
Submitted to the Annals of Applied Statistics

EXPLOITING MULTIPLE OUTCOMES IN BAYESIAN PRINCIPAL
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By Alessandra Mattei∗,‡ , Fan Li†,§ and Fabrizia Mealli‡
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The causal effect of a randomized job training program, the JOBS II
study, on trainees’ depression is evaluated. Principal Stratification is used to
deal with noncompliance to the assigned treatment. Due to the latent nature of
the principal strata, strong structural assumptions are often invoked to iden-
tify principal causal effects. Alternatively, distributional assumptions may be
invoked using a model-based approach. These often lead to weakly identi-
fied models with substantial regions of flatness in the posterior distribution
of the causal effects. Information on multiple outcomes is routinely collected
in practice, but is rarely used to improve inference. This article develops a
Bayesian approach to exploit multivariate outcomes to sharpen inferences
in weakly identified principal stratification models. We show that inference
for the causal effect on depression is significantly improved by using the re-
employment status as a secondary outcome in the JOBS II study. Simulation
studies are also performed to illustrate the potential gains in the estimation of
principal causal effects from jointly modeling more than one outcome. This
approach can also be used to assess plausibility of structural assumptions and
sensitivity to deviations from these structural assumptions. Two model check-
ing procedures via posterior predictive checks are also discussed.

1. Introduction. The impact of job loss and unemployment on workers’ stress and
mental health is a subject of much interest in psychology (see, e.g.Vinokur et al., 1987).
The Job Search Intervention Study (JOBS II) (Vinokur et al., 1995) is an influential ran-
domized field experiment intended to study the prevention ofpoor mental health and the
promotion of high-quality re-employment among unemployedworkers. In JOBS II, partic-
ipants were randomly assigned to attending job training seminars (treatment) or receiving a
booklet on job-search tips (control). As in many open-labelrandomized intervention stud-
ies, substantial noncompliance to assigned treatment arose in JOBS II. The compliance
status is a special case of intermediate variables, that is,variables, often confounded, that
are potentially affected by the assignment and also affect the response. When the study
goal, as in JOBS II, is to evaluate the causal effect of receiving the treatment rather than
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the effect of assignment, the confounded intermediate variables need to be adjusted for in
the analysis. Another example where intermediate variables arise is mediation analysis in
observational studies: researchers are interested in knowing not only if an exposure has an
effect on the response, but also to what extent this effect is mediated by some variables on
the causal pathway between exposure and outcome. Other forms of intermediate variables
include surrogate endpoints, unintended missing outcome data, truncation of outcome by
“death”, and combinations of these variables.

Our discussion will frame causal inference with intermediate variables in the context
of the Rubin Causal Model (RCM) using potential outcomes (Rubin, 1974, 1978). Un-
der the RCM, a causal effect is defined as the comparison between the potential out-
comes under different treatments on acommon setof units. As pointed out inRosenbaum
(1984), directly applying standard pre-treatment variable adjustment methods, such as re-
gression analysis, to intermediate variables generally results in estimates lacking causal
interpretation.Angrist, Imbens and Rubin(1996) and Imbens and Rubin(1997) focused
on noncompliance in randomized trials and made connectionswith econometric instru-
mental variable (IV) settings: they stratify units into latent subpopulations according to
their joint potential compliance statuses under both treatment and control. This is a special
case of the later developed principal stratification (PS) (Frangakis and Rubin, 2002), an
increasingly popular framework for handling intermediatevariables. A PS with respect to
an intermediate variable is a cross-classification of unitsinto latent classes defined by the
joint potential values of that intermediate variable undereach of the treatments being com-
pared. A principal stratum consists of units having the samejoint intermediate potential
outcomes and so is not affected by treatment assignment. Therefore, comparisons of po-
tential outcomes under different treatment levels within a principal stratum—the principal
causal effects (PCEs)—are well-defined causal effects in the sense ofRubin(1978).

However, since at most one potential outcome is observed forany unit, principal strata
are generally latent, so that inference on PCEs is not straightforward. There are two streams
of work in the existing literature regarding this: (1) deriving large-sample nonparametric
bounds for the causal effects under minimal structural assumptions (e.g.,Manski, 1990;
Zhang and Rubin, 2003), and (2) specifying additional structural (e.g., exclusion restric-
tion or monotonicity) or modeling assumptions to infer PCEs, and conducting sensitivity
analysis to check the consequences of violations of such assumptions (e.g.,Ten Have et al.,
2004; Small and Cheng, 2009; Sjölander et al., 2009; Elliott et al., 2010; Li et al., 2010,
2011; Schwartz et al., 2012). In this article, we introduce an alternative approach to im-
prove estimation of PCEs, which uses multiple outcomes in a model-based analysis. For
example, in the JOBS II evaluation, we will jointly model thedepression score, the out-
come of primary interest, and the re-employment status, a secondary outcome, to sharpen
the inference for the causal effect on depression.

Multivariate analysis is beneficial for two reasons. First,models used in PS are in-
herently mixture models; recent results on mixture models show that with correct model
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specification, multivariate analysis leads to smaller variances of the parameters’ estimators
than those from a corresponding univariate analysis, resulting in more precise estimates
(Mercatanti et al., 2012). Second, some key substantive structural assumptions, such as
exclusion restrictions, may be more plausible for secondary outcomes than for the primary
one. For example, in JOBS II, due to the possible “placebo effect”, exclusion restriction
might not be plausible for depression, but it may be more plausible for re-employment
status. Another example is given in Section2. Restrictions on secondary outcomes re-
duce the parameter space of the joint distribution of all outcomes and in turn the marginal
distribution of the primary one (Mealli and Pacini, 2013).

However, the additional information provided by secondaryoutcomes is obtained at
the cost of having to specify more complex multivariate models, which may increase the
possibility of misspecification. For instance, in the analysis of JOBS II data, jointly model-
ing depression and re-employment status involves specifying a mixture of two underlying
bivariate normal distributions, increasing the number of unknown parameters compared
with a univariate analysis on depression. Therefore, modeldiagnostics are crucial in the
multivariate analysis and we develop model checking procedures via posterior predictive
checks in this article.

While the use of auxiliary information from covariates to improve inference on causal
effects has been discussed, the importance of exploiting multiple outcomes is less acknowl-
edged. For example, covariates generally improve inference on causal effects by enhanc-
ing the prediction of missing intermediate and final potential outcomes (e.g.,Hirano et al.,
2000; Gilbert and Hudgens, 2008). However, information on multiple outcomes is rou-
tinely collected in randomized experiments and observational studies, but is rarely used
in analysis unless the goal is to study the relationships between outcomes. One excep-
tion is Jo and Muthen(2001), who demonstrated, in the context of a randomized trial
with noncompliance, that a joint analysis with two outcomesoutperform the two corre-
sponding univariate analyses.Mealli and Pacini(2013) showed that using the joint distri-
bution of a primary outcome and an auxiliary variable (a secondary outcome or a covariate)
in randomized experiments with noncompliance can tighten large-sample non-parametric
bounds for PCEs.

