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We discuss the statistical properties of a recently introduced un-
biased stochastic approximation to the score equations for maximum
likelihood calculation for Gaussian processes. Under certain condi-
tions, including bounded condition number of the covariance matrix,
the approach achieves O(n) storage and nearly O(n) computational
effort per optimization step, where n is the number of data sites.
Here, we prove that if the condition number of the covariance matrix
is bounded, then the approximate score equations are nearly optimal
in a well-defined sense. Therefore not only is the approximation ef-
ficient to compute, but it also has comparable statistical properties
to the exact maximum likelihood estimates. We discuss a modifi-
cation of the stochastic approximation in which design elements of
the stochastic terms mimic patterns from a 2n factorial design. We
prove these designs are always at least as good as the unstructured
design, and we demonstrate through simulation that they can pro-
duce a substantial improvement over random designs. Our findings
are validated by numerical experiments on simulated datasets of up
to 1 million observations. We apply the approach to fit a space-time
model to over 80,000 observations of total column ozone contained in
the latitude band 40◦ − 50◦N during April 2012.

1. Introduction. Gaussian process models are widely used in spatial
statistics and machine learning. In most applications, the covariance struc-
ture of the process is at least partially unknown and must be estimated from
the available data. Likelihood-based methods, including Bayesian methods,
are natural choices for carrying out the inferences on the unknown covariance
structure. For large datasets, however, calculating the likelihood function ex-
actly may be difficult or impossible in many cases.

Assuming we are willing to specify the covariance structure up to some
parameter θ ∈ Θ ⊂ Rp, the generic problem we are faced with is computing
the loglikelihood for Z ∼ N(0,K(θ)) for some random vector Z ∈ Rn and
K an n × n positive definite matrix indexed by the unknown θ. In many
applications, there would be a mean vector that also depends on unknown
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parameters; but since unknown mean parameters generally cause fewer com-
putational difficulties, for simplicity we will assume the mean is known to
be 0 throughout this work. For the application to ozone data in Section 6,
we avoid modeling the mean by removing the monthly mean for each pixel.
The simulations in Section 5 all first preprocess the data by taking a dis-
crete Laplacian, which filters out any mean function that is linear in the
coordinates, so that the results in those sections would be unchanged for
such mean functions. The loglikelihood is then, up to an additive constant,
given by

L(θ) = −1

2
Z ′K(θ)−1Z − 1

2
log det{K(θ)}.

If K has no exploitable structure, the standard direct way of calculating
L(θ) is to compute the Cholesky decompositon of K(θ), which then al-
lows Z ′K(θ)−1Z and log det{K(θ)} to be computed quickly. However, the
Cholesky decomposition generally requires O(n2) storage and O(n3) com-
putations, either of which can be prohibitive for sufficiently large n.

Therefore, it is worthwhile to develop methods that do not require the
calculation of the Cholesky decomposition or other matrix decompositions
of K. If our goal is just to find the maximum likelihood estimate (MLE)
and the corresponding Fisher information matrix, we may be able to avoid
the computation of the log determinants by considering the score equations,
which are obtained by setting the gradient of the loglikelihood equal to 0.
Specifically, defining Ki = ∂

∂θi
K(θ), the score equations for θ are given by

(suppressing the dependence of K on θ)

(1.1)
1

2
Z ′K−1KiK

−1Z − 1

2
tr(K−1Ki) = 0

for i = 1, . . . , p. If these equations have a unique solution for θ ∈ Θ, this
solution will generally be the MLE.

Iterative methods often provide an efficient (in terms of both storage and
computation) way of computing solves in K (expressions of the form K−1x
for vectors x) and are based on being able to multiply arbitrary vectors by
K rapidly. In particular, assuming the elements of K can be calculated as
needed, iterative methods require only O(n) storage, unlike matrix decom-
positions such as the Cholesky, which generally require O(n2) storage. In
terms of computations, two factors drive the speed of iterative methods: the
speed of matrix-vector multiplications and the number of iterations. Exact
matrix-vector multiplication generally requires O(n2) operations, but if the
data form a partial grid, then it can be done in O(n log n) operations using
circulant embedding and the fast Fourier transform. For irregular observa-
tions, fast multipole approximations can be used (Anitescu, Chen and Wang,
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2012). The number of iterations required is related to the condition number
of K (the ratio of the largest to smallest singular value), so that precondi-
tioning (Chen, 2005) is often essential; see Stein, Chen and Anitescu (2012)
for some circumstances under which one can prove that preconditioning
works well.

Computing the first term in (1.1) requires only one solve in K, but the
trace term requires n solves (one for each column of Ki) for i = 1, . . . , p,
which may be prohibitive in some circumstances. Recently, Anitescu, Chen
and Wang (2012) analyzed and demonstrated a stochastic approximation
of the trace term based on the Hutchinson trace estimator (Hutchinson,
1990). To define it, let U1, . . . , UN be iid random vectors in Rn with iid
symmetric Bernoulli components; that is, taking on values 1 and −1 each
with probability 1

2 . Define a set of estimating equations for θ by

(1.2) gi(θ,N) =
1

2
Z ′K−1KiK

−1Z − 1

2N

N∑
j=1

U ′jK
−1KiUj = 0

for i = 1, . . . , p. Throughout this work, Eθ means to take expectations
over Z ∼ N(0,K(θ)) and over the Uj ’s as well. Since Eθ(U

′
1K
−1KiU1) =

tr(K−1Ki), Eθgi(θ,N) = 0 and (1.2) provides a set of unbiased estimating
equations for θ. Therefore, we may hope that a solution to (1.2) will pro-
vide a good approximation to the MLE. The unbiasedness of the estimating
equations (1.2) requires only that the components of the Uj ’s have mean
0 and variance 1; but, subject to this constraint, Hutchinson (1990) shows
that, assuming the components of the Uj ’s are independent, taking them to
be symmetric Bernoulli minimizes the variance of U ′1MU1 for any n×n ma-
trix M . The Hutchinson trace estimator has also been used to approximate
the GCV (generalized cross-validation) statistic in nonparametric regression
(Girard, 1998; Zhang et al., 2004). In particular, Girard (1998) shows that
N does not need to be large to obtain a randomized GCV that yields results
nearly identical to those obtained using exact GCV.

Suppose for now that it is possible to take N much smaller than n and
obtain an estimate of θ that is nearly as efficient statistically as the exact
MLE. From here on, assume that any solves in K will be done using iterative
methods. In this case, the computational effort to computing (1.1) or (1.2)
is roughly linear in the number of solves required (although see Section 4 for
methods that make N solves for a common matrix K somewhat less than N
times the effort of one solve), so that (1.2) is much easier to compute than
(1.1) when N/n is small. An attractive feature of the approximation (1.2)
is that if at any point one wants to obtain a better approximation to the
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score function, it suffices to consider additional Uj ’s in (1.2). However, how
exactly to do this if using the dependent sampling scheme for the Uj ’s in
Section 4 is not so obvious.

Since this stochastic approach provides only an approximation to the
MLE, one must compare it with other possible approximations to the MLE.
Many such approaches exist, including spectral methods, low-rank approx-
imations, covariance tapering, and those based on some form of composite
likelihood. All these methods involve computing the likelihood itself and
not just its gradient, and thus all share this advantage over solving (1.2).
Note that one can use randomized algorithms to approximate log detK and
thus approximate the loglikelihood directly (Zhang, 2006). However, this
approximation requires first taking a power series expansion of K and then
applying the randomization trick to each term in the truncated power se-
ries; the examples presented by Zhang (2006) show that the approach does
not generally provide a good approximation to the loglikelihood. Since the
accuracy of the power series approximation to log detK depends on the con-
dition number of K, some of the filtering ideas described by Stein, Chen and
Anitescu (2012) and used to good effect in Section 4 here could perhaps be
of value for approximating log detK, but we do not explore that possibil-
ity. See Aune, Simpson and Eidsvik (2012) for some recent developments on
stochastic approximation of log determinants of positive definite matrices.

