errors. The values
of the parameters are set equal to β0x = −4.00, β1x = 0.15, β2x = −0.22,
β3x = −0.67, β0z = 6.00, β1z = 0.10, β2z = −0.06, β3z = −0.19, ψ1 = 1.50,
ψ2 = −0.60, and λ = −0.30. The values of β2x, β3x, β2z, and β3z are chosen
in order to guarantee an amplitude equal to 0.7 and 0.2 for the mean and
the precision, respectively, and a phase shift equal to 0.6π for both mean
and precision. These values resemble a typical ILI weekly time series.

Table 1 displays average and standard deviation of the parameter esti-
mates, and average of the standard errors computed from the inverse of the
observed Fisher information. The results are satisfactory, as they show (i)
a negligible bias in the estimation of all the parameters and (ii) averages of
the standard errors close to standard deviations of the estimates.

Table 1

Average (ave), standard deviation (s.d.), and average of standard errors (s.e.) for
1 000 simulated estimates based on a beta regression model with ARMA(2,1) errors and

with independent errors.

ARMA(2,1) independence
true ave s.d. s.e. ave s.d. s.e.

mean

intercept -4.00 -4.01 0.06 0.05 -4.01 0.06 0.02
trend 0.15 0.15 0.05 0.04 0.15 0.05 0.02
cosine term -0.22 -0.22 0.07 0.06 -0.22 0.07 0.02
sine term -0.67 -0.67 0.08 0.07 -0.67 0.08 0.03

precision

intercept 6.00 6.11 0.17 0.17 6.15 0.18 0.08
trend 0.10 0.10 0.07 0.07 0.12 0.18 0.07
cosine term -0.06 -0.06 0.11 0.11 -0.06 0.24 0.10
sine term -0.19 -0.20 0.11 0.11 -0.22 0.25 0.11

errors
ar1 1.50 1.51 0.12 0.11 – – –
ar2 -0.60 -0.62 0.11 0.09 – – –
ma1 -0.30 -0.33 0.15 0.13 – – –

Table 2 reports the empirical coverage of prediction intervals at lags one
to four, either for the fitted model with ARMA(2,1) errors and for the in-
dependence model. Prediction intervals from model with ARMA(2,1) errors
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are sensibly closer to the nominal level than those based on the independence
model.

Table 2

Empirical coverage of prediction intervals at various lags ahead for 1 000 simulated time
series based on a beta regression model with ARMA(2,1) errors and with independent

errors.

ARMA(2,1) independence
lag 1 lag 2 lag 3 lag 4 lag 1 lag 2 lag 3 lag 4

levels
90% 0.895 0.886 0.870 0.885 0.880 0.868 0.857 0.851
95% 0.948 0.933 0.930 0.930 0.932 0.932 0.913 0.900
99% 0.985 0.985 0.978 0.973 0.971 0.970 0.956 0.948

6. Monitoring outbreaks of disease. Quality control charts are typ-
ically employed for on-line detection of outbreaks of infectious diseases,
e.g., Woodall (2006) and Unkel et al. (2012). To this aim, the first step is the
identification of a model describing the pattern of ordinary influenza seasons.
Then, departures from the model-expected influenza levels are interpreted
as symptoms of anomalies. Cumulative sum (CUSUM) charts (Montgomery,
2009, Chapter 9) are appropriate for monitoring long-lasting illnesses such
as ILI, given the capability of early detection of small variations in the
mean disease level. In fact, CUSUM charts are employed by the Centers
for Disease Control and Prevention for routinely syndromic surveillance
(Hutwagner et al., 2003).

CUSUM charts are typically constructed under the assumption of inde-
pendent observations from a normal distribution, at least approximately.
Accordingly, below we suggest to monitor influenza disease through predic-
tive quantile residuals rt. Bilateral CUSUM chart is based on the positive
C+
t and the negative C−

t cumulative sums of rt,

C+
t = max{0, rt − k + C+

t−1},

C−
t = max{0,−k − rt + C−

t−1},

for a reference value k and with C0 = 0. The process is out-of-control if either
C+
t or C−

t exceeds the decision limit h. Parameters k and h are chosen
in order to guarantee an acceptable capability to detect influenza levels
anomalies and, in the meanwhile, a low number of false alarms. Following
standard recommendations in quality control literature (Montgomery, 2009),
the chart parameters can be set to values k = 0.5 and h = 4.