Our work is closely related toMealli and Pacini(2013), but it proceeds from the para-
metric perspective under the Bayesian paradigm instead. Ascausal inference problems
are essentially missing data problems under the RCM, Bayesian approaches appear to be
particularly useful. From a Bayesian perspective, all unknown quantities, parameters as
well as unobserved potential outcomes, are random variables with a joint posterior distri-
bution, conditional on the observed data. Therefore, inferences are based on the posterior
distribution of the causal estimands defined as functions ofobserved and unobserved po-
tential outcomes, or sometimes as functions of model parameters. This leads to at least
two inferential advantages. First, the Bayesian approach provides a refined map of identi-
fiability, clarifying what can be learned when causal estimands are intrinsically not fully
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identified, but only weakly identified in the sense that theirposterior distributions have
substantial regions of flatness (Imbens and Rubin, 1997). In particular, issues of identi-
fication are different from those in the frequentist paradigm because with proper prior
distributions, posterior distributions are always proper. Weak identifiability is reflected in
the flatness of the posterior distribution and can be quantitatively evaluated (Gustafson,
2009). Second, in a Bayesian setting, the effect of relaxing or maintaining assumptions
can be directly checked by examining how the posterior distributions for causal estimands
change, therefore serving as a natural framework for sensitivity analysis. Moreover, the
Bayesian framework allows one to quantify the impact on the causal estimates when there
is a diversion from these assumptions.

The primary aim of the paper is to combine the benefits from using a multivariate anal-
ysis with the inferential advantages of the Bayesian approach for causal inference in the
context of principal stratification. The rest of the articleis organized as follows. Section
2 introduces the fundamentals of principal stratification and the intuition for the benefit
from using multivariate analysis. In Section3, we propose Bayesian bivariate models for
principal stratification analyses and describe the detailsof conducting posterior inferences
for the causal effects. In Section4, we re-analyze the JOBS II study using the proposed
bivariate approach. Additional simulation studies to examine the benefits to use multivari-
ate outcomes under various scenarios are carried out in Section 5. Two model checking
procedures based on posterior predictive checks with application to the JOBS II data are
discussed in Section6. Section7 concludes.

2. Fundamentals.

2.1. Basic setup, definitions and assumptions.Consider a large population of units,
each of which can potentially be assigned a treatment indicated by z, with z = 1 for
treatment andz= 0 for control. A random sample ofnunits from this population comprises
the participants in a study, designed to evaluate the effect of Z on all or a subset ofM
outcomesY = (Y1, ...,YM)′. Without loss of generality, we will focus on the case of two
outcomes (M = 2). For each uniti, letZi be the assignment indicator withZi = 1 indicating
the unit is assigned to the treatment andZi = 0 to the control. After the assignment, but
before the outcome is observed, an intermediate outcomeDi is also observed. In the JOBS
II evaluation, bothZ and D are binary, withZi = 1 and 0 denoting random assignment
to the job training seminars and to the booklet, respectively, andDi = 1 and 0 denoting
actually attending the seminars or not, respectively. AlsoY1 denotes the depression score
andY2 denotes the re-employment status.

Assuming the standard Stable Unit Treatment Value Assumption (SUTVA,Rubin, 1980),
for each outcomeYm, we can define for each uniti two potential outcomes,Yim(0) and
Yim(1), corresponding to each of the two possible treatment level. Under the RCM, a causal
effect of the treatmentZ on the outcomeYm is defined as a comparison of the potential out-
comesYm(1) andYm(0) on a common set of units. However, only one potential outcome
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is observed for uniti, Yobs
im = Yim(Zi); the other potential outcome,Ymis

im = Yim(1 − Zi), is
missing. Therefore, causal inference problems under the RCM are inherently missing data
problems.

Since an intermediate variable,D, is a post-treatment variable, we can also define two
potential outcomesDi(0) andDi(1) for each unit, with one being observed,Dobs

i = Di(Zi),
and one missingDmis

i = Di(1−Zi). Comparing outcomes from units with the same values of
Dobsbetween treatments generally leads to estimates lacking causal interpretation, because
then the sets{i : Dobs

i = d,Zi = 1} and{i : Dobs
i = d,Zi = 0} are generally not the same

groups of units. This concern is known as the post-treatmentselection bias.
A principal stratification with respect to the post-treatment variableD is a partition

of units, whose sets—principal strata—are defined by the joint potential values ofD:
Si = (Di(0),Di (1)). By definition the principal stratum membershipSi is not affected by
the assignment. Therefore, comparisons ofYm(1) andYm(0) within a principal stratum, the
principal causal effects (PCEs), have a causal interpretation because they compare quan-
tities defined on a common set of units. However, sinceDi(0) andDi(1) are never jointly
observed, principal stratumSi is generally latent.

To convey the main message of utilizing multiple outcomes, we focus on the simple case
of a binary intermediate variable, as the case in JOBS II; it is nevertheless straightforward
to apply the method developed here to multi-valued or continuous intermediate variables
following the approaches inJin and Rubin(2008) andSchwartz et al.(2011). In order to
highlight the role of additional outcomes, with no loss of generality, our discussion does
not include covariates, although covariates can be easily included in the analysis. With a
binary treatment and a binary intermediate variable, thereare at most four principal strata:
Si ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. WhenD is the indicator of the treatment actually received,
as in our JOBS II application, the four principal strata are respectively called never-takers
(Si = n), compliers (Si = c), defiers (Si = d) and always-takers (Si = a). Though our
approach applies to any binary intermediate variable settings (e.g., mediation, truncation
by death), we use the familiar nomenclature of noncompliance to generically refer toSi

hereafter for simplicity.
In randomized studies with noncompliance, the presence of defiers is usually ruled out

assuming monotonicity of noncompliance:Di(1) ≥ Di(0) for all i, with inequality for
at least one unit. Although often plausible in experimentalstudies with noncompliance,
monotonicity is a substantive assumption that may not always be satisfied in other settings.
An important advantage of Bayesian causal inference, in general, and our Bayesian anal-
ysis, in particular, is that the monotonicity assumption isnot necessary, and consequently
violation to this assumption could be easily addressed (Imbens and Rubin, 1997).

In the JOBS II study the treatment is only accessible to theZi = 1 group, soDi(0) = 0
for all i. Therefore subjects who would have taken the treatment if assigned to control
(defiers and always-takers) are denied to access the treatment if assigned to control, and
thus units are classified, in this experiment, only by the values ofDi(1): Di(1) = 1 if unit
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i is a complier, andDi(1) = 0 if unit i is a never-taker. This is a typical case of one-sided
noncompliance (e.g.,Sommer and Zeger, 1991; Mattei and Mealli, 2007).