Let us consider the four approaches of spectral methods, low-rank ap-
proximations, covariance tapering, and composite likelihood in turn. Spec-
tral approximations to the likelihood can be fast and accurate for gridded
data (Whittle, 1954; Guyon, 1982; Dahlhaus and Künsch, 1987), although
even for gridded data they may require some prefiltering to work well (Stein,
1995). In addition, the approximations tend to work less well as the number
of dimensions increase (Dahlhaus and Künsch, 1987) and thus may be prob-
lematic for space-time data, especially if the number of spatial dimensions
is three. Spectral approximations have been proposed for ungridded data
(Fuentes, 2007), but they do not work as well as they do for gridded data
from either a statistical or computational perspective, especially if large sub-
sets of observations do not form a regular grid. Furthermore, in contrast to
the approach we propose here, there appears to be no easy way of improv-
ing the approximations by doing further calculations, nor is it clear how to
assess the loss of efficiency by using spectral approximations without a large
extra computational burden.

Low-rank approximations, in which the covariance matrix is approximated
by a low-rank matrix plus a diagonal matrix, can greatly reduce the burden
of memory and computation relative to the exact likelihood (Cressie and
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Johannesson, 2008; Eidsvik et al., 2012). However, for the kinds of applica-
tions we have in mind, in which the diagonal component of the covariance
matrix does not dominate the small-scale variation of the process, these low-
rank approximations tend to work poorly and are not a viable option (Stein,
2008).

Covariance tapering replaces the covariance matrix of interest by a sparse
covariance matrix with similar local behavior (Furrer, Genton and Nychka,
2006). There is theoretical support for this approach (Kaufman, Schervish
and Nychka, 2008; Wang and Loh, 2011), but the tapered covariance matrix
must be very sparse to help a great deal with calculating the log determinant
of the covariance matrix, in which case, Stein (2012) finds that composite
likelihood approaches will often be preferable. There is scope for combining
covariance tapering with the approach presented here in that sparse matri-
ces lead to efficient matrix-vector multiplication, which is also essential for
our implementation of computing (1.2) based on iterative methods to do
the matrix solves. Sang and Huang (2012) show that covariance tapering
and low-rank approximations can also sometimes be profitably combined to
approximate likelihoods.

We consider methods based on composite likelihoods to be the main com-
petitor to solving (1.2). The approximate loglikelihoods described by Vecchia
(1988); Stein, Chi and Welty (2004); Caragea and Smith (2007) can all be
written in the following form: for some sequence of pairs of matrices (Aj , Bj),
j = 1, . . . , q all with n columns, at most n rows and full rank,

(1.3)

q∑
j=1

log fj,θ(AjZ | BjZ),

where fj,θ is the conditional Gaussian density of AjZ given BjZ. As pro-
posed by Vecchia (1988) and Stein, Chi and Welty (2004), the rank of Bj
will generally be larger than that of Aj , in which case the main computation
in obtaining (1.3) is finding Cholesky decompositions of the covariance ma-
trices of B1Z, . . . , BqZ. For example, Vecchia (1988) just lets AjZ be the jth
component of Z and BjZ some subset of Z1, . . . , Zj−1. If m is the largest
of these subsets, then the storage requirements for this computation are
O(m2) rather than O(n2). Comparable to increasing the number of Uj ’s in
the randomized algorithm used here, this approach can be updated to obtain
a better approximation of the likelihood by increasing the size of the subset
of Z1, . . . , Zj−1 to condition on when computing the conditional density of
Zj . However, for this approach to be efficient from the perspective of flops,
one needs to store the Cholesky decompositions of the covariance matrices
of B1Z, . . . , BqZ, which would greatly increase the memory requirements of
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the algorithm. For dealing with truly massive datasets, our long-term plan
is to combine the randomized approach studied here with a composite likeli-
hood by using the randomized algorithms to compute the gradient of (1.3),
thus making it possible to consider Aj ’s and Bj ’s of larger rank than would
be feasible if one had to do exact calculations.

Section 2 provides a bound on the efficiency of the estimating equations
based on the approximate likelihood relative to the Fisher information ma-
trix. The bound is in terms of the condition number of the true covariance
matrix of the observations and shows that if the covariance matrix is well-
conditioned, N does not need to be very large to obtain nearly optimal
estimating equations. Section 3 shows how one can get improved estimat-
ing equations by choosing the Uj ’s in (1.2) based on a design related to
2n factorial designs. Section 4 describes details of the algorithms, including
methods for solving the approximate score equations and the role of precon-
ditioning. Section 5 provides results of numerical experiments on simulated
data. These results show that the basic method can work well for moderate
values of N , even sometimes when the condition numbers of the covariance
matrices do not stay bounded as the number of observations increases. Fur-
thermore, the algorithm with the Uj ’s chosen as in Section 3 can lead to
substantially more accurate approximations for a given N . A large-scale nu-
merical experiment shows that for observations on a partially occluded grid,
the algorithm scales nearly linearly in the sample size. Section 6 applies the
methods to OMI (Ozone Monitoring Instrument) Level 3 (gridded) total
column ozone measurements for April 2012 in the latitude band 40◦−50◦N.
The data are given on a 1◦ × 1◦ grid, so if the data were complete, there
would be a total of 360× 10× 30 = 108,000 observations. However, as Fig-
ure 1 shows, there are missing observations, mostly due to a lack of overlap
in data from different orbits taken by OMI, but also due to nearly a full day
of missing data on April 29–30, so that there are 84,942 observations. By
acting as if all observations are taken at noon local time and assuming the
process is stationary in longitude and time, the covariance matrix for the
observations can be embedded in a block circulant matrix, greatly reducing
the computational effort needed for multiplying the covariance matrix by a
vector. Using (1.2) and a factorized sparse inverse preconditioner (Kolotilina
and Yeremin, 1993), we are able to compute an accurate approximation to
the MLE for a simple model that captures some of the main features in the
OMI data, including the obvious eastward movement of ozone from day to
day visible in Figure 1.
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Fig 1. Demeaned ozone data (Dobson units) plotted using a heat color map. Missing data
is colored white.

2. Variance of Stochastic Approximation of the Score Function.
This section gives a bound relating the covariance matrices of the approx-
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imate and exact score functions. Let us first introduce some general nota-
tion for unbiased estimating equations. Suppose θ has p components and
g(θ) = (g1(θ), . . . , gp(θ))

′ = 0 is a set of unbiased estimating equations for
θ so that Eθg(θ) = 0 for all θ. Write ġ(θ) for the p × p matrix whose ij’th
element is ∂

∂θi
gj(θ) and covθ{g(θ)} for the covariance matrix of g(θ). The

Godambe information matrix (Varin, Reid and Firth, 2011),

E{g(θ)} = Eθ{ġ(θ)} [covθ{g(θ)}]−1Eθ{ġ(θ)},

is a natural measure of the informativeness of the estimating equations
(Heyde, 1997, Definition 2.1). For positive semidefinite matrices A and B,
write A � B if A−B is positive semidefinite. For unbiased estimating equa-
tions g(θ) = 0 and h(θ) = 0, then we can say g dominates h if E{g(θ)} �
E{h(θ)}. Under sufficient regularity conditions on the model and the es-
timating equations, the score equations are the optimal estimating equa-
tion (Bhapkar, 1972). Specifically, for the score equations, the Godambe
information matrix equals the Fisher information matrix, I(θ), so this op-
timality condition means I(θ) � E{g(θ)} for all unbiased estimating equa-
tions g(θ) = 0. Writing Mij for the ij’th element of the matrix M , for the
score equations in (1.1), Iij(θ) = 1

2tr(K−1KiK
−1Kj) (Stein, 1999, p. 179).

