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EXPLOITING MULTIPLE OUTCOMES IN BAYESIAN PRINCIPAL
STRATIFICATION ANALYSIS WITH APPLICATION TO THE
EVALUATION OF A JOB TRAINING PROGRAM

By AressanprA Marter*, Fan LiT8 anp FaBrizia MeaLLIF

University of Florencé and Duke University

The causal #ect of a randomized job training program, the JOBS Il
study, on trainees’ depression is evaluated. Principali8tation is used to
deal with noncompliance to the assigned treatment. Duestiatant nature of
the principal strata, strong structural assumptions aendfivoked to iden-
tify principal causal &ects. Alternatively, distributional assumptions may be
invoked using a model-based approach. These often lead da&lyvielenti-
fied models with substantial regions of flatness in the piustelistribution
of the causal ects. Information on multiple outcomes is routinely catéet
in practice, but is rarely used to improve inference. Thitcker develops a
Bayesian approach to exploit multivariate outcomes tosainferences
in weakly identified principal stratification models. We shthat inference
for the causal £ect on depression is significantly improved by using the re-
employment status as a secondary outcome in the JOBS I|l. Sirdylation
studies are also performed to illustrate the potentialgmithe estimation of
principal causal €ects from jointly modeling more than one outcome. This
approach can also be used to assess plausibility of stalletssumptions and
sensitivity to deviations from these structural assunmgtid@wo model check-
ing procedures via posterior predictive checks are alsudiged.

1. Introduction. The impact of job loss and unemployment on workers’ stress an
mental health is a subject of much interest in psychologg, (eey.Vinokur et al, 1987).
The Job Search Intervention Study (JOBS Wnpkur et al, 1995 is an influential ran-
domized field experiment intended to study the preventiopoafr mental health and the
promotion of high-quality re-employment among unemployedkers. In JOBS II, partic-
ipants were randomly assigned to attending job trainingrsam (treatment) or receiving a
booklet on job-search tips (control). As in many open-labeddomized intervention stud-
ies, substantial noncompliance to assigned treatmeneé @&no3OBS Il. The compliance
status is a special case of intermediate variables, thedigbles, often confounded, that
are potentially #ected by the assignment and aldteet the response. When the study
goal, as in JOBS I, is to evaluate the caudée of receiving the treatment rather than
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the efect of assignment, the confounded intermediate variatded to be adjusted for in
the analysis. Another example where intermediate varsadlise is mediation analysis in
observational studies: researchers are interested inikgavet only if an exposure has an
effect on the response, but also to what extent tfieceis mediated by some variables on
the causal pathway between exposure and outcome. Othes tdrimtermediate variables
include surrogate endpoints, unintended missing outcaateg ¢tuncation of outcome by
“death”, and combinations of these variables.

Our discussion will frame causal inference with intermealizariables in the context
of the Rubin Causal Model (RCM) using potential outcomi@sik{in, 1974 1978. Un-
der the RCM, a causalffect is defined as the comparison between the potential out-
comes under dlierent treatments on@mmon sebdf units. As pointed out ilRosenbaum
(1984, directly applying standard pre-treatment variable siient methods, such as re-
gression analysis, to intermediate variables generaflyli® in estimates lacking causal
interpretation.Angrist, Imbens and Rubifi1l996 and Imbens and Rubirf1997) focused
on noncompliance in randomized trials and made connectiotiseconometric instru-
mental variable (V) settings: they stratify units intodat subpopulations according to
their joint potential compliance statuses under bothneat and control. This is a special
case of the later developed principal stratification (FSaifgakis and Rubjr2002, an
increasingly popular framework for handling intermedigdgiables. A PS with respect to
an intermediate variable is a cross-classification of unttslatent classes defined by the
joint potential values of that intermediate variable unekech of the treatments being com-
pared. A principal stratum consists of units having the sgim intermediate potential
outcomes and so is noffacted by treatment assignment. Therefore, comparisons-of p
tential outcomes underftierent treatment levels within a principal stratum—the gpal
causal &ects (PCEs)—are well-defined causfikets in the sense &ubin(1978.

However, since at most one potential outcome is observeanipunit, principal strata
are generally latent, so that inference on PCEs is not &tifaigvard. There are two streams
of work in the existing literature regarding this: (1) démy large-sample nonparametric
bounds for the causalfects under minimal structural assumptions (evgnski, 199Q
Zhang and Rubin2003, and (2) specifying additional structural (e.g., exahusrestric-
tion or monotonicity) or modeling assumptions to infer PC&sd conducting sensitivity
analysis to check the consequences of violations of sucimgd®ns (e.g.Ten Have et a.
2004 Small and Cheng2009 Sjolander et a).2009 Elliott et al., 2010 Li et al., 2010
2011, Schwartz et a).2012. In this article, we introduce an alternative approachnte i
prove estimation of PCEs, which uses multiple outcomes irodahbased analysis. For
example, in the JOBS Il evaluation, we will jointly model tepression score, the out-
come of primary interest, and the re-employment statusg@nskary outcome, to sharpen
the inference for the causafect on depression.

Multivariate analysis is beneficial for two reasons. Firagdels used in PS are in-
herently mixture models; recent results on mixture modetswsthat with correct model
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specification, multivariate analysis leads to smalleraraes of the parameters’ estimators
than those from a corresponding univariate analysis, tieguih more precise estimates
(Mercatanti et al.2012). Second, some key substantive structural assumptionh, &
exclusion restrictions, may be more plausible for secondatcomes than for the primary
one. For example, in JOBS II, due to the possible “placebect, exclusion restriction
might not be plausible for depression, but it may be more gitée for re-employment
status. Another example is given in SectidnRestrictions on secondary outcomes re-
duce the parameter space of the joint distribution of altontes and in turn the marginal
distribution of the primary onaJealli and Pacini2013.

However, the additional information provided by secondangcomes is obtained at
the cost of having to specify more complex multivariate nigdehich may increase the
possibility of misspecification. For instance, in the as@yf JOBS Il data, jointly model-
ing depression and re-employment status involves spagifgimixture of two underlying
bivariate normal distributions, increasing the number mknown parameters compared
with a univariate analysis on depression. Therefore, md@gnostics are crucial in the
multivariate analysis and we develop model checking prowsivia posterior predictive
checks in this article.

