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Abstract

The parametric bootstrap can be used for the efficient computation of Bayes posterior
distributions. Importance sampling formulas take on an easy form relating to the deviance
in exponential families, and are particularly simple starting from Jeffreys invariant prior.
Because of the i.i.d. nature of bootstrap sampling, familiar formulas describe the computa-
tional accuracy of the Bayes estimates. Besides computational methods, the theory provides
a connection between Bayesian and frequentist analysis. Efficient algorithms for the frequen-
tist accuracy of Bayesian inferences are developed and demonstrated in a model selection
example.
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1 Introduction

This article concerns the use of the parametric bootstrap to carry out Bayesian inference cal-
culations. Two main points are made: that in those cases where bootstrap methods apply,
they offer an efficient and computationally straightforward way to compute posterior distri-
butions and estimates, enjoying some advantages over Markov chain techniques; and that the
parametric bootstrap helps connect Bayes and frequentist points of view.

The basic idea is simple and not unfamiliar: that the bootstrap is useful for importance
sampling computation of Bayes posterior distributions. An important paper by Newton and
Raftery (1994) suggested a version of non-parametric bootstrapping for this purpose. By “going
parametric” we can make the Bayes/bootstrap relationship more transparent. This line of
thought has the advantage of linking rather than separating frequentist and Bayesian practices.

Section 2 introduces the main ideas in terms of an elementary one-parameter example,
and illustrates a connection between Jeffreys invariant prior density and second-order accurate
bootstrap confidence limits. Both methods are carried out via reweighting of the original “raw”
bootstrap replications. The calculation of posterior distributions by bootstrap reweighting is
a main theme here, in constrast to Markov chain methods, which strive to directly produce
correctly distributed posterior realizations.

Multidimensional exponential families, discussed in Section 3, allow the Bayes/bootstrap
conversion process to be explicitly characterized. Two important families, multivariate normal
and generalized linear models, are investigated in Section 4 and Section 5. Jeffreys-type priors
can yield unsatisfactory results in multiparameter problems (Ghosh, 2011), as shown here by
comparison with bootstrap confidence limits.
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to Professor Wing H. Wong for several helpful comments and suggestions.



An advantage of bootstrap reweighting schemes is the straightforward analysis of their
accuracy. Section 6 develops accuracy estimates for our methodology, both internal (How
many bootstrap replications are necessary?) and external (How much would the results vary
in future data sets?). The latter concerns the frequentist analysis of Bayesian estimates, an
important question in “objective Bayes” applications; see for instance Gelman, Meng and Stern
(1996) and Berger (2006).

Bootstrap reweighting can apply to any choice of prior (not favoring convenience priors such
as the conjugates, for example), but here we will be most interested in the objective-type Bayes
analyses that dominate current practice. Jeffreys priors are featured in the examples, more for
easy presentation than necessity. The paper ends with a brief summary in Section 7. Some
techical details are deferred to the Appendix.

Connections between nonparametric bootstrapping and Bayesian inference emerged early,
with the “Bayesian bootstrap,” Rubin (1981) and Efron (1982). Bootstrap reweighting is
deployed differently in Smith and Gelfand (1992), with a nice example given in their Section 5.
Sections 4 and 6 of Efron and Tibshirani (1998) develop bootstrap reweighting along the lines
used in this paper.

2 Conversion and reweighting

Our methodology is introduced here in terms of a simple one-parameter problem. Table 1 shows
scores for n = 22 students on two tests, “mechanics” and “vectors”, having sample correlation

θ̂ = 0.498. (2.1)

We wish to calculate some measure of posterior distribution for the true underlying parameter
value

θ0 = correlation (mechanics score, vectors score). (2.2)

Table 1: Scores of 22 students on two tests, “mechanics” and “vectors” (from Mardia et al., 1979, a

randomly chosen subset of the 88 students in their Table 1.2.1). The sample correlation is θ̂ = 0.498.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

mech 7 44 49 59 34 46 0 32 49 52 44 36 42 5 22 18 41 48 31 42 46 63
vec 51 69 41 70 42 40 40 45 57 64 61 59 60 30 58 51 63 38 42 69 49 63

As in Mardia et al. (1979), we assume that the individual student scores yi = (meci, veci)
are a random sample from a bivariate normal distribution having unknown mean vector µ and
covariance matrix Σ,

y : yi
ind∼ N2(µ,Σ) for i = 1, 2, . . . , 22, (2.3)

with y = (y1, y2, . . . , y22) representing the full data set. Let (µ̂, Σ̂) denote the usual maximum
likelihood estimate (MLE). Then a parametric bootstrap sample y∗ follows (2.3), with (µ̂, Σ̂)
replacing (µ,Σ),

y∗ : y∗i
ind∼ N2

(
µ̂, Σ̂

)
for i = 1, 2, . . . , 22. (2.4)
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The sample correlation of y∗ is a parametric bootstrap replication of θ̂, say θ̂∗. A total of
B = 10, 000 parametric bootstrap samples y∗ were independently generated according to (2.4),
and the corresponding θ̂∗ values calculated. We will denote them simply as