For the approximate score equations (1.2), it is not difficult to show that
Eθġ(θ,N) = −I(θ). Furthermore, writing W i for K−1Ki and defining the
matrix J (θ) by Jij(θ) = cov(U ′1W

iU1, U
′
1W

jU1), we have

(2.1) covθ{g(θ,N)} = I(θ) +
1

4N
J (θ),

so that E{g(θ,N)} = I(θ)
{
I(θ)+ 1

4NJ (θ)
}−1I(θ), which, as N →∞, tends

to I(θ).
In fact, as also demonstrated empirically by Anitescu, Chen and Wang

(2012), one may often not needN to be that large to get estimating equations
that are nearly as efficient as the exact score equations. Writing U1j for the
jth component of U1, we have

Jij(θ) =
n∑

k,`,p,q=1

cov(W i
k`U1kU1`,W

j
pqU1pU1q)

=
∑
k 6=`
{cov(W i

k`U1kU1`,W
j
k`U1kU1`) + cov(W i

k`U1kU1`,W
j
`kU1kU1`)}

=
∑
k 6=`

(W i
k`W

j
k` +W i

k`W
j
`k)

= tr(W iW j) + tr
{
W i(W j)′

}
− 2

n∑
k=1

W i
kkW

j
kk.(2.2)
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As noted by Hutchinson (1990), the terms with k = ` drop out in the second
step because U2

1j = 1 with probability 1. When K(θ) is diagonal for all θ,
then N = 1 gives the exact score equations, although in this case computing
tr(K−1Ki) directly would be trivial.

Writing κ(·) for the condition number of a matrix, we can bound covθ{g(θ,N)}
in terms of I(θ) and κ(K). The proof of the following result is given in the
appendix.

Theorem 2.1.

(2.3) covθ{g(θ,N)} � I(θ)

{
1 +

(κ(K) + 1)2

4Nκ(K)

}
.

It follows from (2.3) that

E{g(θ,N)} �
{

1 +
(κ(K) + 1)2

4Nκ(K)

}−1

I(θ).

In practice, if (κ(K)+1)2

4Nκ(K) < 0.01, so that the loss of information in using (1.2)

rather than (1.1) was at most 1%, we would generally be satisfied with using
the approximate score equations and a loss of information of even 10% or
larger might be acceptable when one has a massive amount of data. For
example, if κ(K) = 5, a bound of 0.01 is obtained with N = 180 and a
bound of 0.1 with N = 18.

It is possible to obtain unbiased estimating equations similar to (1.2)
whose statistical efficiency does not depend on κ(K). Specifically, if we write
tr(K−1Ki) as tr((G′)−1KiG

−1), where G is any matrix satisfying G′G = K,
we then have

(2.4) hi(θ,N) =
1

2
Z ′K−1KiK

−1Z − 1

2N

N∑
j=1

U ′j(G
′)−1KiG

−1Uj = 0

for i = 1, . . . , p are also unbiased estimating equations for θ. In this case,
covθ{h(θ,N)} �

(
1 + 1

N

)
I(θ), whose proof is similar to that of Theorem 2.1

but exploits the symmetry of (G′)−1KiG
−1. This bound is less than or equal

to the bound in (2.3) on covθ{g(θ,N)}. Whether it is preferable to use (2.4)
rather than (1.2) depends on a number of factors including the sharpness of
the bound in (2.3) and how much more work it takes to compute G−1Uj than
to compute K−1Uj . An example of how the action of such a matrix square
root can be approximated efficiently using only O(n) storage is presented
by Chen, Anitescu and Saad (2011).
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3. Dependent Designs. Choosing the Uj ’s independently is simple
and convenient, but one can reduce the variation in the stochastic approx-
imation by using a more sophisticated design for the Uj ’s; this section de-
scribes such a design. Suppose that n = Nm for some nonnegative integer
m and that β1, . . . , βN are fixed vectors of length N with all entries ±1 for
which 1

N

∑N
j=1 βjβ

′
j = I. For example, if N = 2q for a positive integer q,

then the βj ’s can be chosen to be the design matrix for a saturated model
of a 2q factorial design in which the levels of the factors are set at ±1 (Box,
Hunter and Hunter, 2005, Ch. 5). In addition, assume that X1, . . . , Xm are
random diagonal matrices of size N and Yjk, j = 1, . . . , N ; k = 1, . . . ,m are
random variables such that all the diagonal elements of the Xj ’s and all the
Yjk’s are iid symmetric Bernoulli random variables. Then define

(3.1) Uj =

 Yj1X1
...

YjmXm

βj .

One can easily show that for anyNm×NmmatrixM , E
(

1
N

∑N
j=1 U

′
jMUj

)
=

tr(M). Thus, we can use this definition of the Uj ’s in (1.2), and the resulting
estimating equations are still unbiased.

This design is closely related to a class of designs introduced by Avron
and Toledo (2011), who propose selecting the Uj ’s as follows. Suppose H is
a Hadamard matrix; that is, an n× n orthogonal matrix with elements ±1.
Avron and Toledo (2011) actually consider H a multiple of a unitary matrix,
but the special case H Hadamard makes their proposal most similar to
ours. Then, using simple random sampling (with replacement), they choose
N columns from this matrix and multiply this n × N matrix by an n × n
diagonal matrix with diagonal entries made up of independent symmetric
Bernoulli random variables. The columns of this resulting matrix are the
Uj ’s. We are also multiplying a subset of the columns of a Hadamard matrix
by a random diagonal matrix, but we do not select the columns by simple
random sampling from some arbitrary Hadamard matrix.

The extra structure we impose yields beneficial results in terms of the
variance of the randomized trace approximation as the following calculations
show. Partitioning M into an m × m array of N × N matrices with k`th
block M b

k`, we obtain the following:

(3.2)
1

N

N∑
j=1

U ′jMUj =
1

N

m∑
k,`=1

N∑
j=1

YjkYj`β
′
jXkM

b
k`X`βj .
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Using Y 2
jk = 1 and X2

k = I, we have

1

N

N∑
j=1

Y 2
jkβ
′
jXkM

b
kkXkβj =

1

N
tr

(
XkM

b
kkXk

N∑
j=1

βjβ
′
j

)
= tr(M b

kkX
2
k)

= tr(M b
kk),

which is not random. Thus, if M is block diagonal (i.e., M b
k` is a matrix

of zeroes for all k 6= `), (3.2) yields tr(M) without error. This result is
an extension of the result that independent Uj ’s give tr(M) exactly for
diagonal M . Furthermore, it turns out that, at least in terms of the variance
of 1

N

∑N
j=1 U

′
jMUj , for the elements of M off the block diagonal, we do

exactly the same as we do when the Uj ’s are independent. Write B for
cov{g(θ,N)} with g(θ,N) defined as in (1.2) with independent Uj ’s. Define
gd(θ,N) = 0 for the unbiased estimating equations defined by (1.2) with
dependent Uj ’s defined by (3.1) and Bd(θ) to be the covariance matrix of
gd(θ,N). Take T (N,n) to be the set of pairs of positive integers (k, `) with
1 ≤ ` < k ≤ n for which bk/Nc = b`/Nc. We have the following result,
whose proof is given in the Appendix.

Theorem 3.1. For any vector v = (v1, . . . , vp)
′,

(3.3) v′B(θ)v − v′Bd(θ)v =
2

N

∑
(k,`)∈T (N,n)

{
p∑
i=1

vi
(
W i
k` +W i

`k

)}2

.

Thus, B(θ) � Bd(θ). Since Eθġ(θ,N) = Eθġ
d(θ,N) = −I(θ), it follows

that E{gd(θ,N)} � E{g(θ,N)}.
How much of an improvement will result from using dependent Uj ’s de-

pends on the size of the W i
k`’s within each block. For spatial data, one would

typically group spatially contiguous observations within blocks. How to block
for space-time data is less clear. The results here focus on the variance of the
randomized trace approximation. Avron and Toledo (2011) obtain bounds
on the probability that the approximation error is less than some quantity
and note that these results sometimes give rankings for various randomized
trace approximations different from those obtained by comparing variances.

4. Computational Aspects. Finding θ that solves the estimating equa-
tions (1.2) requires a nonlinear equation solver in addition to computing
linear solves in K. The nonlinear solver starts at an initial guess θ0 and
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iteratively updates it to approach a (hopefully unique) zero of (1.2). In
each iteration, at θi, the nonlinear solver typically requires an evaluation of
g(θi, N) in order to find the next iterate θi+1. In turn, the evaluation of g
requires employing a linear solver to compute the set of vectors K−1Z and
K−1Uj , j = 1, . . . , N .