While the use of auxiliary information from covariates tograve inference on causal
effects has been discussed, the importance of exploitingpteutiuitcomes is less acknowl-
edged. For example, covariates generally improve infer@mccausal féects by enhanc-
ing the prediction of missing intermediate and final potrdgutcomes (e.gHirano et al,
2000 Gilbert and Hudgens2008. However, information on multiple outcomes is rou-
tinely collected in randomized experiments and obsermatistudies, but is rarely used
in analysis unless the goal is to study the relationships/démt outcomes. One excep-
tion is Jo and Muthen(2001), who demonstrated, in the context of a randomized trial
with noncompliance, that a joint analysis with two outconoegperform the two corre-
sponding univariate analysddealli and Pacin{2013 showed that using the joint distri-
bution of a primary outcome and an auxiliary variable (a s€lemy outcome or a covariate)
in randomized experiments with noncompliance can tighaegelsample non-parametric
bounds for PCEs.

Our work is closely related t¥ealli and Pacin(2013, but it proceeds from the para-
metric perspective under the Bayesian paradigm insteadtafisal inference problems
are essentially missing data problems under the RCM, Bawyegproaches appear to be
particularly useful. From a Bayesian perspective, all wwkm quantities, parameters as
well as unobserved potential outcomes, are random vasiatité a joint posterior distri-
bution, conditional on the observed data. Therefore, @émfees are based on the posterior
distribution of the causal estimands defined as functiorabeérved and unobserved po-
tential outcomes, or sometimes as functions of model paemeThis leads to at least
two inferential advantages. First, the Bayesian approactiges a refined map of identi-
fiability, clarifying what can be learned when causal estidgare intrinsically not fully
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identified, but only weakly identified in the sense that thmisterior distributions have
substantial regions of flatnesbnpens and Rubin1997). In particular, issues of identi-
fication are diferent from those in the frequentist paradigm because withgur prior
distributions, posterior distributions are always propgeak identifiability is reflected in
the flatness of the posterior distribution and can be quivily evaluated Gustafson
2009. Second, in a Bayesian setting, thiéeet of relaxing or maintaining assumptions
can be directly checked by examining how the posterioribdigions for causal estimands
change, therefore serving as a natural framework for seibsianalysis. Moreover, the
Bayesian framework allows one to quantify the impact on tingsal estimates when there
is a diversion from these assumptions.

The primary aim of the paper is to combine the benefits fromguaimultivariate anal-
ysis with the inferential advantages of the Bayesian amrdar causal inference in the
context of principal stratification. The rest of the artideorganized as follows. Section
2 introduces the fundamentals of principal stratificatiol #ime intuition for the benefit
from using multivariate analysis. In Secti@hwe propose Bayesian bivariate models for
principal stratification analyses and describe the detdit®nducting posterior inferences
for the causal #ects. In Sectiord, we re-analyze the JOBS Il study using the proposed
bivariate approach. Additional simulation studies to exsnthe benefits to use multivari-
ate outcomes under various scenarios are carried out ito8éctTwo model checking
procedures based on posterior predictive checks with@gifmin to the JOBS Il data are
discussed in Sectio® Section7 concludes.

2. Fundamentals.

2.1. Basic setup, definitions and assumption€onsider a large population of units,
each of which can potentially be assigned a treatment itetichy z, with z = 1 for
treatment and = O for control. A random sample ofunits from this population comprises
the participants in a study, designed to evaluate tfeceof Z on all or a subset oM
outcomesyY = (Yi, ..., Yp) . Without loss of generality, we will focus on the case of two
outcomeslyl = 2). For each unit, letZ; be the assignment indicator with = 1 indicating
the unit is assigned to the treatment afid= O to the control. After the assignment, but
before the outcome is observed, an intermediate outdynsealso observed. In the JOBS
Il evaluation, bothZ and D are binary, withZ; = 1 and 0 denoting random assignment
to the job training seminars and to the booklet, respegtiaidD; = 1 and O denoting
actually attending the seminars or not, respectively. Adsdenotes the depression score
andY, denotes the re-employment status.

Assuming the standard Stable Unit Treatment Value Assuum8UTVA,Rubin, 1980,
for each outcoméY,,, we can define for each uriittwo potential outcomesyj,(0) and
Yim(1), corresponding to each of the two possible treatmeet.l&inder the RCM, a causal
effect of the treatmer on the outcomé&’, is defined as a comparison of the potential out-
comesYny(1) andYy(0) on a common set of units. However, only one potential aui



MULTIPLE OUTCOMES IN BAYESIAN PRINCIPAL STRATIFICATION ANALYSIS 5

is observed for unit, YOS = Yin(Z); the other potential outcom&™s = Yin(1 - Z), is
missing. Therefore, causal inference problems under thd R@ inherently missing data
problems.

Since an intermediate variablb, is a post-treatment variable, we can also define two
potential outcome®;(0) andD;(1) for each unit, with one being observeEiJﬁIOS = Di(z),
and one missinfpimis = Dj(1-Z;). Comparing outcomes from units with the same values of
DOSpetween treatments generally leads to estimates lackirsatmterpretation, because
then the setgi : DS = d,z = 1} and{i : DS = d,Z = 0} are generally not the same
groups of units. This concern is known as the post-treatseettion bias.

A principal stratification with respect to the post-treatigariableD is a partition
of units, whose sets—yprincipal strata—are defined by thet jootential values oD:

Si = (Dj(0), Di(1)). By definition the principal stratum membersl8pis not dfected by

the assignment. Therefore, comparison¥ffl) andYy(0) within a principal stratum, the
principal causal #ects (PCEs), have a causal interpretation because theyacergpan-

tities defined on a common set of units. However, siDg@®) andD;(1) are never jointly

observed, principal stratu®; is generally latent.

To convey the main message of utilizing multiple outcomessfagus on the simple case
of a binary intermediate variable, as the case in JOBS B;nievertheless straightforward
to apply the method developed here to multi-valued or caotils intermediate variables
following the approaches idin and Rubin(2008 and Schwartz et al(2011J). In order to
highlight the role of additional outcomes, with no loss ohggality, our discussion does
not include covariates, although covariates can be easilyded in the analysis. With a
binary treatment and a binary intermediate variable, thezeat most four principal strata:
Si €{(0,0),(0,1),(1,0),(1,1)}. WhenD is the indicator of the treatment actually received,
as in our JOBS Il application, the four principal strata @gpectively called never-takers
(Si = n), compliers §; = ¢), defiers §; = d) and always-takersS{ = a). Though our
approach applies to any binary intermediate variablerggtt{e.g., mediation, truncation
by death), we use the familiar nomenclature of noncompéaicgenerically refer t&;
hereafter for simplicity.