θ1, θ2, . . . , θi, . . . , θB, (2.5)

with θi short for θ̂∗i .
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Figure 1: Histogram of B = 10, 000 bootstrap replications for the student score correlation coefficient
(2.4)–(2.5) scaled to integrate to 1. Solid curve is Fisher’s density formula (2.6) for θ = 0.498. Triangles
indicate the exact 95% confidence interval θ ∈ (0.093, 0.741).

The histogram in Figure 1 compares the distribution of the 10,000 θi’s with Fisher’s theo-
retical density function fθ(θ̂),

fθ(θ̂) =
(n− 2)(1− θ2)(n−1)/2(1− θ̂2)(n−4)/2

π

∫ ∞
0

dw

(coshw − θθ̂)n−1
(2.6)

where θ has been set equal to its MLE value 0.498. In this sense f0.498(·) is the ideal parametric
bootstrap density we would obtain if the number of replications B approached infinity. Chapter
32 of Johnson and Kotz (1970) gives formula (2.6) and other representations of fθ(θ̂).

Figure 1 also indicates the exact 95% confidence limits

θ0 ∈ (0.093, 0.741), (2.7)

21
2% noncoverage in each tail, obtained from fθ(θ̂) by the usual construction,∫ 1

0.498
f0.093(θ) dθ = 0.025, (2.8)

and similarly at the upper endpoint.
Suppose now1 we have a prior density π(θ) for the parameter θ, and wish to calculate the

posterior density π(θ|θ̂). For any subset A of the parameter space Θ = [−1, 1],

Pr
{
θ ∈ A|θ̂

}
=

∫
A
π(θ)fθ(θ̂) dθ

/∫
Θ
π(θ)fθ(θ̂) dθ (2.9)

1For this example we reduce the problem to finding the posterior distribution of θ given θ̂, ignoring any
information about θ in the part of (µ̂, Σ̂) orthogonal to θ̂. Our subsequent examples do not make such reductions.
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according to Bayes rule.
Define the conversion factor R(θ) to be the ratio of the likelihood function to the bootstrap

density,
R(θ) = fθ(θ̂)/fθ̂(θ). (2.10)

Here θ̂ is fixed at its observed value 0.498 while θ represents any point in Θ. We can rewrite
(2.9) as

Pr
{
θ ∈ A|θ̂

}
=

∫
A π(θ)R(θ)fθ̂(θ) dθ∫
Θ π(θ)R(θ)fθ̂(θ) dθ

. (2.11)

More generally, if t(θ) is any function θ its posterior expectation is

E
{
t(θ)|θ̂

}
=

∫
Θ t(θ)π(θ)R(θ)fθ̂(θ) dθ∫

Θ π(θ)R(θ)fθ̂(θ) dθ
. (2.12)

The integrals in (2.11) and (2.12) are now being taken with respect to the parametric
bootstrap density fθ̂(·). Since θ1, θ2, . . . , θB (2.5) is a random sample from fθ̂(·), the integrals
can be estimated by sample averages in the usual way, yielding the familiar importance sampling
estimate of E{t(θ)|θ̂},

Ê
{
t(θ)|θ̂

}
=

B∑
i=1

tiπiRi

/
B∑
i=1

πiRi (2.13)

where ti = t(θi), πi = π(θi), and Ri = R(θi). Under mild regularity conditions, the law of large
numbers implies that Ê{t(θ)|θ̂} approaches E{t(θ)|θ} as B → ∞. (The accuracy calculations
of Section 6 will show that in this case B = 10, 000 was vastly larger than necessary for most
purposes.)
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Figure 2: Heavy curve is the posterior density π(θ|θ̂) for the correlation (2.2), starting from Jeffreys
prior (2.14), obtained by reweighting the B = 10, 000 bootstrap replications (2.5); triangles show 95%
credible limits θ0 ∈ (0.095, 0.748). Light dashed curve is raw unweighted bootstrap distribution. Beaded

curve is BCa weighted bootstrap density (2.17), nearly the same as π(θ̂|θ) in this case.