The Fisher information matrix I(θ) and the matrix J (θ) contain terms
involving matrix traces and diagonals. Write diag(·) for a column vector
containing the diagonal elements of a matrix, and ◦ for the Hadamard (ele-
mentwise) product of matrices. For any real matrix A,

tr(A) = EU (U ′AU) and diag(A) = EU (U ◦AU),

where the expectation EU is taken over U , a random vector with iid sym-
metric Bernoulli components. One can unbiasedly estimate I(θ) and J (θ)
by

(4.1) Îij(θ) =
1

2N2

N2∑
k=1

U ′kW
iW jUk

and

Ĵij(θ) =
1

N2

N2∑
k=1

U ′kW
iW jUk +

1

N2

N2∑
k=1

U ′kW
i(W j)′Uk(4.2)

− 2
n∑
`=1

[
1

N2

N2∑
k=1

(Uk ◦W iUk)

]
`

[
1

N2

N2∑
k=1

(Uk ◦W jUk)

]
`

Note that here the set of vectors Uk need not be the same as that in (1.2)
and that N2 may not be the same as N , the number of Uj ’s used to com-

pute the estimate of θ. Evaluating Î(θ) and Ĵ (θ) requires linear solves
since W iUk = K−1(KiUk) and (W i)′Uk = Ki(K

−1Uk). Note that one can
also unbiasedly estimate Jij(θ) as the sample covariance of U ′kW

iUk and
U ′kW

jWk for k = 1, . . . , N , but (4.2) directly exploits properties of symmet-
ric Bernoulli variables (e.g., U2

1j = 1). Further study would be needed to see
when each approach is preferred.

4.1. Linear Solver. We consider an iterative solver for solving a set of
linear equations Ax = b for a symmetric positive definite matrix A ∈ Rn×n,
given a right-hand vector b. Since the matrix A (in our case the covariance
matrix) is symmetric positive definite, the conjugate gradient algorithm is
naturally used. Let xi be the current approximate solution, and let ri =
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b − Axi be the residual. The algorithm finds a search direction qi and a
step size αi to update the approximate solution, that is, xi+1 = xi + αiqi,
such that the search directions qi, . . . , q0 are mutually A-conjugate (i.e.,
(qi)′Aqj = 0 for i 6= j) and the new residual ri+1 is orthogonal to all the
previous ones, ri, . . . , r0. One can show that the search direction is a linear
combination of the current residual and the past search direction, yielding
the following recurrence formulas:

xi+1 = xi + αiqi,

ri+1 = ri − αiAqi,
qi+1 = ri+1 + βiqi,

where αi =
〈
ri, ri

〉
/
〈
Aqi, qi

〉
and βi =

〈
ri+1, ri+1

〉
/
〈
ri, ri

〉
, and 〈·, ·〉 de-

notes the vector inner product. Letting x∗ be the exact solution, that is,
Ax∗ = b, then xi enjoys a linear convergence to x∗:

(4.3) ‖xi − x∗‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)i
‖x0 − x∗‖A,

where ‖ · ‖A = 〈A·, ·〉
1
2 is the A-norm of a vector.

Asymptotically, the time cost of one iteration is upper bounded by that
of multiplying A by qi, which typically dominates other vector operations
when A is not sparse. Properties of the covariance matrix can be exploited
to efficiently compute the matrix-vector products. For example, when the
observations are on a lattice (regular grid), one can use the fast Fourier trans-
form (FFT), which takes time O(n log n) (Chan and Jin, 2007). Even when
the grid is partial (with occluded observations), this idea can still be ap-
plied. On the other hand, for nongridded observations, exact multiplication
generally requires O(n2) operations. However, one can use a combination of
direct summations for close-by points and multipole expansions of the co-
variance kernel for faraway points to compute the matrix-vector products in
O(n log n), even O(n), time (Barnes and Hut, 1986; Greengard and Rokhlin,
1987). In the case of Matérn-type Gaussian processes and in the context of
solving the stochastic approximation (1.2), such fast multipole approxima-
tions were presented by Anitescu, Chen and Wang (2012). Note that the
total computational cost of the solver is the cost of each iteration times the
number of iterations, the latter being usually much less than n.

The number of iterations to achieve a desired accuracy depends on how
fast xi approaches x∗, which, from (4.3), is in turn affected by the condition
number κ of A. Two techniques can be used to improve convergence. One
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is to perform preconditioning in order to reduce κ; this technique will be
discussed in the next section. The other is to adopt a block version of the
conjugate gradient algorithm. This technique is useful for solving the linear
system for the same matrix with multiple right-hand sides. Specifically, de-
note by AX = B the linear system one wants to solve, where B is a matrix
with s columns, and the same for the unknown X. Conventionally, matri-
ces such as B are called block vectors, honoring the fact that the columns
of B are handled simultaneously. The block conjugate gradient algorithm
is similar to the single-vector version except that the iterates xi, ri and qi

now become block iterates Xi, Ri, and Qi and the coefficients αi and βi

become s× s matrices. The detailed algorithm is not shown here; interested
readers are referred to O’Leary (1980). If X∗ is the exact solution, then Xi

approaches X∗ at least as fast as linearly:

(4.4) ‖(Xi)j − (X∗)j‖A ≤ Cj

(√
κs(A)− 1√
κs(A) + 1

)i
, j = 1, . . . , s,

where (Xi)j and (X∗)j are the jth column of Xi and X∗, respectively;
Cj is some constant dependent on j but not i; and κs(A) is the ratio be-
tween λn(A) and λs(A) with the eigenvalues λk sorted increasingly. Com-
paring (4.3) with (4.4), we see that the modified condition number κs is less
than κ, which means that the block version of the conjugate gradient algo-
rithm has a faster convergence than the standard version does. In practice,
since there are many right-hand sides (i.e., the vectors Z, Uj ’s and KiUk’s),
we always use the block version.

4.2. Preconditioning/Filtering. Preconditioning is a technique for reduc-
ing the condition number of the matrix. Here, the benefit of preconditioning
is twofold: it encourages the rapid convergence of an iterative linear solver,
and, if the effective condition number is small, it strongly bounds the un-
certainty in using the estimating equations (1.2) instead of the exact score
equations (1.1) for estimating parameters (see Theorem 2.1). In numerical
linear algebra, preconditioning refers to applying a matrix M , which approx-
imates the inverse of A in some sense, to both sides of the linear system of
equations. In the simple case of left preconditioning, this amounts to solving
MAx = Mb for MA better-conditioned than A. With certain algebraic ma-
nipulations, the matrix M enters into the conjugate gradient algorithm in
the form of multiplication with vectors. For the detailed algorithm, see Saad
(2003). This technique does not explicitly compute the matrix MA, but it
requires that the matrix-vector multiplications with M can be efficiently
carried out.
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For covariance matrices, certain filtering operations are known to reduce
the condition number, and some can even achieve an optimal precondition-
ing in the sense that the condition number is bounded by a constant inde-
pendent of the size of the matrix (Stein, Chen and Anitescu, 2012). Note
that these filtering operations may or may not preserve the rank/size of the
matrix. When the rank is reduced, then some loss of statistical information
results when filtering, although similar filtering is also likely needed to apply
spectral methods for strongly correlated spatial data on a grid (Stein, 1995).
Therefore, we consider applying the same filter to all the vectors and matri-
ces in the estimating equations, in which case, (1.2) becomes the stochastic
approximation to the score equations of the filtered process. Evaluating the
filtered version of g(θ,N) becomes easier because the linear solves with the
filtered covariance matrix converge faster.

4.3. Nonlinear Solver. The choice of the nonlinear solver is problem de-
pendent. The purpose of solving the score equations (1.1) or the estimating
equations (1.2) is to maximize the loglikelihood function L(θ). Therefore,
investigation into the shape of the loglikelihood surface helps identify an
appropriate solver.

In Section 5, we consider the power law generalized covariance model
(α > 0):

(4.5) G(x; θ) =

{
Γ(−α/2)rα, if α/2 /∈ N
(−1)1+α/2rα log r, if α/2 ∈ N

where x = [x1, . . . , xd] ∈ Rd denotes coordinates, θ is the set of parameters
containing α > 0, ` = [`1, . . . , `d] ∈ Rd, and r is the elliptical radius

(4.6) r =

√
x2

1

`21
+ · · ·+

x2
d

`2d
.