In randomized studies with noncompliance, the presencefidrd is usually ruled out
assuming monotonicity of noncompliancB;(1) > D;(0) for all i, with inequality for
at least one unit. Although often plausible in experimestadies with noncompliance,
monotonicity is a substantive assumption that may not avii@ysatisfied in other settings.
An important advantage of Bayesian causal inference, iemgrand our Bayesian anal-
ysis, in particular, is that the monotonicity assumptionas necessary, and consequently
violation to this assumption could be easily addressadbéns and Rubirl997).

In the JOBS Il study the treatment is only accessible tazihe 1 group, sdD;(0) = 0
for all i. Therefore subjects who would have taken the treatmentsifyasd to control
(defiers and always-takers) are denied to access the treaiin@ssigned to control, and
thus units are classified, in this experiment, only by theeslofD;(1): D;(1) = 1 if unit
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i is a complier, and;(1) = 0 if unit i is a never-taker. This is a typical case of one-sided
noncompliance (e.gSommer and Zeget 991 Mattei and Meallj 2007).

The causal estimand of interest in this article is the pdmrieaverage principal causal
effect for thefirst outcome:

) 7s = B(Yia(1) - Yia(0) [ Si = 9),

for s=c,n. In JOBS Il,r5 corresponds to the causdlext of being assigned to job-search
seminar on depression for compliess={ c) and never-takerss(= n). By focusing on the
population-average estimands we can ignore the assaciagioveeny;1(0) andY;;1(1) in
the analysig. Depending on the models for the potential outcomes, ptipalastimands
are usually functions of model parameters.

Throughout the paper, we assume that the treatment is rdpdmsigned, as in JOBS
Il

AssumptioN 1.  Randomization of treatment assignment.
Yi(0), Yi(1),Di(0), Di(1) L Z

Randomization implies that the joint distribution of theefiguantities associated with
each sampled unitZ(, Y;(0), Y;i(2), Di(0), D;(1)), can be decomposed into:

(2 Pr(Yi(0), Yi(1), Di(0), Di(1), Z) = Pr(¥i(0), Yi(1) | Si) Pr(Si) Pr(z).

Randomization allows us to ignore B}, This implies that likelihood or Bayesian model-
based approaches to PS analysis, usually involve two setodéls: (1) models for the
distribution of potential outcomes conditional on the pijpal strata, and (2) models for
the distribution of principal strata.

2.2. Intuition for sharping inference from multiple outcomegd:he intuition for the
benefit of jointly analyzing multiple outcomes in PS anayisias follows.

Principal strata are inherently latent clusters. Inteiyy proper utilization of auxiliary
variables provides extra dimensions to better predict timeponent membership and dis-
entangle the mixtures. First, additional outcomes seraeldiional predictors of principal
strata membership from the Y-models. To see this, take xEnmele, the model for two po-
tential outcomes under= 0. By the Bayes rule, PY{1(0), Yi2(0)|S;) « Pr(Si|Yi1(0), Yi»(0))
Pr(Yi2(0), Yi1(0)). Comparing to the univariate model with, where Pr{;1(0)|S;) « Pr(S;|

!Distinct from the corresponding finite-sample estiman{$,= Yis=st Yir(1) = Yiz(0)}/ns, the population
causal ects (1) do not depend on the association parameters betWel) andY;1(1), sayp. Specifically,
posterior distribution of the population estimandwill not be dependent g as long ag is a priori inde-
pendent of the remaining model parameters, while inferefarethe finite sample causal estimani$ would
generally involvep regardless of the prior structure between parameters (@oe aiiscussion on this, see page
311 inlmbens and Rubirl997).
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Yi1(0)) Pr(Yi1(0)), it is clear to see the role of the second outcofpas an additional pre-
dictor of S;.

As a second intuition, two (or more) distributions may bédlilt to disentangle if they
are similar, e.g., if their means are very close; these samernteans may instead be very
far apart (and thus the mixture easier to disentangle) isiciemed in a two-dimensional
space. In fact, recent theoretical results for mixture ns(dercatanti et al.2012 show
that given correct model specification, the probability ofrectly allocating the cluster
membership of the units and the information number for thamaef the primary outcome
in a bivariate mixture model are generally larger than thingbe corresponding marginal
model. As a result, variances of the maximum likelihoodneators for the mixture means,
estimated by the inverse of the observed information madni@ generally smaller in a
bivariate analysis than in a univariate one.

As a third intuition, some structural assumptions may beengtausible for the sec-
ondary outcome than the primary outcome. For example, atichexclusion restriction
(ER) for never-takers is commonly assumed to point-idgrRICES:

AssumptioN 2. (Stochastic exclusion restriction for never-takers). &br with S; = n,
Pr(Yim(0)) = Pr(Yim(1)), m=12.

The ER implies that anyfiect of the assignment is mediated through the intermediate
variable. But the ER is often questionable in practice. @srsa double-blinded random-
ized trial with the primary goal of studying théeacy of a new drug on a health outcome,
where side ffects are also recorded as a secondary outcome. Due to tlebpldiect,
the ER may not always hold for the primary outcome. Since dffets are usually only
caused by taking the drug rather than the placebo, ER apiuelaesmore likely to hold for
side dfects than the primary outcome. Formally, we have the “datelusion restriction
(PER)” assumptionMealli and Pacini2013:

AssumptioN 3. (Stochastic partial exclusion restriction for never-teke For all i with
Si=n,
Pr(Yi2(0)) = Pr(Yi2(1))

Restrictions on the secondary outcome, such as PER, wilteethe parameter space of
the joint distribution of the outcomes and in turn the maadjisistribution of the primary
one. PER can be combined with other conditions on the adsmtistructure between
outcomes to improve inference about the causal estimisteallf and Pacini2013.