The causal estimand of interest in this article is the population-average principal causal
effect for thefirst outcome:

(1) τs = E(Yi1(1)− Yi1(0) | Si = s),

for s= c, n. In JOBS II,τs corresponds to the causal effect of being assigned to job-search
seminar on depression for compliers (s = c) and never-takers (s = n). By focusing on the
population-average estimands we can ignore the association betweenYi1(0) andYi1(1) in
the analysis1. Depending on the models for the potential outcomes, population estimands
are usually functions of model parameters.

Throughout the paper, we assume that the treatment is randomly assigned, as in JOBS
II:

Assumption 1. Randomization of treatment assignment.

Y i(0),Y i(1),Di (0),Di(1) ⊥ Zi

Randomization implies that the joint distribution of the five quantities associated with
each sampled unit, (Zi ,Y i(0),Y i(1),Di (0),Di(1)), can be decomposed into:

(2) Pr(Y i(0),Y i(1),Di (0),Di(1),Zi) = Pr(Y i(0),Y i(1) | Si) Pr(Si) Pr(Zi).

Randomization allows us to ignore Pr(Zi). This implies that likelihood or Bayesian model-
based approaches to PS analysis, usually involve two sets ofmodels: (1) models for the
distribution of potential outcomes conditional on the principal strata, and (2) models for
the distribution of principal strata.

2.2. Intuition for sharping inference from multiple outcomes.The intuition for the
benefit of jointly analyzing multiple outcomes in PS analysis is as follows.

Principal strata are inherently latent clusters. Intuitively, proper utilization of auxiliary
variables provides extra dimensions to better predict the component membership and dis-
entangle the mixtures. First, additional outcomes serve asadditional predictors of principal
strata membership from the Y-models. To see this, take, for example, the model for two po-
tential outcomes underz= 0. By the Bayes rule, Pr(Yi1(0),Yi2(0)|Si ) ∝ Pr(Si |Yi1(0),Yi2(0))
Pr(Yi2(0),Yi1(0)). Comparing to the univariate model withY1, where Pr(Yi1(0)|Si ) ∝ Pr(Si |

1Distinct from the corresponding finite-sample estimands,τFS
s =

∑

i:Si=s{Yi1(1)−Yi1(0)}/ns, the population
causal effects (1) do not depend on the association parameters betweenYi1(0) andYi1(1), sayρ. Specifically,
posterior distribution of the population estimandsτs will not be dependent ofρ as long asρ is a priori inde-
pendent of the remaining model parameters, while inferences for the finite sample causal estimandsτFS

s would
generally involveρ regardless of the prior structure between parameters (for more discussion on this, see page
311 inImbens and Rubin, 1997).
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Yi1(0)) Pr(Yi1(0)), it is clear to see the role of the second outcomeY2 as an additional pre-
dictor ofSi .

As a second intuition, two (or more) distributions may be difficult to disentangle if they
are similar, e.g., if their means are very close; these same two means may instead be very
far apart (and thus the mixture easier to disentangle) if considered in a two-dimensional
space. In fact, recent theoretical results for mixture models (Mercatanti et al., 2012) show
that given correct model specification, the probability of correctly allocating the cluster
membership of the units and the information number for the means of the primary outcome
in a bivariate mixture model are generally larger than thosein the corresponding marginal
model. As a result, variances of the maximum likelihood estimators for the mixture means,
estimated by the inverse of the observed information matrix, are generally smaller in a
bivariate analysis than in a univariate one.

As a third intuition, some structural assumptions may be more plausible for the sec-
ondary outcome than the primary outcome. For example, stochastic exclusion restriction
(ER) for never-takers is commonly assumed to point-identify PCEs:

Assumption 2. (Stochastic exclusion restriction for never-takers). Forall i with Si = n,

Pr(Yim(0)) = Pr(Yim(1)), m= 1, 2.

The ER implies that any effect of the assignment is mediated through the intermediate
variable. But the ER is often questionable in practice. Consider a double-blinded random-
ized trial with the primary goal of studying the efficacy of a new drug on a health outcome,
where side effects are also recorded as a secondary outcome. Due to the placebo effect,
the ER may not always hold for the primary outcome. Since sideeffects are usually only
caused by taking the drug rather than the placebo, ER appearsto be more likely to hold for
side effects than the primary outcome. Formally, we have the “partial exclusion restriction
(PER)” assumption (Mealli and Pacini, 2013):

Assumption 3. (Stochastic partial exclusion restriction for never-takers). For all i with
Si = n,

Pr(Yi2(0)) = Pr(Yi2(1))

Restrictions on the secondary outcome, such as PER, will reduce the parameter space of
the joint distribution of the outcomes and in turn the marginal distribution of the primary
one. PER can be combined with other conditions on the association structure between
outcomes to improve inference about the causal estimates (Mealli and Pacini, 2013).

3. Bayesian Bivariate Principal Stratification Analysis. The structure for Bayesian
PS inference was first developed inImbens and Rubin(1997) for the special case of non-
compliance. As discussed before, two sets of models need to be specified, as well as the
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prior distribution for the parameters,θ. Denoteπi,s = Pr(Si = s|θ) and fi,sz= Pr(Y i(z)|Si =

s, θ), for s = c, n andz = 0, 1, and assume a prior distributionπ(θ) for the parametersθ.
The posterior distribution ofθ can be shown to be:

π(θ|Yobs,Dobs,Z,X) ∝ π(θ) ×
∏

i:Zi=1,Dobs
i =1

πi,c fi,c1 ×
∏

i:Zi=1,Dobs
i =0

πi,n fi,n1

×
∏

i:Zi=0,Dobs
i =0

[

πi,n fi,n0 + πi,c fi,c0
]

,(3)

where the sum in the likelihood is because the units with (Zi = 0,Dobs
i = 0) are mix-

ture of never-takers and compliers. Direct posterior inference ofθ from (3) is made eas-
ier using data augmentation to impute the missingDmis

i . Specifically, we can first ob-
tain the joint posterior distribution of (θ,Dmis) from a Gibbs sampler by iteratively sam-
pling from Pr(θ|Yobs,Dobs,Dmis,Z) and Pr(Dmis|Yobs,Dobs,Z, θ), which in turn provides
the marginal posterior distributionπ(θ|Yobs,Dobs,Z) and thus the posterior of the causal
estimandsτs, s = c, n. The key to the posterior computation is the evaluation of the com-
plete intermediate-data posterior distribution Pr(θ|Yobs,Dobs,Dmis,Z), which has the fol-
lowing simple form:

Pr(θ|Yobs,Dobs,Dmis,X,Z) = π(θ) ×
∏

i:Zi=1,Si=c

πi,c fi,c1

×
∏

i:Zi=1,Si=n

(1− πi,c) fi,n1 ×
∏

i:Zi=0,Si=c

πi,c fi,c0 ×
∏

i:Zi=0,Si=n

(1− πi,c) fi,n0

Without additional assumptions, such as ER, inference onτs, though possible and rel-
atively straightforward from a Bayesian perspective, can be very imprecise, even in large
samples. We argue that jointly modeling multiple outcomes may help to reduce uncertainty
aboutτs in cases where such assumptions are questionable.