Allowing a different scaling in different directions may be appropriate when,
for example, variations in a vertical direction may be different from those in a
horizontal direction. The function G is conditionally positive definite; there-
fore, only the covariances of authorized linear combinations of the process
are defined (Chilès and Delfiner, 2012, Sec. 4.3). In fact, G is p-conditionally
positive definite if and only if 2p + 2 > α (see Chilès and Delfiner, 2012,
Sec. 4.5), so that applying the discrete Laplace filter (which gives second-
order differences) at least dα/2e times to the observations yields a set of
authorized linear combinations. Stein, Chen and Anitescu (2012) show that
if a discrete Laplace filter is applied τ times and α + d = 4τ , then the
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covariance matrix has a bounded condition number independent of the ma-
trix size. Consider the grid {δj} for some fixed spacing δ and j a vector
whose components take integer values between 0 and m. Applying the filter
τ times, we obtain the covariance matrix

Kij = cov{∆τZ(δi),∆τZ(δj)},

where ∆ denotes the discrete Laplace operator

∆Z(δj) =

d∑
p=1

{Z(δj − δep)− 2Z(δj) + Z(δj + δep)},

with ep meaning the unit vector along the pth coordinate. If τ = round((α+
d)/4), the resultingK is both positive definite and reasonably well-conditioned.

Figure 2 shows a sample loglikelihood surface for d = 1 based on an
observation vector Z simulated from a 1D partial regular grid spanning the
range [0, 100], using parameters α = 1.5 and ` = 10. (A similar 2D grid is
shown later in Figure 3.) The peak of the surface is denoted by the solid white
dot, which is not far away from the truth θ = (1.5, 10). The white dashed
curve (profile of the surface) indicates the maximum loglikelihoods L given
α. The curve is also projected on the α−L plane and the α− ` plane. One
sees that the loglikelihood value has small variation (ranges from 48 to 58)
along this curve compared with the rest of the surface, whereas, for example,
varying just the parameter ` changes the loglikelihood substantially.

A Newton-type nonlinear solver starts at some initial point θ0 and tries to
approach the optimal point (one that solves the score equations).1 Let the
current point be θi. The solver finds a direction qi and a step size αi in some
way to move the point to θi+1 = θi+αiqi, so that the value of L is increased.
Typically, the search direction qi is the inverse of the Jacobian multiplied
by θi, that is, qi = ġ(θi, N)−1θi. This way, θi+1 is closer to a solution of
the score equations. Figure 2 shows a loglikelihood surface when d = 1. The
solver starts somewhere on the surface and quickly climbs to a point along
the profile curve. However, this point might be far away from the peak. It
turns out that along this curve a Newton-type solver is usually unable to
find a direction with an appropriate step size to numerically increase L, in
part because of the narrow ridge indicated in the figure. The variation of
L along the normal direction of the curve is much larger than that along
the tangent direction. Thus, the iterate θi is trapped and cannot advance to
the peak. In such a case, even though the estimated maximized likelihood

1To facilitate understanding, we explain here the process for solving the score equa-
tions (1.1). Conceptually it is similar to that for solving the estimating equations (1.2).
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Fig 2. A sample loglikelihood surface for the power law generalized covariance kernel, with
profile curve and peak plotted.
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could be fairly close to the true maximum, the estimated parameters could
be quite distant from the MLE of (α, `).

To successfully solve the estimating equations, we consider each compo-
nent of ` an implicit function of α. Denote by

(4.7) gi(α, `1, . . . , `d) = 0, i = 1, . . . , d+ 1,

the estimating equations, ignoring the fixed variable N . The implicit func-
tion theorem indicates that a set of functions `1(α), . . ., `d(α) exists around
an isolated zero of (4.7) in a neighborhood where (4.7) is continuously dif-
ferentiable, such that

gi(α, `1(α), . . . , `d(α)) = 0, for i = 2, . . . , d+ 1.

Therefore, we need only to solve the equation

(4.8) g1(α, `1(α), . . . , `d(α)) = 0

with a single variable α. Numerically, a much more robust method than
a Newton-type method exists for finding a root of a one-variable function.
We use the standard method of Forsythe, Malcolm and Moler (1976, see
the Fortran code Zeroin) for solving (4.8). This method in turn requires
the evaluation of the left-hand side of (4.8). Then, the `i’s are evaluated
by solving g2, . . . , gd+1 = 0 fixing α, whereby a Newton-type algorithm is
empirically proven to be an efficient method.

5. Experiments. In this section, we show a few experimental results
based on a partially occluded regular grid. The rationale for using such a
partial grid is to illustrate a setting where spectral techniques do not work
so well but efficient matrix-vector multiplications are available. A partially
occluded grid can occur, for example, when observations of some surface
characteristics are taken by a satellite-based instrument and it is not possible
to obtain observations over regions with sufficiently dense cloud cover. The
ozone example in Section 6 provides another example in which data on a
partial grid occurs. This section considers a grid with physical range [0, 100]×
[0, 100] and a hole in a disc shape of radius 10 centered at (40, 60). An
illustration of the grid, with size 32× 32, is shown in Figure 3. The matrix-
vector multiplication is performed by first doing the multiplication using the
full grid via circulant embedding and FFT, followed by removing the entries
corresponding to the hole of the grid. Recall that the covariance model is
defined in Section 4.3, along with the explanation of the filtering step.

When working with dependent samples, it is advantageous to group nearby
grid points such that the resulting blocks have a plump shape and that there
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Fig 3. A 32× 32 grid with a region of missing observations in a disc shape. Internal grid
points are grouped to work with the dependent design in Section 3.

are as many blocks with size exactly N as possible. For an occluded grid,
this is a nontrivial task. Here we use a simple heuristic to effectively group
the points. We divide the grid into horizontal stripes of width b

√
Nc (in case

b
√
Nc does not divide the grid size along the vertical direction, some stripes

have a width b
√
Nc+ 1). The stripes are ordered from bottom to top, and

the grid points inside the odd-numbered stripes are ordered lexicographically
in their coordinates, that is, (x, y). In order to obtain as many contiguous
blocks as possible, the grid points inside the even-numbered stripes are or-
dered lexicographically according to (−x, y). This ordering gives a zigzag
flow of the points starting from the bottom-left corner of the grid. Every N
points are grouped in a block. The coloring of the grid points in Figure 3
shows an example of the grouping. Note that because of filtering, observa-
tions on either an external or internal boundary are not part of any block.

5.1. Choice of N . One of the most important factors that affect the
efficacy of approximating the score equations is the value N . Theorem 2.1
indicates that N should increase at least like κ(K) in order to guarantee
the additional uncertainty introduced by approximating the score equations
be comparable with that caused by the randomness of the sample Z. In



20 ML STEIN, J CHEN, M ANITESCU

the ideal case, when the condition number of the matrix (possibly with
filtering) is bounded independent of the matrix size n, then even taking
N = 1 is sufficient to obtain estimates with the same rate of convergence as
the exact score equations. When κ grows with n, however, a better guideline
for selecting N is to consider the growth of I−1J .

Figure 4 plots the condition number of K and the spectral norm of I−1J
for varying sizes of the matrix and preconditioning using the Laplacian fil-
ter. Although performing a Laplacian filtering will yield provably bounded
condition numbers only for the case α = 2, one sees that the filtering is
also effective for the cases α = 1 and 1.5. Moreover, the norm of I−1J is
significantly smaller than κ when n is large, and in fact it does not seem
to grow with n. This result indicates the bound in Theorem 1 is sometimes
far too conservative and that using a fixed N can be effective even when κ
grows with n.
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Fig 4. Growth of κ compared with that of ‖I−1J ‖, for power law kernel in 2D. Left:
α = 1; right: α = 1.5.

Of course, the norm of I−1J is not always bounded. In Figure 5 we
show two examples using the Matérn covariance kernel with smoothness
parameter ν = 1 and 1.5 (essentially α = 2 and 3). Without filtering, both
κ(K) and ‖I−1J ‖ grow with n, although the plots show that the growth of
the latter is significantly slower than that of the former.