The heavy curve in Figure 2 describes π̂(θ|θ̂), the estimated posterior density starting from
Jeffreys prior

π(θ) = 1/(1− θ2) (2.14)
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(see Section 3). The raw bootstrap distribution puts weight 1/B on each of the B replications
θi. By reweighting these points proportionately to wi = πiRi we obtain the estimated posterior
distribution of θ given θ̂, with

P̂r
{
θ ∈ A|θ̂

}
=
∑
θi∈A

wi

/
B∑
i=1

wi; (2.15)

π̂(θ|θ̂) represents the density of this distribution — essentially a smoothed histogram of the
10,000 θi’s, weighted proportionally to wi.

Integrating π̂(θ|θ̂) yields the 95% credible limits (21
2% posterior probability in each tail)

θ0 ∈ (0.095, 0.748), (2.16)

close to the exact limits (2.7). Prior (2.14) is known to yield accurate frequentist coverage
probabilities, being a member of the Welch–Peers family discussed in Section 4.

In this case, the weights wi = πiRi can be thought of as correcting the raw unweighted (wi ≡
1) bootstrap density. Figure 2 shows the correction as a small shift leftwards. BCa, standing
for bias-corrected and accelerated, is another set of corrective weights, obtained from purely
frequentist considerations. Letting Ĝ(θ) denote the usual empirical cumulative distribution
function (cdf) of the bootstrap replications θ1, θ2, . . . , θB, the BCa weight on θi is

wBCa
i =

ϕ (zθi/(1 + azθi)− z0)

(1 + azθi)2ϕ(zθi + z0)

[
zθi = Φ−1Ĝ(θi)− z0

]
(2.17)

where ϕ and Φ are the standard normal density and cdf, while z0 and a are the bias-correction
and acceleration constants developed in Efron (1987) and DiCiccio and Efron (1992), further
discussed in Section 4 and the Appendix. Their estimated values are z0 = −0.068 and a = 0
for the student score correlation problem.

The BCa density πBCa(θ̂|θ), obtained by reweighting as in (2.15), is seen in Figure 2 to
nicely agree with the Jeffreys posterior density, being slightly heavier in the left tail, with 95%
central interval θ0 ∈ (0.074, 0.748). This agreement is misleadingly soothing, as will be seen in
the multidimensional context of Section 4.

3 Exponential families

The Bayes/bootstrap conversion process takes on a simplified form in exponential families. This
facilitates its application to multiparameter problems, as discussed here and in the next two
sections.

The density functions for a p-parameter exponential family F can be expressed as

fβ

(
β̂
)

= eα
′β̂−ψ(α)f0

(
β̂
)

(3.1)

where the p-vector α is the canonical parameter, β̂ is the p-dimensional sufficient statistic vector,
and where ψ(α), the cumulant generating function, provides the multipliers necessary for fβ(β̂)
integrating to 1. Here we have indexed the family by its expectation parameter vector β,

β = Eα

{
β̂
}

(3.2)
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for the sake of subsequent notation, but α and β are one-to-one functions, and we could just as
well write fα(β̂).

The deviance between any two members of F is

D(β1, β2) = 2Eβ1

{
log
(
fβ1

(
β̂
)/

fβ2

(
β̂
))}

(3.3)

(denoted equivalently D(α1, α2) since deviance does not depend on the parameterization of F .)
Taking logs in (3.1) shows that

D(β1, β2) = (α1 − α2)′β1 − (ψ(α1)− ψ(α2)) . (3.4)

Then family (3.1) can be re-expressed in “Hoeffding’s form” as

fβ

(
β̂
)

= fβ̂

(
β̂
)
e−D(β̂,β)/2. (3.5)

Since D(β̂, β) is equal or greater than zero, (3.5) shows that β = β̂ is the MLE, maximizing
fβ(β̂) over all choices of β in B, the space of possible expectation vectors.

Parametric bootstrap replications of β̂ are independent draws from fβ̂(·),

fβ̂(·) −→ β1, β2, . . . , βi, . . . , βB (3.6)

where βi is shorthand notation for β̂∗i . Starting from a prior density π(β) on B, the posterior
expectation of any function t(β) given β̂ is estimated by

Ê
{
t(β)

∣∣β̂} =

B∑
i=1

t(βi)π(βi)R(βi)

/
B∑
i=1

π(βi)R(βi) (3.7)

as in (2.13), with R(β) the conversion factor

R(β) = fβ

(
β̂
)/

fβ̂(β). (3.8)

Note: π(β)R(β) is transformation invariant, so formula (3.7) produces the same numerical
result if we bootstrap α1, α2, . . . , αB instead of (3.6), or for that matter bootstrap any other
sufficient vector. See Section 4.