4. Application to the JOBS II Study. In JOBS II, before randomization, participants
were divided into two groups defined by values of a risk variable depending on financial
strain, assertiveness, and depression scores. Subjects who had a risk score greater than a
pre-fixed threshold were classified in the high-risk category. Subsequently, the low- and
the high-risk participants were randomly assigned to a control condition or an experimen-
tal condition. The intervention consisted of 5 half-day job-search skills seminar aiming
at teaching participants the most effective strategies to get a suitable position and at im-
proving their job-search skills. The control condition consisted of a mailed booklet briefly
describing job-search methods and tips.

Previous studies have found that the job search intervention program had its primary im-
pact on the high-risk group (e.g.,Vinokur et al., 1995; Little and Yau, 1998; Jo and Muthen,
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Table 1
Summary statistics (means), JOBSII data

Zi = 1 Dobs
i = 0

All Zi = 0 Zi = 1 Dobs
i = 0 Dobs

i = 1
Sample Size 398 130 268 124 144 254

Assignment (Zi) 0.67 0 1 1 1 0.49
Job-search seminar (Dobs

i ) 0.36 0 0.54 0 1 0
Depression (Yobs

i1 ) 2.06 2.15 2.01 2.08 1.96 2.11
Re-employment (Yobs

i2 ) 0.60 0.55 0.63 0.59 0.66 0.57

2001), hence our focus is on high-risk subjects. The sample we useconsists of 398 high-
risk individuals with non-missing values on the relevant variables. We focus on the out-
comes measured six months after the intervention assignment. The primary outcome of
interest (Y1) is depression, measured with a sub-scale of 11 items based on the Hopkins
Symptom Checklist. As a secondary outcome (Y2), we use re-employment, a binary vari-
able taking on value 1 if a subject works for 20 hours or more per week.

Noncompliance arises in JOBS II because a substantial proportion (46%) of individ-
uals invited to participate in the job-search seminar did not show up to the intervention.
As mentioned before, since the treatment condition is only available to the individuals as-
signed to the intervention in JOBS II, thus, by the strong monotonicity assumption, there
are neither defiers nor always-takers in the data. Some summary statistics for the sample
of 398 high-risk unemployed workers classified by assignment Zi and treatment received
Dobs

i are shown in Table1.
Comparisons of outcomes conditional on the actual treatment status does not generally

lead to credible estimates of the effect of the job-search seminar attendance. However,
randomization of the assignment implies that a standard intention-to-treat (ITT) analysis,
which compares units by assignment and neglects noncompliance, leads to valid inference
on the causal effect of assignment. Under monotonicity and ER for noncompliers (never-
takers), the ITT effect is proportional to the PCE effect for the subpopulation of compliers
(τc). Therefore, the ITT effect can be interpreted as indicative of the effect of the treatment,
although the attribution of the PCE for compliers to the causal effect of the treatment for
compliers is an assumption.

In JOBS II, assuming ER for depression may be controversial.For example, never-
takers randomized to the intervention might feel demoralized by inability to take advan-
tage of the opportunity, whereas they would be less demoralized when randomized to the
control group because the intervention was never offered. Therefore, we relax ER for de-
pression, using information on a secondary outcome—re-employment status—to improve
the estimation of weakly identified causal effects on depression.

Models. We assume a bivariate normal outcome model for the logarithmof depres-
sion (Y1) and a latent variableY∗i2 underlying the binary re-employment status:Yi2(z) =
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1(Y∗i2(z) > 0). Specifically, fors= c, n andz= 0, 1,

(4)

(

Yi1(z)
Y∗i2(z)

)

|Si = s∼ N

(

µs,z =

(

µ
s,z
1
µ

s,z
2

)

,Σs,z =

(

σ
s,z
11 σ

s,z
12

σ
s,z
12 σ

s,z
22

))

,

withσs,z
22 = 1. This formulation is equivalent to assuming a probit modelfor Y2: Pr(Yi2(z) =

1|Si = s) = Φ(µs,z
2 ). Note that under PER for re-employment,µn,1

2 = µ
n,0
2 . For principal

strata, we assume a Bernoulli distribution

Pr(Si = c) = πc and Pr(Si = n) = πn = 1− πc.(5)

The parameters areθ = {πc,µ
s,z,Σs,z}.

Prior Distributions for Parameters. To simplify the notation, a priori distributions are
specified omitting the superscripts, z. For the mean parameters,µ, we assume the indepen-
dent diffused normal priors,µ ∼ N(0,Σ µ), where the prior variance matrices are diagonal
Σµ = vaI p. For the covariance matricesΣ, due to the constraint ofσ22 = 1, there is no
conjugate prior. Let the covariance parametersσ = (σ11, σ12), we need to ensure that the
distribution ofσ is truncated to the regionA ⊂ R2 whereΣ is a positive definite ma-
trix, i.e.,A = {σ : σ11 > σ

2
12}. As in Chib and Hamilton(2000), we assume a flexible

truncated bivariate normal prior forσ, σ ∼ N(σ0,Σ0)1A(σ) whereσ0 andΣ0 are hyper-
parameters, and1A is the indicator function taking the value one ifσ is inA and the value
zero otherwise.

Prior to Posterior Computation. The posterior distributions of the parameters were
obtained from Markov chain Monte Carlo (MCMC) methods. The MCMC algorithm that
we adopted uses Gibbs sampler with data augmentation to impute at each step the missing
compliance indicatorsDmis

i and to exploit the complete compliance data posterior distri-
bution to update the parameter distribution. Details of theMCMC are given in the online
Supplement A.

Results. We estimated PCEs using four models: (1) a bivariate model that does not
assume ER for either depression or re-employment; (2) a bivariate model that assumes
PER for re-employment; (3) an univariate model for depression that does not assume ER;
and (4) an univariate model for depression that assumes ER for never-takers2.