If the occluded observations are more scattered, then the fast matrix-
vector multiplication based on circulant embedding still works fine. However,
if the occluded pixels are randomly located and the fraction of occluded
pixels is substantial, then using a filtered dataset only including Laplacians
centered at those observations whose four nearest neighbors are also available
might lead to an unacceptable loss of information. In this case, one might
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instead use a preconditioner based on a sparse approximation to the inverse
Cholesky decomposition as described in Section 6.

5.2. A 32 × 32 Grid Example. Here, we show the details of solving the
estimating equations (1.2) using a 32 × 32 grid as an example. Setting the
truth α = 1.5 and ` = (7, 10) (that is, θ = (1.5, 7, 10)), consider exact and
approximate maximum likelihood estimation based on the data obtained
by applying the Laplacian filter once to the observations. Writing G for
E{g(θ,N)}, one way to evaluate the approximate MLEs is to compute the
ratios of the square roots of the diagonal elements of G−1, to the square
roots of the diagonal elements of I−1. We know these ratios must be at
least 1, and that the closer they are to 1, the more nearly optimal the
resulting estimating equations based on the approximate score function are.
For N = 64 and independent sampling, we get 1.0156, 1.0125, and 1.0135
for the three ratios, all of which are very close to 1. Since one generally
cannot calculate G−1 exactly, it is also worthwhile to compare a stochastic
approximation of the diagonal values of G−1 to their exact values. When this
approximation was done once for N = 64 and by using N2 = 100 in (4.1)
and (4.2), the three ratios obtained were 0.9821, 0.9817, and 0.9833, which
are all close to 1.

Figure 6 shows the performance of the resulting estimates (to be compared
with the exact MLEs obtained by solving the standard score equations). For
N = 1, 2, 4, 8, 16, 32, and 64, we simulated 100 realizations of the pro-
cess on the 32× 32 occluded grid, applied the discrete Laplacian once, and
then computed exact MLEs and approximations using both independent
and dependent (as described in the beginning of Section 5) sampling. When



22 ML STEIN, J CHEN, M ANITESCU

N = 1, the independent and dependent sampling schemes are identical, so
only results for independent sampling are given. Figure 6 plots, for each
component of θ, the mean squared differences between the approximate and
exact MLEs divided by the mean squared errors for the exact MLEs. As ex-
pected, these ratios decrease with N , particularly for dependent sampling.
Indeed, dependent sampling is much more efficient than independent sam-
pling for larger N ; for example, the results in Figure 6 show that dependent
sampling with N = 32 yields better estimates for all three parameters than
does independent sampling with N = 64.
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Fig 6. Effects of N (1, 2, 4, 8, 16, 32, 64). In each plot, the curve with the plus sign
corresponds to the independent design, whereas that with the circle sign corresponds to
the dependent design. The horizontal axis represents N . In plots (a), (c), and (d), the
vertical axis represents the mean squared differences between the approximate and exact
MLEs divided by the mean squared errors for the exact MLEs, for the components α, `1,
and `2, respectively. In plot (b), the vertical axis represents the mean squared difference
between the approximate and exact loglikelihood value.
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5.3. Large-Scale Experiments. We experimented with larger grids (in the
same physical range). We show the results in Table 1 and Figure 7 for
N = 64. When the matrix becomes large, we are unable to compute I and
G exactly. Based on the preceding experiment, it seems reasonable to use
N2 = 100 in approximating I and G. Therefore, the elements of I and G in
Table 1 were computed only approximately.

Table 1
Estimates and estimated standard errors for increasingly dense grids. The last three rows

show the ratio of standard errors of the approximate to the exact MLEs.

Grid size 32× 32 64× 64 128× 128 256× 256 512× 512 1024× 1024

1.5355 1.5084 1.4919 1.4975 1.5011 1.5012

θ̂N 6.8507 6.9974 7.1221 7.0663 6.9841 6.9677
9.2923 10.062 10.091 10.063 9.9818 9.9600

0.0882 0.0406 0.0196 0.0096 0.0048 0.0024√
(I−1)ii 0.5406 0.3673 0.2371 0.1464 0.0877 0.0512

0.8515 0.5674 0.3605 0.2202 0.1309 0.0760√
(G−1)ii√
(I−1)ii

1.0077 1.0077 1.0077 1.0077 1.0077 1.0077
1.0062 1.0070 1.0073 1.0074 1.0075 1.0076
1.0064 1.0071 1.0073 1.0075 1.0075 1.0076
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Fig 7. Running time for increasingly dense grids. The dashed curve fits the recorded times
with a function of the form of n logn times a constant.

One sees that as the grid becomes larger (denser), the variance of the
estimates decreases as expected. The matrices I−1 and G−1 are comparable
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in all cases, and in fact the ratios stay roughly the same across different
sizes of the data. The experiments were run for data size up to around one
million, and the scaling of the running time versus data size is favorable.
The results show a strong agreement of the recorded times with the scaling
O(n log n).

6. Application. Ozone in the stratosphere blocks ultraviolet radiation
from the sun and is thus essential to all land-based life on Earth. Satellite-
based instruments run by NASA have been measuring total column ozone
in the atmosphere daily on a near global scale since 1978 (although with a
significant gap in 1994–1996) and the present instrument is the OMI. Here,
we consider Level 3 gridded data for the month April 2012 in the latitude
band 40◦–50◦N (Aura OMI Ozone Level-3 Global Gridded (1.0×1.0 deg)
Data Product-OMTO3d (V003)). Because total column ozone shows persis-
tent patterns of variation with location, we demeaned the data by, for each
pixel, subtracting off the mean of the available observations during April
2012. Figure 1 displays the resulting demeaned data. There are potentially
360 × 10 = 3600 observations on each day in this latitude strip. However,
Figure 1 shows 14 or 15 strips of missing observations each day, which is
due to a lack of overlap in OMI observations between orbits in this latitude
band (the orbital frequency of the satellite is approximately 14.6 orbits per
day). Furthermore, there is nearly a full day of missing observations towards
the end of the record. For the 30-day period, a complete record would have
108,000 observations, of which 84,942 are available.

The local time of the Level 2 data on which the Level 3 data are based
is generally near noon due to the sun-synchronous orbit of the satellite, but
there is some variation in local time of Level 2 data because OMI simulta-
neously measures ozone over a swath of roughly 3000 km, so that the actual
local times of the Level 2 data vary up to about 50 minutes from local noon
in the latitude band we are considering. Nevertheless, Fang and Stein (1998)
showed that, for Level 3 total column ozone levels (as measured by a prede-
cessor instrument to the OMI), as long as one stays away from the equator,
little distortion is caused by assuming all observations are taken at exactly
local noon and we will make this assumption here. As a consequence, within
a given day, time (absolute as opposed to local) and longitude are com-
pletely confounded, which makes distinguishing longitudinal and temporal
dependencies difficult. Indeed, if one analyzed the data a day at a time,
there would be essentially no information for distinguishing longitude from
time, but by considering multiple days in a single analysis, it is possible to
distinguish their influences on the dependence structure.
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Fitting various Matérn models to subsets of the data within a day, we
found that the local spatial variation in the data is described quite well
by the Whittle model (the Matérn model with smoothness parameter 1)
without a nugget effect. Results in Stein (2007) suggest some evidence for
spatial anisotropy in total column ozone at midlatitudes, but the anisotropy
is not severe in the band 40◦–50◦N and we will ignore it here. The most
striking feature displayed in Figure 1 is the obvious eastward movement of
ozone across days.