Standard application of CUSUM charts involves two phases. In Phase
I, historical data are analyzed to calibrate the chart when the process is
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under control. Phase II is the on-line monitoring stage based on the chart
calibrated at the previous phase. Details are given below.

1. Phase I

(a) Fit the beta marginal regression model including trend, seasonal-
ity, and ARMA(p, q) errors, with p and q large enough to guaran-
tee residual autocorrelation to be captured. As a rule of thumb,
we suggest p = q = 3.

(b) Remove the anomalous observations identified by a CUSUM chart
of the predictive quantile residuals derived from the model fitted
at step (a).

(c) Re-estimate the beta marginal regression model on the time series
without the anomalous observations. Choose the most appropri-
ate ARMA(p, q) structure, p ≤ 3 and q ≤ 3, via information
criteria or cross-validation. The chosen model is the best model
representation of a regular seasonal influenza.

2. Phase II

(d) On-line monitor influenza outbreaks by the unilateral positive
CUSUM chart of the predictive quantile residuals derived from
the model selected at Phase I, step (c).

7. Application to Canada Google R© Flu Trends. In this section,
we illustrate the application of the methodology previously described to the
analysis of Canada GoogleR© Flu Trends data.

In order to illustrate the surveillance procedure of Section 6, we used
data until June 2010 for model calibration (Phase I), while the following
three years of observations are used for on-line monitoring (Phase II). The
initial CUSUM chart based on the ARMA(3, 3) model in Phase I identifies
19 anomalous observations over 354 observations. The subsequent step is
the estimation of all possible models with ARMA(p, q) errors, p ≤ 3 and
q ≤ 3, to the data after removal of the 19 anomalous observations. Table 3
ranks the sixteen possible models in terms of Akaike Information Criterion.
The preferred model is the one with ARMA(2, 1) errors. However, results
highlight that a precise identification of p and q is not crucial, since many
models induce essentially the same autocorrelation structure, see Table 3.

The application of the CUSUM chart in Phase II requires the predictive
quantile residuals being comparable to a set of independent normal variables.
The graphical examination of the predictive quantile residuals reported in
Figure 3 sustains such a requirement.
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Table 3

Canada GoogleR© Flu Trends data. Estimated beta marginal regression models with
ARMA(p, q) errors ranked according to the Akaike Information Criterion (AIC) and

corresponding autocorrelation of the errors at lags one to four.

ARMA autocorrelations
rank p q AIC lag 1 lag 2 lag 3 lag 4

1 2 1 -3372.45 0.94 0.84 0.74 0.64
2 3 0 -3372.37 0.94 0.84 0.74 0.64
3 2 0 -3371.57 0.94 0.84 0.75 0.66
4 1 2 -3371.47 0.94 0.84 0.74 0.66
5 3 1 -3370.49 0.94 0.84 0.74 0.64
6 2 2 -3370.46 0.94 0.84 0.74 0.64
7 1 3 -3369.77 0.94 0.84 0.74 0.65
8 3 2 -3368.66 0.94 0.84 0.74 0.64
9 2 3 -3367.87 0.94 0.84 0.74 0.65
10 3 3 -3367.23 0.94 0.84 0.74 0.64
11 1 1 -3366.89 0.93 0.85 0.77 0.70
12 1 0 -3353.23 0.93 0.87 0.81 0.75
13 0 3 -3269.01 0.78 0.42 0.12 0.00
14 0 2 -3185.59 0.68 0.24 0.00 0.00
15 0 1 -3038.51 0.49 0.00 0.00 0.00
16 0 0 -2766.91 0.00 0.00 0.00 0.00

Phase II CUSUM chart for on-line monitoring is illustrated in Figure 4.
The corresponding points above the decision limit h = 4 in the influenza
time series are highlighted in the bottom panel of Figure 4. The process is
under control until December 9, 2012, and then it remains out-of-control for
eigth consecutive weeks before returning under control. The out-of-control
weeks correspond to the epidemic peak occurred in December 2012 - January
2013.