The posterior distributions were simulated running three chains from different starting
values (see the onlineSupplement Afor further details on chains’ initial values). Each
chain was run for 10, 000 iterations after a burn-in stage of 5, 000 iterations. The potential

2We do not present results from the bivariate model that assume ER for both depression and re-employment
because, under ER (and monotonicity) the improvement from secondary outcomes is only marginal, as we
can uniquely disentangle the mixtures of distributions associated with principal strata without invoking any
additional distributional or behavioral assumption
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Table 2
Summary Statistics: Posterior Distributions of PCEs on Depression for Compliers and Never-takers

Median 2.5% 97.5% WidthCI0.95

PCEs for Compliers (τc)
1. Bivariate −0.338 −0.594 −0.105 0.489
2. Bivariate with PER −0.205 −0.758 0.285 1.043
3. Univariate −0.206 −0.582 0.125 0.707
4. Univariate with ER −0.260 −0.613 0.049 0.661

PCEs for Never-takers (τn)
1. Bivariate 0.043 −0.193 0.263 0.456
2. Bivariate with PER −0.056 −0.684 0.488 1.171
3. Univariate −0.084 −0.527 0.287 0.813

scale-reduction statistic (Gelman and Rubin, 1992) suggested good mixing of the chains
for each estimand, providing no evidence against convergence. Inference is based on the
remaining 30, 000 iterations, combining the three chains.

Table2 presents the posterior median and 95% credible interval forthe estimands of
interest—the PCEs on depression for compliers,τc, and never-takers,τn—obtained from
the four models. Forτn, both the univariate model without ER and the bivariate models
with and without PER for re-employment lead to a small and negligible estimated effect,
suggesting that never-takers’ depression status was little affected by the invitation to at-
tend the job-search seminar. This is also evident from the histograms in the bottom panel
of Figure1, where the posterior distributions ofτn are evenly spread around zero with a
large span. These results imply that the ER assumption for depression in never-takers may
be reasonable. Interestingly, the bivariate model that does not assume ER for any outcome,
still significantly improves inferences about PCEs, reducing the width of the credible inter-
val for τn by 44% compared to that from a univariate analysis (Rows 5 and7). Conversely,
the bivariate model with PER provides a large posterior credible interval forτn (see the
discussion below).

For the PCEs for compliers,τc, a negative point estimate is obtained from all four mod-
els: −0.338 in the bivariate case,−0.205 in the bivariate case with PER,−0.206 in the
univariate case, and−0.260 in the univariate case with ER. The posterior probability of
this effect being negative is greater than 75% irrespective of the approach we consider.
Therefore all the approaches show some evidence that the invitation to attend the job-
search seminar reduces depression among compliers. However, only the bivariate model
leads to a 95% credible interval not covering 0, with a 99.8% posterior probability thatτc
is negative. In fact, the bivariate analysis without PER provides considerably more precise
estimates forτc than both the bivariate analysis with PER and the univariateanalyses with
and without ER: the bivariate model without ER for any outcomes (Row 1) reduces the
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width of the 95% credible interval forτc by 53% compared to the bivariate model with
PER (Row 2), and by 31% and 26%, compared to the univariate model without (Row 3)
and with (Row 4) ER, respectively. This is further illustrated by the histograms in the up-
per panel in Figure1. The bivariate approach with PER performs worse than the univariate
approaches, too: the 95% posterior credible intervals for the PCEs on depression from the
bivariate approach with PER are more than 30% wider than those derived from the univari-
ate approaches. Somewhat surprisingly, the posterior distributions ofτc andτn from the
model with PER have large variances. This highlights an interesting phenomenon about
PER that will be further investigated through our simulations: PER helps to reduce poste-
rior uncertainty only if it does (or approximately) hold andis imposed. However, when it
is imposed but does not hold, PER may force the parameters to lie in a region of the natural
parameter space that is far away from the truth and thus lead to larger posterior variances.
This is what may have happened in the JOBS II analysis: even ifthere is large posterior
uncertainty about the effect of assignment on re-employment for never-takers, imposing
this effect to be exactly zero leads to ill-fitted models.

It is worth noting that the bivariate approach leads to posterior distributions ofτc andτn
centered at slightly different medians. In light of the simulation results, which show that
jointly modeling two outcomes generally leads to posteriormeans and medians closer to
the true values, these findings suggest the bivariate estimates are more reliable, while the
univariate estimates may be far from the true values.

JOBS II is a randomized experiment, and so pre-treatment covariates do not enter the as-
signment mechanism. Nevertheless, covariates could be still used to improve precision of
the causal estimates. Our analysis can also use covariates in addition to auxiliary outcomes.
Indeed, we also estimated the models previously described conditional on several relevant
covariates. Similar results were obtained, but the benefitsof the bivariate approach, that
we want to highlight here, are particularly evident when no covariates are used. Therefore
we relegate the details for the models with covariates to theonlineSupplement B.

5. Simulations. To better understand the results of the JOBS II application,and more
importantly, to further shed light on the comparison between univariate and bivariate prin-
cipal stratification analyses in general settings, we conduct an extensive simulation study.
We consider a wide range of simulation scenarios that often occur in practice, accounting
for different correlation structures between the outcomes for compliers and never-takers,
various deviations from the PER for the secondary outcome, and different association lev-
els between the auxiliary variable and the compliance status.

To simplify computation, we generate two continuous outcomes from a mixture of two
bivariate normal distributions as model (4), and the stratum membership from a Bernoulli
distribution as model (5)3. Also we assume that parameters are a priori independent anduse

3Although we only consider bivariate Normal distributions in our simulations, we can reasonably expect
that our results are not tied to distributional assumptions: Mealli and Pacini(2013) show that secondary out-
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Fig 1. Histograms and 95% posterior intervals of PCEs on depression for compliers (τc) and never-takers
(τn) under the univariate approach with ER (light-blue histograms/lines), the univariate approach without ER
(blue histograms/lines), the bivariate approach (red histograms/lines) and the bivariate approach with PER
(green histograms/lines).

PCE for Compliers

−1.2 −0.9 −0.6 −0.3 0.0 0.3 0.6 −1.2 −0.9 −0.6 −0.3 0.0 0.3 0.6

PCE for Never-Takers

−1.25 −0.75 −0.25 0.25 0.75
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Table 3
True values of parameters of the seven simulation scenarios. The last two columns show the ratio of the

between-groups variance and the total variance of the secondary outcome under the control and the active
treatment arm, where the groups are defined by the compliancestatus (correlation ratio)

Scenario µn,0 µn,1
Σ

n,0
Σ

n,1 η2
Y2|S,Z=0 η2

Y2|S,Z=1

I

[

2.75
12

] [

4.25
12

] [

0.16 0.16
0.16 4

] [

0.04 0.08
0.08 4

]

0.639 0.770

II

[

0.16 0.64
0.64 4

] [

0.04 0.32
0.32 4

]

[

2.75
12

] [

4.25
13

]

0.639 0.824

III

[

0.16 0.16
0.16 4

] [

0.04 0.08
0.08 4

]

IV

[

0.16 0.64
0.64 4

] [

0.04 0.48
0.48 9

]

[

2.75
12

] [

4.25
24

]