Hoeffding’s form (3.5) allows a convenient expression for R(β):

Lemma 1. Conversion factor (3.8) equals

R(β) = ξ(β)e∆(β) (3.9)

where

ξ(β) = fβ̂

(
β̂
)/

fβ(β) (3.10)

and

∆(β) =
[
D
(
β, β̂

)
−D

(
β̂, β

)]/
2. (3.11)
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Letting α̂ be the canonical parameter vector corresponding to β̂, (3.4) gives

∆(β) = (α− α̂)′
(
β + β̂

)
− 2 [ψ(α)− ψ (α̂)] , (3.12)

which is useful for both theoretical and numerical computations.
The derivatives of ψ with respect to components of α yield the moments of β̂,

ψ̇(α) ≡ (∂ψ/∂αj) = β, ψ̈(α) ≡ (∂2ψ/∂αj∂αk) = V (α) = covα

{
β̂
}
, (3.13)

and ...
ψ(α) ≡ (∂3ψ/∂αj∂αk∂αl) = U(α), (3.14)

Ujkl(α) = Eα(β̂j − βj)(β̂k − βk)(β̂l − βl). In repeated sampling situations, where β̂ is obtained
from n independent observations, the entries of V (α) and U(α) are typically of order O(n−1)
and O(n−2), respectively; see Section 5 of Efron (1987).

The normal approximation
β̂ ∼̇Np (β, V (α)) (3.15)

yields

fβ(β)
.
= (2π)−p/2|V (α)|−1/2 and fβ̂

(
β̂
)
.
= (2π)−p/2 |V (α̂)|−1/2 , (3.16)

so
ξ(β)

.
= |V (α)|1/2

/
|V (α̂)|1/2 . (3.17)

Because (3.16) applies the central limit theorem where it is most accurate, at the center, (3.17)
typically errs by a factor of only 1 + O(1/n) in repeated sampling situations; see Tierney and
Kadane (1986). In fact for discrete families like the Poisson, where fβ(β) is discontinuous,
approximation (3.17) yields superior performance in applications of (3.9) to (3.7). In what
follows we will treat (3.17) as exact rather than approximate.

Jeffreys invariant prior density, as described in Kass and Wasserman (1996), takes the form

πJeff(β) = c |V (α)|−1/2 (3.18)

in family (3.1), with c an arbitrary positive constant that does not affect estimates such as
(3.7). Ignoring c, we can use (3.17)–(3.18) to rewrite the conversion factor R(β) (3.9) as

R(β) = e∆(β)/πJeff(β). (3.19)

Jeffreys prior is intended to be “uninformative.” Like other objective priors discussed in
Kass and Wasserman, it is designed for Bayesian use in situations lacking prior experience. Its
use amounts to choosing π+(β) to be flat,

π(β)/πJeff(β) ≡ 1, (3.20)

in which case (3.7) takes on a particularly simple form:

Lemma 2. If π(β) is Jeffreys prior (3.18), then (3.7) equals

Ê
{
t(β)

∣∣β̂} =
B∑
i=1

t(βi)e
∆(βi)

/
B∑
i=1

e∆(βi) (3.21)

with ∆(β) as in (3.11)–(3.12).

7



The normal translation model β̂ ∼ Np(β,Σ), with Σ fixed, has ∆(β) = 0, so that the Bayes
estimate t̂ in (3.21) equals the unweighted bootstrap estimate t̄,

t̂ = Ê
{
t(β)

∣∣β̂} =
B∑
i=1

ti/B = t̄. (3.22)

Usually though t̂ will not equal t̄, the difference relating to the variability of ∆(β) in (3.21).
A simple but informative result concerns the relative Bayesian difference (RBD) of t(β)

defined to be
RBD(t) =

(
t̂− t̄

)/
sd(t), (3.23)

sd(t) = [
∑B

1 (ti − t̄)2/B]1/2:

Lemma 3. Letting ri = πiRi, the relative Bayesian difference of t(β) is

RBD(t) = cor(t, r) · cv(r), (3.24)

and if π(β) = πJeff(β),
RBD(t)

.
= cor(t, r) · sd(∆); (3.25)

here cor(t, r) is the empirical correlation between ti and ri for the B bootstrap replications,
cv(r) the empirical coefficient of variation of the ri values, and sd(∆) the empirical standard
deviation of the ∆i values.