Based on these considerations, we propose the following simple model for
the demeaned data Z(x, t). Denoting by r the radius of the Earth, ϕ the
latitude, ψ the longitude, and t the time, we assume Z is a 0 mean Gaussian
process with covariance function (parameterized by θ0, θ1, θ2 and v):

cov{Z(x1, t1), Z(x2, t2)} = θ0 M1

(√
T 2

θ2
1

+
S2

θ2
2

)
,

where T = t1 − t2 is the temporal difference, S = ‖x(r, ϕ1, ψ1 − vt1) −
x(r, ϕ2, ψ2− vt2)‖ is the (adjusted for drift) spatial difference and x(r, ϕ, ψ)
maps a spherical coordinate to R3. Here, Mν is the Matérn covariance func-
tion

(6.1) Mν(x) =
(
√

2νx)ν Kν(
√

2νx)

2ν−1Γ(ν)

with Kν the modified Bessel function of the second kind of order ν. We
used the following unit system: ϕ and ψ are in degrees, t is in days, and
r ≡ 1. In contravention of standard notation, we take longitude to increase
as one heads westward in order to make longitude increase with time within
a day. Although the use of Euclidean distance in S might be viewed as
problematic (Gneiting, 2011), it is not clear that great circle distances are
any more appropriate in the present circumstance in which there is strong
zonal flow. The model (6.1) has the virtues of simplicity and of validity:
it defines a valid covariance function on the sphere×time whenever θ0, θ1

and θ2 are positive. A more complex model would clearly be needed if one
wanted to consider the process on the entire globe rather than in a narrow
latitude band.

Because the covariance matrixK(θ0, θ1, θ2, v) can be written as θ0M(θ1, θ2, v),
where the entries of M are generated by the Matérn function, the estimating
equations (1.2) give θ̂0 = Z ′M(θ̂1, θ̂2, v̂)−1Z/n as the MLE of θ0 given values
for the other parameters. Therefore, we only need to solve (1.2) with respect
to θ1, θ2 and v. Initial values for the parameters were obtained by applying
a simplified fitting procedure to a subset of the data.
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We first fit the model using observations from one latitude at a time.
Since there are about 8500 observations per latitude band, it is possible, al-
though challenging, to compute the exact MLEs for the observations within
a single band using the Cholesky decomposition. However, we chose to solve
(1.2) with the number N of iid symmetric Bernoulli vectors Uj fixed at 64.
A first order finite difference filtering (Stein, Chen and Anitescu, 2012) was
observed to be the most effective in encouraging the convergence of the lin-
ear solve. Differences across gaps in the data record were included, so the
resulting size of the filtered datasets were just one less than the number of
observations available in each longitude. Under our model, the covariance
matrix of the observations within a latitude can be embedded in a circulant
matrix of dimension 21,600, greatly speeding up the necessary matrix-vector
multiplications. Table 2 summarizes the resulting estimates and the Fisher
information for each latitude band. The estimates are consistent across lat-
itudes and do not show any obvious trends with latitude except perhaps
at the two most northerly latitudes. The estimates of v are all near −7.5◦,
which qualitatively matches the eastward flow seen in Figure 1. The differ-
ences between

√
(G−1)ii/

√
(I−1)ii and 1 were all less than 0.01, indicating

that the choice of N is sufficient.

Table 2
Estimates and standard errors for each latitude.

Latitude θ̂N0 θ̂N1 θ̂N2 v̂N
√

(I−1)ii
(×103) (×103)

40.5◦N 1.076 2.110 11.466 −6.991 0.106 0.127 0.586 0.244
41.5◦N 1.182 2.172 11.857 −6.983 0.123 0.136 0.634 0.251
42.5◦N 1.320 2.219 12.437 −7.118 0.144 0.145 0.698 0.266
43.5◦N 1.370 2.107 12.104 −7.369 0.145 0.136 0.660 0.285
44.5◦N 1.412 2.059 11.845 −7.368 0.145 0.130 0.628 0.294
45.5◦N 1.416 2.010 11.814 −7.649 0.147 0.128 0.632 0.313
46.5◦N 1.526 2.075 12.254 −8.045 0.166 0.138 0.686 0.320
47.5◦N 1.511 2.074 11.939 −7.877 0.161 0.135 0.654 0.319
48.5◦N 1.325 1.887 10.134 −7.368 0.128 0.114 0.505 0.303
49.5◦N 1.246 1.846 9.743 −7.120 0.117 0.110 0.473 0.305

The following is an instance of the asymptotic correlation matrix, obtained
by normalizing each entry of I−1 (at 49.5◦N) with respect to the diagonal:

1.0000 0.8830 0.9858 −0.0080
0.8830 1.0000 0.8767 −0.0067
0.9858 0.8767 1.0000 −0.0238
−0.0080 −0.0067 −0.0238 1.0000

 .
We see that θ̂0, θ̂1 and θ̂2 are all strongly correlated. The high correlation



APPROXIMATION OF SCORE FUNCTION 27

of the estimated range parameters θ̂1 and θ̂2 with the estimated scale θ̂0 is
not unexpected considering the general difficulty of distinguishing scale and
range parameters for strongly correlated spatial data (Zhang, 2004). The
strong correlation of the two range parameters is presumably due to the
near confounding of time and longitude for these data.

Next, we used the data at all latitudes and progressively increased the
number of days. In this setting, the covariance matrix of the observations
can be embedded in a block circulant matrix with blocks of size 10×10 cor-
responding to the 10 latitudes. Therefore, multiplication of the covariance
matrix times a vector can be accomplished with a discrete Fourier transform
for each pair of latitudes, or

(
10
2

)
= 55 discrete Fourier transforms. Because

we are using the Whittle covariance function as the basis of our model, we
had hoped filtering the data using the Laplacian would be an effective pre-
conditioner. Indeed, it does well at speeding the convergence of the linear
solves, but it unfortunately appears to lose most of the information in the
data for distinguishing spatial from temporal influences, and thus is unsuit-
able for these data. Instead, we used a banded approximate inverse Cholesky
factorization (Kolotilina and Yeremin, 1993, (2.5),(2.6)) to precondition the
linear solve. Specifically, we ordered the observations by time and then, since
observations at the same longitude and day are simultaneous, by latitude
south to north. We then obtained an approximate inverse by subtracting off
the conditional mean of each observation given the previous 20 observations,
so the approximate Cholesky factor has a bandwidth 21. We tried values be-
sides 20 for the number of previous observations on which to condition, but
20 seemed to offer about the best combination of fast computing and effective
preconditioning. The number N of iid symmetric Bernoulli vectors Uj was
increased to 128, in order that the differences between

√
(G−1)ii/

√
(I−1)ii

and 1 were around 0.1. The results are summarized in Table 3. One sees
that the estimates are reasonably consistent with those shown in Table 2.
Nevertheless, there are some minor discrepancies such as estimates of v that
are modestly larger (in magnitude) than found in Table 3, suggesting that
taking account of correlations across latitudes changes what we think about
the advection of ozone from day to day.

Note that the approximate inverse Cholesky decomposition, although not
as computationally efficient as applying the discrete Laplacian, is a full rank
transformation and thus does not throw out any statistical information. The
method does require ordering the observations, which is convenient in the
present case in which there are at most 10 observations per time point.
Nevertheless, we believe this approach may be attractive more generally,
especially for data that are not on a grid.
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Table 3
Estimates and standard errors for all ten latitudes, iid Uj’s.

Days θ̂N0 θ̂N1 θ̂N2 v̂N
√

(I−1)ii
(×103) (×103)

1–3 1.594 2.411 12.159 −8.275 0.362 0.334 1.398 0.512
1–10 1.301 1.719 11.199 −8.368 0.146 0.121 0.639 0.407
1–20 1.138 1.774 10.912 −9.038 0.090 0.085 0.436 0.252
1–30 1.265 1.918 11.554 −8.201 0.089 0.081 0.414 0.198

Estimates and standard errors for all ten latitudes, dependent Uj’s.

1–30 1.260 1.907 11.531 −8.211 0.088 0.079 0.406 0.200

We also estimated the parameters using the dependent sampling scheme
described in Section 3 with N = 128 and obtained estimates given in the
last row of Table 3. It is not as easy to estimate Bd as defined in Theorem
3.1 as it is to estimate B with independent Uj ’s. We have carried out limited

numerical calculations by repeatedly calculating gd(θ̂, N) for θ̂ fixed at the
estimates for dependent samples of size N = 128 and have found that the
advantages of using the dependent sampling are negligible in this case. We
suspect that the reason the gains are not as great as those shown in Figure 6
is due to the substantial correlations of observations that are at similar
locations a day apart.