0.639 0.950

V

[

0.16 0.16
0.16 4

] [

0.04 0.12
0.12 9

]

VI

[

0.16 0.96
0.96 9

] [

0.04 0.80
0.8 25

]

[

2.75
24

] [

4.25
36

]

0.941 0.957

VII

[

0.16 0.24
0.24 9

] [

0.04 0.20
0.2 25

]

In all the scenarios

µc,0 =

[

2.5
8

]

µc,1 =

[

0.5
6.5

]

Σ
c,0 =

[

0.09 0.24
0.24 1

]

Σ
c,1 =

[

0.01 0.08
0.08 1

]

conjugate diffuse prior distributions. The true simulation parameters are shown in Table3.
Mimicking the JOBS II data, all simulated data sets haven = 600 units, generated using
principal strata probabilities of 0.7 for compliers and 0.3 for never-takers. The simulated
samples are randomly divided in two groups, half assigned tothe treatment and half to the
control. Three parallel MCMC chains of 15,000 iterations with different starting values
were run for each of the seven simulated data sets, with the first 5,000 as burn-in. Mixing of
the chains was determined to be adequate and all chains lead to similar posterior summary
statistics.

Figure2 shows the histograms and 95% posterior credible intervals of the PCEs for
compliers and never-takers on the primary outcome, in both the univariate and bivari-
ate cases. The results clearly demonstrate that simultaneous modeling of both outcomes

comes can also tighten large-sample non-parametric boundsfor PCEs, andMercatanti et al.(2012) show that
the use of an auxiliary variable may improve inference also in misspecified Gaussian mixture models. See also
(e.g.,Gallop et al., 2009; Mealli and Pacini, 2008) for further insights on the role of distributional assumptions
in PS analysis.
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significantly reduces posterior uncertainty for the causalestimates. In fact, the bivariate
approach outperforms the univariate one in each of the scenarios considered, providing
considerably more precise estimates of the PCEs for compliers and never-takers.

The benefits of the bivariate approach especially arise whencompliers and never-takers
are characterized by different correlation structures (scenarios III and V) and whenthe as-
sociation between the auxiliary outcome and the compliancestatus is stronger (scenarios
VI and VII). In addition, histograms (III), (V), (VI) and (VII) in the upper and lower panels
of Figure2 suggest that the posterior distributions of the PCEs are much more informative
in the bivariate case. Specifically, histograms (III)s and (VII)s show that the posterior dis-
tributions of the PCEs for compliers and never-takers are flat in the univariate approach,
but become much tighter in the bivariate case. The improvement is even more dramatic
in scenarios (V) and (VI), where the histograms show that posterior distributions of the
PCEs for compliers and never-takers are bimodal in the univariate case, but both become
unimodal in the bivariate case. Also, in the above scenariosjointly modeling the two out-
comes leads to posterior means of the PCEs for compliers and never-takers much closer
to the true values. The bivariate approach outperforms the univariate one also in scenar-
ios II and IV, where compliers and never-takers are characterized by similar correlation
structures.

In both scenarios the bivariate approach considerably increases the precision of the es-
timates. In scenario I, where PER for the secondary outcome holds, we also derived the
posterior distributions of the PCEs for compliers and never-takers by specifying a bivari-
ate model that assumes PER. The bivariate models with and without PER lead to similar
results, and both clearly outperform the univariate model leading to much less variable
and more informative posterior distributions of the causaleffects of interest. Several other
scenarios with additional structural assumptions were also examined: magnitude of the
improvement varies, but the pattern is consistent with whatis described here.

Additional bivariate analyses were conducted to investigate the role of PER, by fit-
ting the bivariate model with PER also to the six data sets generated under scenarios II
through VII, where PER does not hold. Results, shown in the online Supplement C, sug-
gest that inference for the PCE for compliers is robust with respect to violation of PER: the
corrected-specified bivariate model and the mis-specified bivariate model with PER per-
form similarly, leading to posterior distributions for thePCE for compliers characterized
by similar posterior variability and similar posterior means. On the other hand, inference
on the PCE for never-takers appears to be rather sensitive tothe PER assumption, espe-
cially when PER is strongly violated (scenarios V, VI and VII) and when compliers and
never-taker are characterized by similar correlation structures (scenarios II and IV). In
these scenarios, the posterior distributions from the mis-specified bivariate models with
PER are characterized by larger posterior uncertainty and are centered at posterior means
much farther away from the true parameters than the posterior means from the corrected-
specified bivariate models. Also the posterior distributions of the PCE for never-takers
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Fig 2. Histograms and 95% posterior intervals of PCEs on the primary outcome for compliers (τc) and
never-takers (τn) under the univariate approach (blue histograms/lines), the bivariate approach (red his-
tograms/lines), and the bivariate approach with PER (green histograms/lines). The black vertical lines repre-
sent the true values. The Roman numbers denote the simulation scenarios described in Table3.

Principal Causal Effects for Compliers

I II III IV

−2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8

V VI VII

−2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8

Principal Causal Effects for Never-takers

I II III IV

1.1 1.3 1.5 1.7 1.9 2.1 1.1 1.3 1.5 1.7 1.9 2.1 1.1 1.3 1.5 1.7 1.9 2.1 1.1 1.3 1.5 1.7 1.9 2.1

V VI VII

1.1 1.3 1.5 1.7 1.9 2.1 1.1 1.3 1.5 1.7 1.9 2.1 1.1 1.3 1.5 1.7 1.9 2.1
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derived from the mis-specified bivariate models with PER provide 95% posterior credible
intervals that do not even cover the true parameter in most ofthe scenarios.

These results shed light on two key complementary facts about PER. First, as already
anticipated, PER may help to reduce posterior uncertainty when it does hold and is im-
posed, although the jointly modeling of two outcomes still improves inference increasing
precision, even if no exclusion restriction on the secondary outcome is imposed. It is worth
noting that this is a different result from the non-parametric large-sample case, where the
secondary outcome does not help sharpening inference if no exclusion restriction is im-
posed on it (Mealli and Pacini, 2013). Second, PER may actually increase the posterior
variability of the causal estimates and lead to misleading results, when it is imposed but
does not hold. Therefore, less precise inference under PER can be viewed as an evidence
of violation of PER, which is the case in the JOBS II application. This highlights the
importance of carefully evaluating the plausibility of ER assumptions.

In order to evaluate the accuracy and robustness of the proposed approach we also in-
vestigated its repeated sampling properties using Monte Carlo simulations, which were
summarized by calculating standard frequentist measures,including average biases, per-
cent biases, mean square errors (MSEs) and coverage of nominal 95% confidence intervals.
Results (shown in the onlineSupplement C) confirm, and generally magnify, the findings
discussed here that the simultaneous modeling of two outcomes may improve estimation
by reducing posterior uncertainty for causal estimands.