7.1. Holiday peaks. As observed by a referee, Canada GoogleR© Flu Trends
data show a peak-valley-peak pattern within a couple of weeks at the begin-
ning of most of the observed years, see Figure 1. Accordingly, we investigated
the presence of a “holiday effect”, related to the Christmas/New Year pe-
riod. Table 4 reports estimates and standard errors for the parameters of the
beta marginal regression model with trend, sine and cosine terms describ-
ing seasonal temperature variations, ARMA(2, 1) errors, and the dummy
variable for the holiday weeks. Results indicate no significant trend in the
mean, which is instead significant for the precision. The annual seasonal
component is highly significant in both mean and precision, as expected.
The analysis confirms a very significant increase of ILI in correspondence
with the holiday weeks, given an estimated holiday effect parameter in the
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Fig 3. Canada GoogleR© Flu Trends data. Normal probability plot (left panel) and auto-
correlation function (right panel) of the predictive quantile residuals for the fitted marginal
beta regression model with ARMA(2,1) errors.
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Fig 4. Canada GoogleR© Flu Trends data. Positive CUSUM chart for surveillance of in-
fluenza outbreaks. Circles indicate out-of-control weeks.

mean equal to 0.11, with a standard error of 0.02. Conversely, there is no
significant effect in terms of precision (estimate 0.12, standard error 0.09).

Further confirmations of the relevance of the holiday effect are provided
by AIC, which increases from -5057.31 to -5028.74, and by the profile log-
likelihood for the associated coefficient, displayed in Figure 5.
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Table 4

Canada GoogleR© Flu Trends data. Estimates and standard errors for the parameters of
fitted marginal beta regression model without and with holiday effect. Akaike Information

Criterion (AIC) statistic also reported.

no holiday holiday
effect effect

parameter est. s.e. est. s.e.

mean

intercept -4.14 0.05 -4.14 0.05
trend -0.16 0.33 0.05 0.33
sine term 0.66 0.06 0.65 0.06
cosine term -0.31 0.06 -0.31 0.06
Christmas/New Year – – 0.11 0.02

precision

intercept 6.23 0.11 6.19 0.11
trend 1.46 0.43 1.68 0.43
sine term -0.48 0.09 -0.37 0.10
cosine term -0.04 0.10 -0.08 0.09
Christmas/New Year – – 0.12 0.09

ARMA

ar1 1.52 0.07 1.57 0.06
ar2 -0.60 0.07 -0.64 0.06
ma1 -0.25 0.09 -0.28 0.08

AIC -5028.74 -5057.31

8. Conclusions. This paper suggested a practical approach for analysis
of bounded time series defined on the unit interval. One of the advantages of
the proposed marginal model is the reproducible interpretation of the regres-
sion parameters, whose meaning does not depend on the ARMA structure.
The robust interpretation of the regression parameters is a property not
shared by alternative conditionally specified models, such as observation-
and parameter-driven beta regression models briefly described in Section 3.
Another advantage of the proposed approach is that inferential and predic-
tion tasks have convenient expressions, thus making modeling time series
on the unit scale feasible as a practical alternative to the common logit-
transformation approach.

Several extensions of the proposed modeling framework are possible. First,
the approach has a trivial extension to time series defined on an arbitrary
(a, b) interval. Second, spatial and spatio-temporal beta regression mod-
els can be constructed by assuming that the errors are realizations of a
Gaussian random field. Finally, the model can be extended to allow for ex-
act zeros and ones, by using the zero-or-one beta inflated regression model
(Ospina and Ferrari, 2012) to define the univariate marginal distributions.
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