7. Discussion. We have demonstrated how derivatives of the loglikeli-
hood function for a Gaussian process model can be accurately and efficiently
calculated in situations for which direct calculation of the loglikelihood it-
self would be much more difficult. Being able to calculate these derivatives
enables us to find solutions to the score equations and to verify that these
solutions are at least local maximizers of the likelihood. However, if the score
equations had multiple solutions, then, assuming all the solutions could be
found, it might not be so easy to determine which was the global maximizer.
Furthermore, it is not straightforward to obtain likelihood ratio statistics
when only derivatives of the loglikelihood are available.

Perhaps a more critical drawback of having only derivatives of the log-
likelihood occurs when using a Bayesian approach to parameter estimation.
The likelihood needs to be known only up to a multiplicative constant, so, in
principle, knowing the gradient of the loglikelihood throughout the parame-
ter space is sufficient for calculating the posterior distribution. However, it is
not so clear how one might calculate an approximate posterior based on just
gradient and perhaps Hessian values of the loglikelihood at some discrete
set of parameter values. It is even less clear how one could implement an
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MCMC scheme based on just derivatives of the loglikelihood.
Despite this substantial drawback, we consider the development of likeli-

hood methods for fitting Gaussian process models that are nearly O(n) in
time and, perhaps more importantly, O(n) in memory, to be essential for
expanding the scope of application of these models. Calling our approach
nearly O(n) in time admittedly glosses over a number of substantial chal-
lenges. First, we need to have an effective preconditioner for the covariance
matrix K. This allows us to treat N , the number of random vectors in the
stochastic trace estimator, as a fixed quantity as n increases and still ob-
tain estimates that are nearly as efficient as full maximum likelihood. The
availability of an effective preconditioner also means that the number of it-
erations of the iterative solve can remain bounded as n increases. We have
found that N = 100 is often sufficient and that the number of iterations
needed for the iterative solver to converge to a tight tolerance can be several
dozen, so writing O(n) can hide a factor of several thousand. Second, we
are assuming that matrix-vector multiplications can be done in nearly O(n)
time. This is clearly achievable when the number of nonzero entries in K
is O(n) or when observations form a partial grid and a stationary model is
assumed so that circulant embedding applies. For dense, unstructured ma-
trices, fast multipole methods can achieve this rate, but the method is only
approximate and the overhead in the computations is substantial so that
n may need to be very large for the method to be faster than direct mul-
tiplication. However, even when using exact multiplication, which requires
O(n2) time, despite the need for N iterative solves, our approach may still
be faster than computing the Cholesky decomposition, which requires O(n3)
computations. Furthermore, even when K is dense and unstructured, the it-
erative algorithm is O(n) in memory, assuming that elements of K can be
calculated as needed, whereas the Cholesky decomposition requires O(n2)
memory. Thus, for example, for n in the range 10,000–100,000, even if K has
no exploitable structure, our approach to approximate maximum likelihood
estimation may be much easier to implement on the current generation of
desktop computers than an approach that requires calculating the Cholesky
decomposition of K.

The fact that the condition number of K affects both the statisticial ef-
ficiency of the stochastic trace approximation and the number of iterations
needed by the iterative solver indicates the importance of having good pre-
conditioners to make our approach effective. We have suggested a few pos-
sible preconditioners, but it is clear that we have only scratched the surface
of this problem. Statistical problems often yield covariance matrices with
special structures that do not correspond to standard problems arising in
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numerical analysis. For example, the ozone data in Section 6 has a partial
confounding of time with longitude that made Laplacian filtering ineffective
as a preconditioner. Further development of preconditioners, especially for
unstructured covariance matrices, will be essential to making our approach
broadly effective.

APPENDIX A: PROOFS

Proof of Theorem 2.1. Since K is positive definite, it can be written
in the form SΛS′ with S orthogonal and Λ diagonal with elements λ1 ≥
. . . ≥ λn > 0. Then Qi := S′KiS is symmetric,

(A.1) tr(W iW j) = tr(S′K−1SS′KiSS
′K−1SS′KjS) = tr(Λ−1QiΛ−1Qj)

and, similarly,

(A.2) tr
{
W i(W j)′

}
= tr(Λ−1QiQjΛ−1).

For real v1, . . . , vp,

(A.3)

p∑
i,j=1

vivj

n∑
k=1

W i
kkW

j
kk =

n∑
k=1

{
p∑
i=1

viW
i
kk

}2

≥ 0.

Furthermore, by (A.1),

(A.4)

p∑
i,j=1

vivjtr(W
iW j) =

n∑
k,`=1

1

λkλ`

{
p∑
i=1

viQ
i
k,`

}2

,

and, by (A.2),

(A.5)

p∑
i,j=1

vivjtr
{
W i(W j)′

}
=

n∑
k,`=1

1

λ2
k

{
p∑
i=1

viQ
i
k,`

}2

.

Write γk` for
∑p

i=1 viQ
i
k,` and note that γk` = γ`k. Consider finding an upper

bound to∑p
i,j=1 vivjtr

{
W i(W j)′

}∑p
i,j=1 vivjtr(W

iW j)
=

∑n
k=1

γ2kk
λ2k

+
∑

k>` γ
2
k`

(
1
λ2k

+ 1
λ2`

)
∑n

k=1
γ2kk
λ2k

+
∑

k>`
2γ2k`
λkλ`

.

Think of maximizing this ratio as a function of the γ2
k`’s for fixed λk’s. We

then have a ratio of two positively weighted sums of the same positive scalars
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(the γ2
k`’s for k ≥ `), so this ratio will be maximized if the only positive γ2

k`

values correspond to cases for which the ratio of the weights, here

(A.6)

1
λ2k

+ 1
λ2`

2
λkλ`

=
1 +

(
λk
λ`

)2

2λk
λ`

,

is maximized. Since we are considering only k ≥ `, λk
λ`
≥ 1 and 1+x2

2x is
increasing on [1,∞), so (A.6) is maximized when k = n and ` = 1, yielding∑p

i,j=1 vivjtr
{
W i(W j)′

}∑p
i,j=1 vivjtr(W

iW j)
≤ κ(K)2 + 1

2κ(K)
.

The theorem follows by putting this result together with (2.1), (2.2), and
(A.3).

Proof of Theorem 3.1. Define βia to be the ath element of βi and X`a

the ath diagonal element of X`. Then note that for k 6= ` and k′ 6= `′ and
a, b ∈ {1, . . . , N},

(Ui,(k−1)N+aUi,(`−1)N+b, Uj,(k′−1)N+a′Uj,(`′−1)N+b′)

= (βiaβibYikXkaYi`X`b, βja′βjb′Yjk′Xk′a′Yj`′X`′b′)

have the same joint distribution as for independent Uj ’s. Specifically, the two
components are independent symmetric Bernoulli random variables unless
i = j, a = a′, b = b′ and k = k′ 6= ` = `′ or i = j, a = b′, b = a′ and
k = `′ 6= ` = k′, in which case, they are the same symmetric Bernoulli
random variable. Straightforward calculations yield (3.3).
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A 34 467–472.

Box, G. E. P., Hunter, J. S. and Hunter, W. G. (2005). Statistics for Experimenters:
Design, Innovation, and Discovery, second ed. Hoboken, NJ: John Wiley & Sons.

Caragea, P. C. and Smith, R. L. (2007). Asymptotic properties of computationally
efficient alternative estimators for a class of multivariate normal models. Journal of
Multivariate Analysis 98 1417–1440.

Chan, R. H. and Jin, X. Q. (2007). An Introduction to Iterative Toeplitz Solvers. Philadel-
phia: SIAM.

Chen, K. (2005). Matrix Preconditioning Techniques and Applications. Cambridge, UK:
Cambridge University Press.

Chen, J., Anitescu, M. and Saad, Y. (2011). Computing f(A)b via least squares poly-
nomial approximations. SIAM Journal on Scientific Computing 33 195–222.

Chilès, J. P. and Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty, 2nd
ed. New York: Wiley-Interscience.

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data
sets. Journal of the Royal Statistical Society Series B, 70 209–226.
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