Proof. (3.24) follows immediately from (3.7),

RBD(t) =

∑B
1 (ti − t̄)ri/B

sd(t)
∑B

1 ri/B
= cor(t, r)

sd(r)

r̄
. (3.26)

If π(β) is the Jeffreys prior (3.18) then r(β) = exp(∆(β)) (3.19), and the usual delta-method
argument gives cv(r)

.
= sd(∆). �

The student score example of Figure 2 (which isn’t in exponential family form) has, directly
from definition (3.23),

RBD(t) =
0.473− 0.490

0.169
= −0.101, (3.27)

which is also obtained from (3.24) with cor(t, r) = −0.945 and cv(r) = 0.108. Notice that
the cv(r) factor in (3.24), and likewise sd(∆) in (3.25), apply to any function t(β), only the
cor(t, r) factor being particular. The multiparameter examples of Sections 3 and 4 have larger
cv(r) but smaller cor(t, r), again yielding rather small values of RBD(t). All of the Jeffreys
prior examples in this paper show substantial agreement between the Bayes and unweighted
bootstrap results.

Asymptotically, the deviance difference ∆(β) depends on the skewness of the exponential
family. A normal translation family has zero skewness, with ∆(β) = 0 and R(β) = 1, so
the unweighted parametric bootstrap distribution is the same as the flat-prior Bayes posterior
distribution. In a repeated sampling situation, skewness goes to zero as n−1/2, making the
Bayes and bootstrap distributions converge at this rate. We can provide a simple statement in
one-parameter families:
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Theorem 1. In a one-parameter exponential family, ∆(β) has the Taylor series approximation

∆(β)
.
=

1

6
γ̂Z3

[
Z = V̂ −1/2

(
β − β̂

)]
(3.28)

where V̂ and γ̂ are the variance and skewness of β ∼ fβ̂(·). In large-sample situations,

Z ∼̇N (0, 1) and γ̂ is O(n−1/2), making ∆(β) of order Op(n
−1/2).

(Proof appears in the Appendix, along with the theorem’s multiparameter version.)
As a simple example, suppose

β̂ ∼ β Gamman/n [β ∈ (0,∞)] , (3.29)

so β̂ is a scaled version of a standard Gamma variate having n degrees of freedom. In this case,

∆(β)
.
=

1

3
√
n
Z3 with Z =

√
n

(
β

β̂
− 1

)
, (3.30)

making ∆(β) an increasing cubic function of β. The cubic nature of (3.28) and (3.30) makes
reweighting of the parametric bootstrap replications βi by exp(∆i) more extreme in the tails of
the distribution than near β̂.

Stating things in terms of conditional expectations Ê{t(β)|β̂} as in (3.7) is convenient, but
partially obscures the basic idea: that the distribution putting weight proportional to wi = πiRi
on βi approximates the posterior distribution π(β|β̂).

As an example of more general Bayesian calculations, consider the “posterior predictive
distribution,”

g(y) =

∫
π
(
β
∣∣β̂) gβ(y) dβ (3.31)

where y is the original data set yielding β̂; by sufficiency as in (2.3), it has density functions
gβ(y) = fβ(β̂)h(y|β̂). For each βi we sample y∗∗i from gβi(·). Then the discrete distribution
putting weight proportional to wi on y∗∗i , for i = 1, 2, . . . , B, approximates g(y). See Gelman
et al. (1996).

4 The multivariate normal family

This section and the next illustrate Bayes/bootstrap relationships in two important exponential
families: the multivariate normal and generalized linear models. A multivariate normal sample
y comprises n independent d-dimensional normal vector observations

y : yi
ind∼ Nd(µ,Σ) i = 1, 2, . . . , n. (4.1)

This involves p = d · (d+ 3)/2 unknown parameters, d for the mean vector µ and d · (d+ 1)/2
for the covariance matrix Σ. We will use γ to denote the vector of all p parameters; γ is not
the expectation vector β (3.2), but rather a one-to-one quadratic function γ = m(β) described
in formula (3.5) of DiCiccio and Efron (1992).

The results of Section 3 continue to hold under smooth one-to-one transformations γ =
m(β). Let f̃γ(γ̂) denote the density of the MLE γ̂ = m(β̂), and likewise R̃(γ) = f̃γ(γ̂)/f̃γ̂(γ) for
the conversion factor, D̃(γ1, γ2) for the deviance, ∆̃(γ) = [D̃(γ, γ̂)− D̃(γ̂, γ)]/2 for the deviance
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difference, and π̃Jeff(γ) for Jeffreys prior. Then Lemma 1 continues to apply in the transformed
coordinates:

R̃(γ) = ξ̃(γ)e∆̃(γ)
[
ξ̃(γ) = f̃γ̂ (γ̂)

/
f̃γ(γ)

]
. (4.2)

(See the Appendix.)
A parametric bootstrap sample

f̃γ(·) −→ γ1, γ2, . . . , γB (4.3)

approximates the conditional expectation of a function t̃(γ), starting from prior π̃(γ), by

Ê
{
t̃(γ)

∣∣γ̂} =
B∑
i=1

t̃iπ̃iR̃i

/
B∑
i=1

π̃iR̃i (4.4)

as in (2.14), and if π̃(γ) is Jeffreys prior,

Ê
{
t̃(γ)

∣∣γ̂} =
B∑
i=1

t̃ie
∆̃i

/
B∑
i=1

e∆̃i (4.5)

as in (3.21). This can be particularly handy since ∆ is tranformation invariant and can be
evaluated in any convenient set of coordinates, while π̃Jeff(γ) need not be calculated at all.