3. Bayesian Bivariate Principal Stratification Analysis. The structure for Bayesian
PS inference was first developedlinbens and Rubi(i1997) for the special case of non-
compliance. As discussed before, two sets of models need spdrified, as well as the
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prior distribution for the parameter&, Denoter; s = Pr(S; = 56) andfi s, = Pr(Y(2|Si =
s, 0), fors=c,nandz = 0,1, and assume a prior distributiai(@) for the parameters.
The posterior distribution af can be shown to be:

”(0|Y0bsa DObS, Z,X) o« m(6)x l_[ Ticfic1 X l—[ Tinfim

i:Zi=1,Di°bS=1 i;zi=1’Di0bs=0
3) X l_[ [7infino + 7icficol
iz :O,DiobS:O

where the sum in the likelihood is because the units with={ 0, DiObS = 0) are mix-
ture of never-takers and compliers. Direct posterior igriee ofé from (3) is made eas-
ier using data augmentation to impute the missm@'s. Specifically, we can first ob-
tain the joint posterior distribution of(D™) from a Gibbs sampler by iteratively sam-
pling from Pr@|Y°°s DS D™Ms 7) and Prp™sYPs DOPS 7 @), which in turn provides
the marginal posterior distributiom(6]Y °°S D°PS Z) and thus the posterior of the causal
estimandss, s = ¢, n. The key to the posterior computation is the evaluation efdbm-
plete intermediate-data posterior distributiondPfPs, D°PS D™is, 7), which has the fol-
lowing simple form:

PreIY®™sD*S D™ X, Z) = x(®) x [ | michia
i:Zi=1,Sj=c

X n (1 —mic)fin n Ticfico X l_[ (1 -mic)fino

i:Zi=1,Sj=n i:Zi=0,Sj=c i:Zi=0,Sj=n

Without additional assumptions, such as ER, inferencespthough possible and rel-
atively straightforward from a Bayesian perspective, cawvdry imprecise, even in large
samples. We argue that jointly modeling multiple outcomey trelp to reduce uncertainty
aboutrg in cases where such assumptions are questionable.

4. Application to the JOBS Il Study. In JOBS I, before randomization, participants
were divided into two groups defined by values of a risk vdeéaepending on financial
strain, assertiveness, and depression scores. Subjeathagiha risk score greater than a
pre-fixed threshold were classified in the high-risk catggSubsequently, the low- and
the high-risk participants were randomly assigned to arobonbndition or an experimen-
tal condition. The intervention consisted of 5 half-day-g#arch skills seminar aiming
at teaching participants the modfextive strategies to get a suitable position and at im-
proving their job-search skills. The control condition smted of a mailed booklet briefly
describing job-search methods and tips.

Previous studies have found that the job search interveptiogram had its primary im-
pact on the high-risk group (e.d/inokur et al, 1995 Little and Yay 1998 Jo and Muthen
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TaBLE 1
Summary statistics (means), JOBSII data
Zi=1 DiObs =0
All =0 zi=1 Do =0 DoPs =1
Sample Size 398 130 268 124 144 254
AssignmentZ;) 0.67 0 1 1 1 0.49
Job-search seminadf®9  0.36 0 0.54 0 1 0
DepressionY3) 2.06 2.15 2.01 2.08 1.96 2.11
Re-employment\q’zbs) 0.60 0.55 0.63 0.59 0.66 0.57

2001, hence our focus is on high-risk subjects. The sample weassists of 398 high-
risk individuals with non-missing values on the relevantialales. We focus on the out-
comes measured six months after the intervention assignmkea primary outcome of
interest {1) is depression, measured with a sub-scale of 11 items bas#teddopkins
Symptom Checklist. As a secondary outcorig) (we use re-employment, a binary vari-
able taking on value 1 if a subject works for 20 hours or morensEek.

Noncompliance arises in JOBS Il because a substantial gropd46%) of individ-
uals invited to participate in the job-search seminar ditlsimw up to the intervention.
As mentioned before, since the treatment condition is ovdylable to the individuals as-
signed to the intervention in JOBS I, thus, by the strong atonicity assumption, there
are neither defiers nor always-takers in the data. Some swyrstadistics for the sample
of 398 high-risk unemployed workers classified by assigrirdeand treatment received
DOPSare shown in Tablé.

Comparisons of outcomes conditional on the actual tredtstatus does not generally
lead to credible estimates of théect of the job-search seminar attendance. However,
randomization of the assignment implies that a standashiiun-to-treat (ITT) analysis,
which compares units by assignment and neglects noncamapli¢eads to valid inference
on the causalféect of assignment. Under monotonicity and ER for noncomgplfgever-
takers), the ITT fect is proportional to the PCHfect for the subpopulation of compliers
(r¢)- Therefore, the ITT fect can be interpreted as indicative of tifieet of the treatment,
although the attribution of the PCE for compliers to the eh@afect of the treatment for
compliers is an assumption.

In JOBS I, assuming ER for depression may be controverBiad.example, never-
takers randomized to the intervention might feel demoedliby inability to take advan-
tage of the opportunity, whereas they would be less demzegkvhen randomized to the
control group because the intervention was nevksred. Therefore, we relax ER for de-
pression, using information on a secondary outcome—rdament status—to improve
the estimation of weakly identified causdllexts on depression.

Models. We assume a bivariate normal outcome model for the logarahatepres-
sion (Y1) and a latent variabl®’, underlying the binary re-employment stati;(2) =
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1(Y;5(2 > 0). Specifically, fors= c,nandz=0, 1,

Yu@) g _ se_(#0) gse_ (o0 o
@ (Vi) ===n= (g === (78 28 ))
with 0-222 = 1. This formulation is equivalent to assuming a probit mddel>: Pr(Yi2(2) =
1IS; = ) = ®(u5%). Note that under PER for re-employmepg;1 = ,ug’o. For principal
strata, we assume a Bernoulli distribution

() PrSi =c) = n¢ and Pr&i=n)=mn,=1-nc.
The parameters afe= {rc, u>?, X5%.

Prior Distributions for Parameters. To simplify the notation, a priori distributions are
specified omitting the superscrigtz. For the mean parametegs,we assume the indepen-
dent difused normal priorgy ~ N(0, X ﬂ), where the prior variance matrices are diagonal
gﬂ = Valp. For the covariance matric&; due to the constraint af», = 1, there is no
conjugate prior. Let the covariance parameters (o011, 012), we need to ensure that the
distribution of o is truncated to the regioti c R? whereX is a positive definite ma-
trix, i.e., A = {0 : 011 > o-fz}. As in Chib and Hamilton(2000), we assume a flexible
truncated bivariate normal prior fer, o ~ N(0o, Xo)1#(0) whereog andX, are hyper-
parameters, antl is the indicator function taking the value oneifs in A and the value
zero otherwise.