6. Posterior Predictive Model Checking. The use of multiple outcomes may help
improving inference, although the additional informationprovided by secondary outcomes
is obtained at the cost of having to specify more complex multivariate models, which
may increase the possibility of misspecification. Therefore, model checking procedures to
ensure sensible model specification is crucial.

Bayesian goodness-of-fit methods have been proposed in the literature, including Bayes
factors and marginal likelihood (e.g.,Chib, 1995) and posterior predictive checks (e.g.,
Rubin, 1984; Gelman, Meng and Stern, 1996). Computation of the marginal likelihood
and Bayes factors for our models would require several extraMCMC iterations, and could
be computationally prohibitive because of the nested structure of the MCMC algorithm.
Therefore, we focus on posterior predictive checks, which are based on comparisons of
the observed data to the posterior predictive distribution. A posterior predictive check gen-
erally involves: (a) choosing a discrepancy measure,∆; and (b) computing a Bayesian
p-value.

The posterior predictive discrepancy measures that we use here were first proposed by
Barnard et al.(2003) and can be defined as follows. LetDstudy

s,z =
{

i : Sstudy
i = sandZi = z

}

be the group of subjects of typeSstudy
i = s assigned to treatmentZi = z, s = c, n, z = 0, 1,

in the studydata, wherestudy = obs for the observed data andstudy = rep for data
from a replicated study, that is, outcome data and compliance status drawn from their joint
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posterior predictive distribution. Note that the assignment variable is fixed at its observed
values. LetNstudy

s,z be the number of units in thestudydata belonging to theDstudy
s,z group,

and letY
study
m,s,z ands2,study

m,s,z denote the mean and the variance of the outcome variableYstudy
m ,

m= 1, 2, for this group of units. Then, the discrepancy measures weuse are

S Istudy
m,s (θ) =

∣

∣

∣

∣
Y

study
m,s,1 − Y

study
m,s,0

∣

∣

∣

∣
and NOstudy

m,s (θ) =

√

√

√

√

s2,study
m,s,0

Nstudy
s,0

+
s2,study
m,s,1

Nstudy
s,1

and the ratio ofS Istudy
m,s (θ) to NOstudy

m,s (θ): S Nstudy
m,s (θ) =

S Istudy
m,s (θ)

NOstudy
m,s (θ)

, m= 1, 2, s= c, n. These

measures aim at assessing whether the model, which includesthe prior distribution as well
as the likelihood, can preserve broad features of signal,S Istudy

m,s (θ), noise,NOstudy
m,s (θ), and

signal to noise,S Nstudy
m,s (θ), in the outcome distributions for compliers and never-takers.

In order to assess the plausibility of the posited models as awhole, we also consider the
χ2 discrepancy, defined as the sum of squares of standardized residuals of the data with re-
spect to their expectations under the posited model (e.g.,Gelman, Meng and Stern, 1996);
and for the continuous outcome (depression,Y1), the Kolmogorov-Smirnov discrepancy,
defined as the maximum difference between the empirical distribution function and the
theoretical distribution implied by the posited model.

A widely-used Bayesianp-value is the posterior predictivep−value (PPPV) — the
probability over the posterior predictive distribution ofthe compliance status and the
parametersθ that a discrepancy measure in a replicated data drawn with the sameθ
as in the observed data,∆rep(Srep, θ), would be as or more extreme than therealized
value of that discrepancy measure in the observed study,∆obs(Sobs, θ): Pr(∆rep(Srep, θ) >
∆obs(Sobs, θ)|Yobs,Dobs,Zobs,X) (Rubin, 1984; Gelman, Meng and Stern, 1996).

PPPVs are Bayesian posterior probability statements aboutwhat might be expected in
future replications, conditional on the observed data and the model. Therefore extreme
p−values, that is,p−values very close either to 0 or 1, can be interpreted as evidence that
the model cannot capture some aspects of the data described by the corresponding discrep-
ancy measures, and would indicate an undesirable influence of the model in estimation of
the estimands of interest.

Although the PPPVs are Bayesian posterior probabilities, even within the Bayesian
framework, it is desirable that they are, at least asymptotically, uniformly distributed over
hypothetical observed data sets drawn from the true model. Unfortunately, PPPVs are not
generally asymptotically uniform, but they tend to be conservative in the sense that the
probability of extreme values might be lower than the nominal probabilities from the uni-
form distribution. This conservatism property implies that PPPVs may lack of power to
detect model violations. Alternative posterior predictive checks have been proposed in
the literature, including partial posterior predictivep-values and conditional predictivep-
values (e.g.,Bayarri and Berger, 2000), calibrated posteriorp-values (Hjort et al., 2006)
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and sampled posteriorp−values (Johnson, 2004, 2007; Gosselin, 2011). Here we focus on
sampled posteriorp−values (SPPVs), which have been shown to have at least asymptoti-
cally a uniform probability distribution (Gosselin, 2011).

The SPPV is defined as Pr(∆rep(Srep, θ( j∗))>∆obs(Sobs, θ( j∗))|Yobs,Dobs,Zobs, θ( j∗)), where
θ( j∗) is a uniquevalue ofθ, randomly sampled from its posterior distribution. Following
Gosselin(2011), we calculated the SPPV associated to the JOBS II study using the fol-
lowing two steps: (i) drawK simulated replicated data sets from the sampling distribution
conditional onθ( j∗); (ii ) draw at random thep-value from a Beta distribution with param-
etersa+ 1 andb+ 1, where

a =

K
∑

k=1

1{∆repk (Srepk ,θ( j∗))>∆obs(Sobs,θ( j∗))} + ǫ

K
∑

k=1

1{∆repk(Srepk ,θ( j∗))=∆obs(Sobs,θ( j∗))}

b =

K
∑

k=1

1{∆repk (Srepk ,θ( j∗))<Dobs(Sobs,θ( j∗))} + (1− ǫ)
K

∑

k=1

1{∆repk(Srepk ,θ( j∗))=∆obs(Sobs,θ( j∗))}

with ǫ ∼ U(0, 1).
A potential drawback of SPPVs is that they might provide different random results on

the same data and the same model, depending on thesinglevalueθ( j∗) of the parameter
vectorθ that is sampled. To avoid this issue, we also implemented thesolution proposed by
Gosselin(2011), which involves drawing more than a single value of the parameter vector
θ from its posterior distribution. The steps are: (a) a valueu from a uniform distribution on
(0, 1) is drawn; (b) J > 1 values of the parameter vectorθ, θ(1), . . . , θ(J), are drawn from
its posterior distribution; (c) for eachj = 1, . . . , J, the sample posteriorp-value associated
with θ( j) is computed; (d) the SPPVs are combined using the empiricalu−quantile of the
latter distribution. We call the Bayesianp−value derived from this approach themodified-
SPPV.