The following theorem provides ξ̃(γ) and R̃(γ) for a multivariate normal sample (4.1),
working with γ the p = d · (d + 3)/2 coordinates consisting of µ and the elements of Σ on or
above its main diagonal:

Theorem 2. In (µ,Σ) coordinates,

ξ̃(µ,Σ) =
(
|Σ|
/
|Σ̂|
) d+2

2
(4.6)

and

∆̃(µ,Σ) = n

{
(µ− µ̂)′

Σ̂−1 − Σ−1

2
(µ− µ̂) +

tr(ΣΣn−1 − Σ̂Σ−1)

2
+ log

|Σ̂|
|Σ|

}
. (4.7)

(Proof in the Appendix.)
Here 1/ξ̃(µ,Σ) turns out to be exactly proportional to |Ṽ (γ)|−1/2, and either expression

gives π̃Jeff(µ,Σ). Expression (4.7) equals the deviance difference (3.11), no matter what the
choice of coordinates.

Theorem 2 makes it easy to carry out parametric bootstrapping: having calculated the usual
MLE estimates (µ̂, Σ̂), each bootstrap data set y∗ is generated as in (4.1),

y∗ : y∗i ∼ Nd
(
µ̂, Σ̂

)
, i = 1, 2, . . . , n, (4.8)

from which we calculate the bootstrap MLE estimate (µ̂∗, Σ̂∗), denoted simply (µ,Σ) as before.
To each of B such replicates

(µ,Σ)1, (µ,Σ)2, . . . , (µ,Σ)i, . . . , (µ,Σ)B (4.9)
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Figure 3: Heavy curve is Bayes posterior density for the eigenratio (4.11), starting from Jeffreys prior
for a bivariate normal model; solid triangles show 95% credible limits (0.650, 0.908). Beaded curve is BCa
confidence density based on weights (2.17) with z0 = −0.222, a = 0; BCa 95% interval (0.598, 0.890),
open triangles, is shifted far leftward. Light dashed curve is unweighted bootstrap density.

is attached the weight

wi = π̃iξ̃ie
∆̃i , (4.10)

using Theorem 2 (or more exactly wi/
∑B

1 wj); this distribution, supported on the B points

(4.9), estimates the posterior distribution of (µ,Σ) given (µ̂, Σ̂). Expectations are then obtained
as in (4.4), and similarly for more general posterior parameters such as percentiles and credible
limits.

Figure 3 applies this methodology to the student score data of Table 1, assuming the bi-
variate normal model (2.3). We take the parameter of interest θ to be the eigenratio

θ = t(µ,Σ) = λ1/(λ1 + λ2) (4.11)

where λ1 and λ2 are the ordered eigenvalues of Σ; θ has MLE θ̂ = t(µ̂, Σ̂) = 0.793.
B = 10, 000 bootstrap replications were generated as in (4.9), and ti = t((µ,Σ)i) calculated

for each. Total computation time was about 30 seconds. The heavy curve shows the estimated
posterior density of θ given (µ̂, Σ̂), starting from Jeffreys prior. The 95% credible region, 21

2%
probability excluded in each tail, was

Bayes : θ ∈ (0.650, 0.908). (4.12)

That is, ∑
ti≤0.650

e∆̃i

/
B∑
1

e∆̃i = 0.025, (4.13)

and similarly for the upper endpoint.
In this case the BCa 95% confidence limits are shifted sharply leftward compared to (4.12),

BCa : θ ∈ (0.598, 0.890). (4.14)
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The beaded curve in Figure 3 shows the full BCa confidence density, i.e., the estimated density
based on the BCa weights (2.17). For the eigenratio, z0 = −0.222 and a = 0 are the bias
correction and acceleration constants. See the Appendix for a brief discussion of the z0 and a
calculations.
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Figure 4: Solid curve: BCa weights (2.17), with (z0, a) = (−0.222, 0), plotted versus bootstrap eigen-
ratio replications θi. Dashed curve: regression of Jeffreys prior Bayes weights exp(∆̃i) on θλ.