Prior to Posterior Computation. The posterior distributions of the parameters were
obtained from Markov chain Monte Carlo (MCMC) methods. ThEMIC algorithm that
we adopted uses Gibbs sampler with data augmentation tdenapeach step the missing
compliance indicatorﬁ)imis and to exploit the complete compliance data posterioridistr
bution to update the parameter distribution. Details ofM@MC are given in the online
Supplement A

Results. We estimated PCEs using four models: (1) a bivariate mogeldbes not
assume ER for either depression or re-employment; (2) aibigamodel that assumes
PER for re-employment; (3) an univariate model for depoessiat does not assume ER;
and (4) an univariate model for depression that assumes Efefer-takers

The posterior distributions were simulated running thrieaires from diterent starting
values (see the onlinBupplement Afor further details on chains’ initial values). Each
chain was run for 100 iterations after a burn-in stage gOBO0 iterations. The potential

2We do not present results from the bivariate model that agstRifor both depression and re-employment
because, under ER (and monotonicity) the improvement frecorsdary outcomes is only marginal, as we
can uniquely disentangle the mixtures of distribution®aisged with principal strata without invoking any
additional distributional or behavioral assumption
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TABLE 2
Summary Statistics: Posterior Distributions of PCEs on 2spion for Compliers and Never-takers

Median 25% 975% WidthClogs

PCEs for Complierst)

1. Bivariate -0.338 -0.594 -0.105 Q489
2. Bivariate with PER -0.205 -0.758 Q285 1043
3. Univariate -0.206 -0.582 Q125 Q707

4. Univariate with ER -0.260 -0.613 Q049 0661

PCEs for Never-takers()

1. Bivariate 0043 -0.193 Q263 Q456
2. Bivariate with PER -0.056 -0.684 Q488 1171
3. Univariate -0.084 -0.527 Q0287 Q813

scale-reduction statisticGelman and Rubinl992 suggested good mixing of the chains
for each estimand, providing no evidence against convesgdnference is based on the
remaining 30000 iterations, combining the three chains.

Table 2 presents the posterior median and 95% credible intervathforestimands of
interest—the PCEs on depression for compliegsand never-takers;,—obtained from
the four models. For,, both the univariate model without ER and the bivariate node
with and without PER for re-employment lead to a small andigide estimated fect,
suggesting that never-takers’ depression status was ditticted by the invitation to at-
tend the job-search seminar. This is also evident from te@diiams in the bottom panel
of Figurel, where the posterior distributions of are evenly spread around zero with a
large span. These results imply that the ER assumption fimedsion in never-takers may
be reasonable. Interestingly, the bivariate model thas doeassume ER for any outcome,
still significantly improves inferences about PCEs, redgdthe width of the credible inter-
val for r, by 44% compared to that from a univariate analysis (Rows S7andonversely,
the bivariate model with PER provides a large posterioribtednterval forr, (see the
discussion below).

For the PCEs for compliers,, a negative point estimate is obtained from all four mod-
els: —0.338 in the bivariate case;0.205 in the bivariate case with PERQ.206 in the
univariate case, and0.260 in the univariate case with ER. The posterior probgbdit
this efect being negative is greater than 75% irrespective of tipeoggh we consider.
Therefore all the approaches show some evidence that titatiom to attend the job-
search seminar reduces depression among compliers. Howelethe bivariate model
leads to a 95% credible interval not covering 0, with a 99.&%itgrior probability that,
is negative. In fact, the bivariate analysis without PER/ates considerably more precise
estimates for. than both the bivariate analysis with PER and the univaeatdyses with
and without ER: the bivariate model without ER for any outesniRow 1) reduces the
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width of the 95% credible interval for;, by 53% compared to the bivariate model with
PER (Row 2), and by 31% and 26%, compared to the univariateehwaithout (Row 3)
and with (Row 4) ER, respectively. This is further illusadtby the histograms in the up-
per panel in Figurd. The bivariate approach with PER performs worse than theavate
approaches, too: the 95% posterior credible intervalshi®iRCESs on depression from the
bivariate approach with PER are more than 30% wider tharetdegved from the univari-
ate approaches. Somewhat surprisingly, the posteriaitgisons ofr. andr, from the
model with PER have large variances. This highlights arr@sting phenomenon about
PER that will be further investigated through our simulaioPER helps to reduce poste-
rior uncertainty only if it does (or approximately) hold aisdmposed. However, when it
is imposed but does not hold, PER may force the parameteesitod region of the natural
parameter space that is far away from the truth and thus telagiger posterior variances.
This is what may have happened in the JOBS Il analysis: evéteit is large posterior
uncertainty about thefiect of assignment on re-employment for never-takers, ingos
this efect to be exactly zero leads to ill-fitted models.

It is worth noting that the bivariate approach leads to pastéistributions ofr, andry
centered at slightly dierent medians. In light of the simulation results, whichvghbat
jointly modeling two outcomes generally leads to posten@ans and medians closer to
the true values, these findings suggest the bivariate @stsnaae more reliable, while the
univariate estimates may be far from the true values.

JOBS Il is arandomized experiment, and so pre-treatmemtriadgs do not enter the as-
signment mechanism. Nevertheless, covariates couldlbassd to improve precision of
the causal estimates. Our analysis can also use covanaddition to auxiliary outcomes.
Indeed, we also estimated the models previously descritedittonal on several relevant
covariates. Similar results were obtained, but the benefitee bivariate approach, that
we want to highlight here, are particularly evident when ogeciates are used. Therefore
we relegate the details for the models with covariates totti@e Supplement B

5. Simulations. To better understand the results of the JOBS Il applicatiod,more
importantly, to further shed light on the comparison betwesivariate and bivariate prin-
cipal stratification analyses in general settings, we cohdn extensive simulation study.
We consider a wide range of simulation scenarios that oftenran practice, accounting
for different correlation structures between the outcomes for bere@and never-takers,
various deviations from the PER for the secondary outcome déferent association lev-
els between the auxiliary variable and the compliance statu

To simplify computation, we generate two continuous outesifiom a mixture of two
bivariate normal distributions as modd)(and the stratum membership from a Bernoulli
distribution as modeH)3. Also we assume that parameters are a priori independenisand

3Although we only consider bivariate Normal distributiomsdur simulations, we can reasonably expect
that our results are not tied to distributional assumptidfesalli and Pacin{2013 show that secondary out-
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Fic 1. Histograms and 95% posterior intervals of PCEs on depas$or compliers £.) and never-takers
(7n) under the univariate approach with ER (light-blue histagrgines), the univariate approach without ER
(blue histogram#ines), the bivariate approach (red histografites) and the bivariate approach with PER
(green histogramtnes).