Table4 shows the results from the three Bayesianp-values we considered. The SPPVs
are based onK = 500 replicated data sets, and the modified-SPPVs were calculated by
drawing at randomJ = 1000 values of the parameter vector from its (simulated) posterior
distribution and simulatingK = 500 replicated data sets for eachj = 1, . . . , J.

As can be seen in Table4, the estimated Bayesianp-values for the bivariate model that
does not assume ER for any outcome range between 11.5% and 89.3%, suggesting that
the bivariate model fits the data pretty well and successfully replicates the correspond-
ing measure of location, dispersion, and their relative magnitude. Unsurprisingly, similar
results are obtained for the bivariate model with PER for re-employment. In fact, the anal-
yses do not provide a strong evidence against PER for re-employment, so it is reasonable
that posterior predictive checks fail to detect the potential benefits of the bivariate model
that does not assume PER over the bivariate model that does assume PER. However, the
empirical results in Section4 show that the bivariate model without PER considerably
reduce posterior uncertainty for the causal estimands of interest. Therefore, also in light
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of the simulations, we expect that inferences drawn withoutassuming PER may be more
reliable. On another hand, the PPPVs and the modified-SPPVs show some evidence that
the univariate models might not optimally fit the data according to theχ2 discrepancy. In
addition the modified-SPPVs suggest that the univariate model without ER might fail to
replicate the signal-to-noise measure in the depression distribution for never-takers. These
potential failures of the univariate models might be due to the underlying categorical na-
ture of the depression variable. More flexible statistical models could be considered and
compared, but the potential failures of the univariate models seem to be successfully fixed
when the additional information provided by the secondary outcome is used, so we do not
further drill down this issue in this paper, where focus is oninvestigating the benefits of
jointly modeling multiple outcomes in causal inference with post-treatment variables.

7. Conclusion. Motivated by the evaluation of a job training program (JOBS II), we
have demonstrated, within the framework of principal stratification, the benefits of jointly
modeling more than one outcome in model-based causal analysis for studies with interme-
diate variables. Observed distributions in these studies are typically mixtures of distribu-
tions associated with latent subgroups (principal strata). Structural or behaviorial assump-
tions are often invoked to uniquely disentangle these mixtures. When such assumptions
are not plausible, distributional assumptions are often invoked. But these usually lead to
models that are weakly identified, weakly in the sense that the likelihood function has
substantial regions of flatness. From a Bayesian perspective, even when the likelihood is
rather flat, if the prior is proper, so will be the posterior. However posterior uncertainty
will still be rather large in these models, with posterior distributions of causal parameters
often presenting more than a single mode, unless the prior isextremely informative.

We have shown how to sharpen inference in these weakly identified models: improve-
ments are achieved without adding prior information or additional assumptions (such as
ERs, weak monotonicity, or stochastic dominance), but rather by using the additional in-
formation provided by the joint distribution of the outcomeof interest with secondary
outcomes. Indeed, in the JOBS II application, ERs are not particularly plausible. Nonethe-
less, by jointly modeling depression, the primary outcome and re-employment status, a
secondary outcome, we have found improved evidence for a positive effect of the job-
training program on trainees’ depression compared to a univariate analysis on depression
alone. Additional simulations further illustrate the benefits under more general scenarios.

JOBS II is a randomized study, but we stress that our framework can also serve as a
template for the analysis of observational studies with intermediate variables. In obser-
vational studies, randomization (ignorability) of treatment assignment must be assumed
conditional on relevant pre-treatment variables, therebyconditioning on the covariates is
not optional in observational studies but crucial for credible causal statements. However,
once ignorability is assumed, the structure for Bayesian inference in observational studies
with intermediate variables (e.g., mediation analysis) isthe same as that in randomized
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Table 4
Posterior Predictive Checks

Approach Signal Noise Signal-to-Noise Kolmogorov-
Outcome c n c n c n χ2 Smirnov

Posterior PredictiveP-Values
Bivariate

Depression 0.513 0.805 0.432 0.564 0.528 0.798 0.597 0.400
Re-employment 0.497 0.502 0.670 0.242 0.416 0.582 0.475

Bivariate with PER
Depression 0.573 0.574 0.522 0.573 0.562 0.552 0.563 0.389
Re-employment 0.542 0.493 0.408 0.492 0.545 0.493 0.382

Univariate
Depression 0.601 0.678 0.836 0.865 0.536 0.623 0.979 0.441

Univariate with ER
Depression 0.555 0.802 0.484 0.939 0.373

Sample PosteriorP-Values
Bivariate

Depression 0.545 0.798 0.697 0.619 0.473 0.783 0.866 0.816
Re-employment 0.379 0.438 0.830 0.121 0.262 0.582 0.663

Bivariate with PER
Depression 0.693 0.807 0.512 0.520 0.663 0.800 0.592 0.341
Re-employment 0.856 0.818 0.527 0.341 0.863 0.761 0.416

Univariate
Depression 0.170 0.731 0.747 0.320 0.154 0.757 0.699 0.410

Univariate with ER
Depression 0.190 0.625 0.169 0.899 0.392

Modified Sample PosteriorP-Values
Bivariate

Depression 0.893 0.872 0.571 0.367 0.401 0.747 0.803 0.659
Re-employment 0.228 0.115 0.705 0.618 0.122 0.690 0.433

Bivariate with PER
Depression 0.117 0.605 0.631 0.542 0.329 0.329 0.546 0.627
Re-employment 0.495 0.802 0.892 0.260 0.788 0.699 0.566

Univariate
Depression 0.241 0.283 0.888 0.868 0.820 0.097 0.900 0.255

Univariate with ER
Depression 0.200 0.811 0.724 0.692 0.172
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experiments. The differences lie in the structural assumptions: e.g., while in some experi-
ments, the design of the study can help making the ER assumption plausible (blindness, or
double-blindness), the ER assumption for aninstrumentin observational studies is often
questionable. As a consequence, improving inference of weakly identified models is even
more relevant in observational studies.
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SUPPLEMENTARY MATERIAL

Supplement A: Details of Calculation
(http://lib.stat.cmu.edu/aoas/???/???). We describe in detail the Markov Chain Monte Carlo
(MCMC) methods used to simulate the posterior distributions of the parameters of the
models introduced in Section 5 in the main text.

Supplement B: Posterior Inference Conditional on Pretreatment Variables
(http://lib.stat.cmu.edu/aoas/???/???). We describe details of calculation and results under
the alternative models conditioning on the pretreatment variables.

Supplement C: Additional Simulation Results
(http://lib.stat.cmu.edu/aoas/???/???). We present additional simulations aiming at investi-
gating the role of the partial exclusion restriction assumption, and assessing the repeated
sampling properties of the proposed approach.
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