Figure 4 helps explain the difference between the Bayes and BCa results. The heavy curve
shows the BCa weights (2.17) increasing sharply to the left as a function of θi = t((µ,Σ)i),
the bootstrap eigenratio values. In other words, smaller values of θi are weighted more heavily,
pulling the weighted percentile points of the BCa distribution downwards. On the other hand,
the Bayes weights π̃Jeff

i R̃i = exp(∆̃i) (represented in Figure 4 by their regression on θi) are
nearly flat, so that the Bayes posterior density is almost the same as the unweighted bootstrap
density shown in Figure 3.

The BCa limits are known to yield highly accurate coverage probabilities; see DiCiccio
and Efron (1996). Moreover, in the eigenratio case, the MLE θ̂ is strongly biased upwards,
suggesting a downward shift for the confidence limits. This brings up a familiar complaint
against Jeffreys priors, extensively discussed in Ghosh (2011): that in multiparameter settings
they can give inaccurate inferences for individual parameters of interest.

This is likely to be the case for any general-purpose recipe for choosing objective prior
distributions in several dimensions. For instance, repeating the eigenratio analysis with a
standard inverse Wishart prior on Σ (covariance matrix I, degrees of freedom 2) and a flat
prior on µ gave essentially the same results as in Figure 3. Specific parameters of interest
require specifically tailored priors, as with the Bernardo–Berger reference priors, again nicely
reviewed by Ghosh (2011).

In fact, the BCa weights can be thought of as providing such tailoring: define the BCa prior
(relative to the unweighted bootstrap distribution) to be

πBCa
i = wBCa

i

/
Ri (4.15)

with wBCa
i as in (2.17). This makes the posterior weights πBCa

i Ri appearing in expressions like
(3.7) equal the BCa weights wBCa

i , and makes posterior credible limits based on the πBCa prior

12



equal BCa limits. Formula (4.15) can be thought of as an automatic device for constructing
Welch and Peers’ (1963) “probability matching priors”; see Tibshirani (1989).

Importance sampling methods such as (4.5) can suffer from excessive variability due to
occasional large values of the weights. The “internal accuracy” formula (6.2) will provide a
warning of numerical problems. A variety of helpful counter-tactics are available, beginning
with a simple truncation of the largest weight.

Variations in the parametric bootstrap sampling scheme can be employed. Instead of (3.6),
for instance, we might obtain β1, β2, . . . , βB from

βi
ind∼ Np

(
µ̂β, h

(
Σ̂β

))
, (4.16)

where µ̂β and Σ̂β are the observed mean and covariance of β’s from a preliminary fβ̂(·) sam-

ple. Here h(Σ̂β) indicates an expansion of Σ̂β designed to broaden the range of the bootstrap
distribution, hence reducing the importance sampling weights. If a regression analysis of the
preliminary sample showed the weights increasing in direction v in the β space, for example,
then h(Σ̂β) might expand Σ̂β in the v direction.

Replacing (3.6) with (4.16) changes the conversion factor R(β) (3.8), but in an easily com-
putable way. In fact, replacing (3.6) with βi ∼ Np(µ̂β, Σ̂β) makes the calculation of R(β) easier
in situations where there is no simple formula for the bootstrap density fβ̂(β).

5 Generalized linear models

The Bayes/bootstrap conversion theory of Section 3 applies directly to generalized linear models
(GLM). A GLM begins with a one-parameter exponential family

gη(y) = eηy−φ(η)g0(y) (5.1)

where η = α, y = β̂, and φ(η) = ψ(α) in notation (3.1). An n × p structure matrix X and a
p-dimensional parameter vector α then yield an n-vector η = Xα, with each entry ηj governing
an independent observation yj ,

yj
ind∼ gηj (·) for j = 1, 2, . . . , n. (5.2)

All of this results in a p-parameter exponential family (3.1), with α the canonical parameter
vector. Letting µ be the expectation vector of y = (y1, . . . , yn)′,

µ = Eα{y}, (5.3)

the other entries of (3.1) are

β̂ = X ′y, β = X ′µ, and ψ(α) =

n∑
i=1

φ(xjα) (5.4)

where xj is the jth row of X. The deviance difference ∆(β) (3.11) has a simple form,

∆(β) = (α− α̂)′
(
β + β̂

)
− 2

n∑
j=1

[φ(xjα)− φ (xjα̂)]

= (η − η̂)′ (µ+ µ̂)− 2

n∑
j=1

[φ(ηj)− φ (η̂j)]

(5.5)
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(α̂ the MLE of α, η̂ = Xα̂, and µ̂ the expectation vector (5.3) corresponding to α = α̂)
according to (3.12).