PCE for Compliers

I

"1
““ ““\|||||m|”|||||n

||| I |‘“ "J
I

““H““""l""u ..... b

:

025 075

-025



14 MATTEI, LI, MEALLI

TaBLE 3
True values of parameters of the seven simulation scenarlaslast two columns show the ratio of the
between-groups variance and the total variance of the stangnoutcome under the control and the active
treatment arm, where the groups are defined by the complistates (correlation ratio)

Scenario uno unt o "t 77$2|s.z:o ’ﬁz\s,zzl
2.75 4.25 [ 016 016 | [ 004 008 |
[ 12 ] [ 12 ] 0.16 4| | 008 4 | 0.639 arro
i [ 016 064 | [ 004 032 ]
0.64 4 0.32 4
[ 2.75 } [ 4.25 } : o ! 0639 0824
" 12 13 0.16 016 0.04 008
0.16 4] | o008 4 |
v [ 016 064 | [ 004 048]
0.64 4 0.48 9
[ 275 ] [ 4.25 ] : L. ! 0639 0950
v 12 24 0.16 016 0.04 012
| 0.16 4| | o012 9 |
VI [ 016 096 | [ 0.04 Q80 |
0.96 9 08 25
[ 275 } [ 4.25 } : bl ! 0941  qo57
" 24 36 0.16 024 0.04 020
0.24 9| | 02 25|

In all the scenarios
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o1 o1

conjugate diuse prior distributions. The true simulation parametegessaiown in Table.
Mimicking the JOBS Il data, all simulated data sets have 600 units, generated using
principal strata probabilities of.® for compliers and @ for never-takers. The simulated
samples are randomly divided in two groups, half assignédadreatment and half to the
control. Three parallel MCMC chains of 15,000 iterationshadifferent starting values
were run for each of the seven simulated data sets, with 8t&f000 as burn-in. Mixing of
the chains was determined to be adequate and all chainsolsaditar posterior summary
statistics.

Figure 2 shows the histograms and 95% posterior credible interviatteoPCEs for
compliers and never-takers on the primary outcome, in bethunivariate and bivari-
ate cases. The results clearly demonstrate that simulianaodeling of both outcomes

comes can also tighten large-sample non-parametric bdon@CEs, andercatanti et al(2012 show that

the use of an auxiliary variable may improve inference ailsoisspecified Gaussian mixture models. See also
(e.g.,Gallop et al, 2009 Mealli and Pacini2008) for further insights on the role of distributional assuiops

in PS analysis.
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significantly reduces posterior uncertainty for the caestimates. In fact, the bivariate
approach outperforms the univariate one in each of the sosneonsidered, providing
considerably more precise estimates of the PCEs for corap@ied never-takers.

The benefits of the bivariate approach especially arise wherpliers and never-takers
are characterized byfiierent correlation structures (scenarios Il and V) and wheras-
sociation between the auxiliary outcome and the compliatatls is stronger (scenarios
VI and VII). In addition, histograms (111), (V), (V1) and (M) in the upper and lower panels
of Figure2 suggest that the posterior distributions of the PCEs ardirmare informative
in the bivariate case. Specifically, histograms (lIl)s avitl)é show that the posterior dis-
tributions of the PCEs for compliers and never-takers atdrflthe univariate approach,
but become much tighter in the bivariate case. The impromenseeven more dramatic
in scenarios (V) and (VI), where the histograms show thatepims distributions of the
PCEs for compliers and never-takers are bimodal in the uateacase, but both become
unimodal in the bivariate case. Also, in the above scengoioly modeling the two out-
comes leads to posterior means of the PCEs for compliers evef-takers much closer
to the true values. The bivariate approach outperforms tinearate one also in scenar-
ios Il and 1V, where compliers and never-takers are charaet by similar correlation
structures.

In both scenarios the bivariate approach considerable#s®s the precision of the es-
timates. In scenario |, where PER for the secondary outcanigshwe also derived the
posterior distributions of the PCEs for compliers and neéakers by specifying a bivari-
ate model that assumes PER. The bivariate models with ahdwtiPER lead to similar
results, and both clearly outperform the univariate modatiing to much less variable
and more informative posterior distributions of the cawi&@cts of interest. Several other
scenarios with additional structural assumptions were aelamined: magnitude of the
improvement varies, but the pattern is consistent with isdéscribed here.

Additional bivariate analyses were conducted to investighe role of PER, by fit-
ting the bivariate model with PER also to the six data setegdad under scenarios Il
through VII, where PER does not hold. Results, shown in tHmeisupplement Csug-
gest that inference for the PCE for compliers is robust vatpect to violation of PER: the
corrected-specified bivariate model and the mis-specifieatibte model with PER per-
form similarly, leading to posterior distributions for tiRCE for compliers characterized
by similar posterior variability and similar posterior nmsa On the other hand, inference
on the PCE for never-takers appears to be rather sensitittee tBER assumption, espe-
cially when PER is strongly violated (scenarios V, VI and)vdhd when compliers and
never-taker are characterized by similar correlationcttines (scenarios Il and V). In
these scenarios, the posterior distributions from the spezified bivariate models with
PER are characterized by larger posterior uncertainty emdentered at posterior means
much farther away from the true parameters than the postaeans from the corrected-
specified bivariate models. Also the posterior distrimgiaf the PCE for never-takers
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Fic 2. Histograms and 95% posterior intervals of PCEs on the primautcome for complierst() and
never-takers %,) under the univariate approach (blue histogratings), the bivariate approach (red his-
togramdines), and the bivariate approach with PER (green histogghines). The black vertical lines repre-
sent the true values. The Roman numbers denote the sirméagmarios described in TabB
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derived from the mis-specified bivariate models with PER/g® 95% posterior credible
intervals that do not even cover the true parameter in masisocenarios.

These results shed light on two key complementary factstabBR. First, as already
anticipated, PER may help to reduce posterior uncertairitgnait does hold and is im-
posed, although the jointly modeling of two outcomes stilproves inference increasing
precision, even if no exclusion restriction on the secopdatcome is imposed. It is worth
noting that this is a dierent result from the non-parametric large-sample caserenthe
secondary outcome does not help sharpening inference ikelaston restriction is im-
posed on it ealli and Pacini2013. Second, PER may actually increase the posterior
variability of the causal estimates and lead to misleadasylts, when it is imposed but
does not hold. Therefore, less precise inference under RER& viewed as an evidence
of violation of PER, which is the case in the JOBS Il applioati This highlights the
importance of carefully evaluating the plausibility of ERsamptions.

In order to evaluate the accuracy and robustness of the gedpapproach we also in-
vestigated its repeated sampling properties using Mont&® Ganulations, which were
summarized by calculating standard frequentist measimesding average biases, per-
cent biases, mean square errors (MSEs) and coverage ofal®@8% confidence intervals.
Results (shown in the onlinBupplement Cconfirm, and generally magnify, the findings
discussed here that the simultaneous modeling of two owgsamay improve estimation
by reducing posterior uncertainty for causal estimands.

6. Posterior Predictive Model Checking. The use of multiple outcomes may help
improving inference, although the additional informatmwovided by secondary outcomes
is obtained at the cost of having to specify more complex irariate models, which
may increase the possibility of misspecification. Therefonodel checking procedures to
ensure sensible model specification is crucial.

Bayesian goodness-of-fit methods have been proposed iitetature, including Bayes
factors and marginal likelihood (e.gShib, 1995 and posterior predictive checks (e.g.,
Rubin 1984 Gelman, Meng and Sterd996. Computation of the marginal likelihood
and Bayes factors for our models would require several @&€dC iterations, and could
be computationally prohibitive because of the nested &tracof the MCMC algorithm.
Therefore, we focus on posterior predictive checks, whiehbemsed on comparisons of
the observed data to the posterior predictive distributfoposterior predictive check gen-
erally involves: @) choosing a discrepancy measufe,and ) computing a Bayesian
p-value.

The posterior predictive discrepancy measures that we erseviere first proposed by

Barnard et al(2003 and can be defined as follows. L®EY® = {i: SV = sandz = Z}

be the group of subjects of tyrﬁ;smdy: sassigned to treatmedlf =z, s=c¢,n, z=0,1,

in the studydata, wherestudy = obsfor the observed data argtudy = rep for data
from a replicated study, that is, outcome data and com@iatetus drawn from their joint
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posterior predlctlve distribution. Note that the assigntneriable is fixed at its observed
values. LetNStu Ybe the number of units in thetudydata belonging to th@3%® group,

and IetYm’s’Z ands52u® denote the mean and the variance of the outcome vargBie,

m = 1, 2, for this group of units. Then, the discrepancy measuregsgeare

2,study 2,study

study _ study ostud study, o,y m,s,0 m,s,1
(0) = [Yms1 — Ymso and NORs'(0) = NstuderNStudy
s0 sl

study(e)

and the ratio o8 [54(6) to NOS™6): S N“™e) = =1,2,s=c,n. These

Nostudy
measures aim at assessing whether the model, whlcﬁllzcgiu?elmor distribution as well
as the likelihood, can preserve broad features of sighi[a™(6), noise,NO“™g), and
signal to noiseS Nit<?(6), in the outcome distributions for compliers and neveetak

In order to assess the plausibility of the posited modelsvetsae, we also consider the
x? discrepancy, defined as the sum of squares of standardigiédais of the data with re-
spect to their expectations under the posited model @agman, Meng and Sterh996);
and for the continuous outcome (depressié;), the Kolmogorov-Smirnov discrepancy,
defined as the maximum ftierence between the empirical distribution function and the
theoretical distribution implied by the posited model.

A widely-used Bayesiarp-value is the posterior predictivp—value (PPPV) — the
probability over the posterior predictive distribution thfe compliance status and the
parameterd that a discrepancy measure in a replicated data drawn wéhsdmed
as in the observed data'©P(SP, §), would be as or more extreme than trealized
value of that discrepancy measure in the observed snf§(S°0s, 6): Pr(A"P(S'eP, §) >
AOPS(SPPS )|y oPs Dobs 70bs %) (Rubin, 1984 Gelman, Meng and Sterh996).

PPPVs are Bayesian posterior probability statements akloat might be expected in
future replications, conditional on the observed data &edmodel. Therefore extreme
p—values, that isp—values very close either to 0 or 1, can be interpreted as esédthat
the model cannot capture some aspects of the data descyilbieel torresponding discrep-
ancy measures, and would indicate an undesirable infludribe enodel in estimation of
the estimands of interest.

Although the PPPVs are Bayesian posterior probabilitieeneawithin the Bayesian
framework, it is desirable that they are, at least asymgtyi, uniformly distributed over
hypothetical observed data sets drawn from the true moaddbrtlinately, PPPVs are not
generally asymptotically uniform, but they tend to be cowative in the sense that the
probability of extreme values might be lower than the nomngmebabilities from the uni-
form distribution. This conservatism property impliesttRPVs may lack of power to
detect model violations. Alternative posterior predietighecks have been proposed in
the literature, including partial posterior predictipevalues and conditional predictiye
values (e.g.Bayarri and Berger2000, calibrated posteriop-values Hjort et al, 2009
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and sampled posterigr—values Johnson2004 2007, Gosselin2011). Here we focus on
sampled posteriop—values (SPPVs), which have been shown to have at least astmpt
cally a uniform probability distributionGosselin 2011).

The SPPV is defined as RFEP(SeP, 4(1*))> AP SOPS (i)Y 0bs [obs 70bs g(i)y ' where
60U is auniquevalue of6, randomly sampled from its posterior distribution. Foliog
Gosselin(2011), we calculated the SPPV associated to the JOBS Il study ukanfol-
lowing two steps:i{ drawK simulated replicated data sets from the sampling distdhut
conditional ongU*); (ii) draw at random th@-value from a Beta distribution with param-
etersa+ 1 andb + 1, where

K K
a = Z 1{Arepk(Stepk’g(j*))>Aobs(Sobs’0(j*))} + EZ 1{Arepk(Stepk’g(j*)):Aobs(Sobs’g(j*))}
k=1 k=1
K K
b = Z 1{ArepK(SfepK’g(j*))<Dobs(sobs’9(j*))} + (1 - €) Z l{ArepK(SrepK’g(j*))onbs(sobs’g(j*))}
k=1 k=1
with e ~ U(0, 1).

A potential drawback of SPPVs is that they might providffedent random results on
the same data and the same model, depending osiryke value 8U%) of the parameter
vectoré that is sampled. To avoid this issue, we also implementeddhgion proposed by
Gosselin(2011), which involves drawing more than a single value of the peater vector
6 from its posterior distribution. The steps ara) & valueu from a uniform distribution on
(0,1) is drawn; b) J > 1 values of the parameter vecigyré, ..., 69, are drawn from
its posterior distribution;d) for eachj = 1,..., J, the sample posterigr-value associated
with 84) is computed; ) the SPPVs are combined using the empirizafjuantile of the
latter distribution. We call the Bayesig-value derived from this approach theodified
SPPV.

Table4 shows the results from the three Bayesmwmalues we considered. The SPPVs
are based oK = 500 replicated data sets, and the modified-SPPVs were atsdduby
drawing at randond = 1000 values of the parameter vector from its (simulated)epius
distribution and simulatingk = 500 replicated data sets for eack 1,..., J.

As can be seen in Tabl the estimated Bayesignvalues for the bivariate model that
does not assume ER for any outcome range between 11.5% &8%b,891ggesting that
the bivariate model fits the data pretty well and successtdplicates the correspond-
ing measure of location, dispersion, and their relative mtage. Unsurprisingly, similar
results are obtained for the bivariate model with PER foemgsloyment. In fact, the anal-
yses do not provide a strong evidence against PER for reesimgint, so it is reasonable
that posterior predictive checks fail to detect the pogdridenefits of the bivariate model
that does not assume PER over the bivariate model that deemasPER. However, the
empirical results in Sectiod show that the bivariate model without PER considerably
reduce posterior uncertainty for the causal estimandstefaat. Therefore, also in light
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of the simulations, we expect that inferences drawn witlemsuming PER may be more
reliable. On another hand, the PPPVs and the modified-SPIRWg some evidence that
the univariate models might not optimally fit the data acgaydo they? discrepancy. In
addition the modified-SPPVs suggest that the univariateetnedhout ER might fail to
replicate the signal-to-noise measure in the depressatritition for never-takers. These
potential failures of the univariate models might be duen®underlying categorical na-
ture of the depression variable. More flexible statisticaldels could be considered and
compared, but the potential failures of the univariate nogeem to be successfully fixed
when the additional information provided by the secondartga@me is used, so we do not
further drill down this issue in this paper, where focus isimrestigating the benefits of
jointly modeling multiple outcomes in causal inferencehwpbst-treatment variables.

7. Conclusion. Motivated by the evaluation of a job training program (JOBSwe
have demonstrated, within the framework of principal #ication, the benefits of jointly
modeling more than one outcome in model-based causal a&lystudies with interme-
diate variables. Observed distributions in these studiesymically mixtures of distribu-
tions associated with latent subgroups (principal str&alctural or behaviorial assump-
tions are often invoked to uniquely disentangle these magtuWhen such assumptions
are not plausible, distributional assumptions are oftenkad. But these usually lead to
models that are weakly identified, weakly in the sense thatlikelihood function has
substantial regions of flatness. From a Bayesian perspe@en when the likelihood is
rather flat, if the prior is proper, so will be the posterioowever posterior uncertainty
will still be rather large in these models, with posteriostdbutions of causal parameters
often presenting more than a single mode, unless the préxtismely informative.

We have shown how to sharpen inference in these weakly famhthodels: improve-
ments are achieved without adding prior information or adidal assumptions (such as
ERs, weak monotonicity, or stochastic dominance), buterdbly using the additional in-
formation provided by the joint distribution of the outcoroginterest with secondary
outcomes. Indeed, in the JOBS Il application, ERs are naicpiarly plausible. Nonethe-
less, by jointly modeling depression, the primary outcomd ee-employment status, a
secondary outcome, we have found improved evidence for iiveosffect of the job-
training program on trainees’ depression compared to atiate analysis on depression
alone. Additional simulations further illustrate the bftseunder more general scenarios.

JOBS Il is a randomized study, but we stress that our framewan also serve as a
template for the analysis of observational studies witkrimediate variables. In obser-
vational studies, randomization (ignorability) of treamh assignment must be assumed
conditional on relevant pre-treatment variables, themyditioning on the covariates is
not optional in observational studies but crucial for coéglicausal statements. However,
once ignorability is assumed, the structure for Bayesié&remce in observational studies
with intermediate variables (e.g., mediation analysighe same as that in randomized
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TaBLE 4
Posterior Predictive Checks
Approach Signal Noise Signal-to-Noise Kolmogorov-
Outcome c n c n c n b Smirnov
Posterior PredictiveP-Values
Bivariate
Depression 0.513 0.805 0.432 0.564 0528 0.798 0.597 0.400
Re-employment 0.497 0.502 0.670 0.242 0.416 0582 0.475
Bivariate with PER
Depression 0.573 0574 0522 0573 0562 0552 0.563 0.389
Re-employment 0.542 0.493 0.408 0.492 0.545 0.493 0.382
Univariate
Depression 0.601 0.678 0.836 0.865 0.536 0.623 0.979 0.441
Univariate with ER
Depression 0.555 0.802 0.484 0.939 0.373
Sample PosterioP-Values
Bivariate
Depression 0.545 0.798 0.697 0.619 0473 0.783 0.866 0.816
Re-employment 0.379 0.438 0.830 0.121 0.262 0.582 0.663
Bivariate with PER
Depression 0.693 0.807 0.512 0520 0.663 0.800 0.592 0.341
Re-employment 0.856 0.818 0.527 0.341 0.863 0.761 0.416
Univariate
Depression 0.170 0.731 0.747 0.320 0.154 0.757 0.699 0.410
Univariate with ER
Depression 0.190 0.625 0.169 0.899 0.392
Modified Sample PosterioP-Values
Bivariate
Depression 0.893 0.872 0.571 0.367 0.401 0.747 0.803 0.659
Re-employment 0.228 0.115 0.705 0.618 0.122 0.690 0.433
Bivariate with PER
Depression 0.117 0.605 0.631 0.542 0.329 0.329 0.546 0.627
Re-employment 0.495 0.802 0.892 0.260 0.788 0.699 0.566
Univariate
Depression 0.241 0.283 0.888 0.868 0.820 0.097 0.900 0.255
Univariate with ER
Depression 0.200 0.811 0.724 0.692 0.172
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experiments. The ffierences lie in the structural assumptions: e.g., while imesexperi-
ments, the design of the study can help making the ER assommpiiusible (blindness, or
double-blindness), the ER assumption foriastrumentin observational studies is often
questionable. As a consequence, improving inference okiyédentified models is even
more relevant in observational studies.
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SUPPLEMENTARY MATERIAL

Supplement A: Details of Calculation
(httpy/lib.stat.cmu.edi@oag???7??%. We describe in detail the Markov Chain Monte Carlo
(MCMC) methods used to simulate the posterior distribugion the parameters of the
models introduced in Section 5 in the main text.

Supplement B: Posterior Inference Conditional on Pretreament Variables
(httpy/lib.stat.cmu.edi@oag???7??%). We describe details of calculation and results under
the alternative models conditioning on the pretreatmenalkes.

Supplement C: Additional Simulation Results
(httpy/lib.stat.cmu.edi@oag???7??%9. We present additional simulations aiming at investi-
gating the role of the partial exclusion restriction asstiomp and assessing the repeated
sampling properties of the proposed approach.
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