As an extended example we now consider a microarray experiment discussed in Efron (2010),
Section 2.1: 102 men, 50 healthy controls and 52 prostate cancer patients, have each had the
activity of N = 6033 genes measured (Singh et al., 2002). A two-sample test comparing patients
with controls has been performed for each gene, yielding a z-value zk, i.e., a test statistic having
a standard normal distribution under H0k, the null hypothesis of no patient/control difference
for gene k,

H0k : zk ∼ N (0, 1). (5.6)

The experimenters, of course, are interested in identifying non-null genes.
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Figure 5: Histogram of the N = 6033 z-values from the prostate cancer study, Singh et al. (2002).
Standard normal curve (dashed) is too high at center and too low in the tails. “Model 4,” solid curve,
is the fit from a fourth-degree polynomial Poisson regression.

Figure 5 shows a histogram of the N z-values. The standard normal curve is too high in
the center and too low in the tails, suggesting that at least some of the genes are non-null. The
better-fitting curve “Model 4” is a fit from the Poisson regression family discussed next.

There are J = 49 bins for the histogram, each of width 0.2, with centers xj ranging from
−4.4 to 5.2. Let yj be the number of zk values in the jth bin,

yj = #{zk ∈ bin j} j = 1, 2, . . . , J = 49. (5.7)

We will assume that the yj ’s are independent Poisson observations, each having its own expec-
tation µj ,

yj
ind∼ Poi(µj) j = 1, 2, . . . , J, (5.8)

and then fit curves to the histogram using Poisson regression. Why this might be appropriate
is discussed at length in Efron (2008, 2010) but here we will just take it as a helpful example
of the Bayes/bootstrap GLM modeling theory.

We consider Poisson regression models where the canonical parameters ηj = log(µj) aremth-
degree polynomial functions of the bin centers xj , evaluated by glm(y∼poly(x,m),Poisson)
in the language R. This is a GLM with the Poisson family, ηj = logµj , where X is a J×(m+1)
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matrix having rows xj = (1, xj , x
2
j , . . . , x

m
j ) for j = 1, 2, . . . , J . For the Poisson distribution,

φ(η) = µ in (5.1). The deviance difference function (5.5) becomes

∆(β) = (η − η̂)′ (µ+ µ̂)− 2 · 1′ (µ− µ̂) , (5.9)

1 a vector of J ones.

Table 2: Deviance from Poisson polynomial regression models for counts (5.7), prostate data; AIC
criterion (5.10) is minimized for the quartic model M4. Boot % shows the proportion of each model
selected in B = 4000 bootstrap replications of the AIC criterion, bootstrapping from M8. Bayes % are
weighted Bayes posterior proportions, assuming Jeffreys prior. The St Error column is obtained from
the bootstrap-after-bootstrap calculations of Section 6.

Model Deviance AIC Boot % Bayes % (St Error)

M2 138.6 144.6 0% 0% (0%)
M3 137.1 145.1 0% 0% (0%)
M4 65.3 75.3 32% 36% (20%)
M5 64.3 76.3 10% 12% (14%)
M6 63.8 77.8 5% 5% (8%)
M7 63.8 79.8 1% 2% (6%)
M8 59.6 77.6 51% 45% (27%)

Let “Mm” indicate the Poisson polynomial regression model of degree m. M2, with log(µj)
quadratic in xj , amounts to a normal location-scale model for the marginal density of the zk’s.
Higher-order models are more flexible. M4, the quartic model, provided the heavy fitted curve
in Figure 5. Table 2 shows the Poisson deviance for the fitted models M2 through M8. A
dramatic decrease occurs between M3 and M4, but only slow change occurs after that. The
AIC criterion for model m,

AIC(m) = Deviance + 2 · (m+ 1) (5.10)

is minimized at M4, though none of the subsequent models do much worse. The fit from M4
provided the “Model 4” curve in Figure 5.

Parametric bootstrap samples y∗ were generated from M4, as in (5.8),

y∗j
ind∼ Poi (µ̂j) for j = 1, 2, . . . , J (5.11)

with µ̂j the MLE values from M4. B = 4000 such samples were generated, and for each one the

MLE α̂∗, and also β̂∗ (5.4), were obtained from the R call glm(y∗ ∼poly(x,4),poisson). Using
the simplified notation α = α̂∗ gives bootstrap vectors η = Xα, µ = exp(η) = (exp(ηj)), β =
X ′µ, where X is the 49 × 5 matrix poly(x,4), and finally ∆(β) as in (5.9). (Notice that β
represents β̂∗ here, not the “true value” β of (5.4).)

The reweighted bootstrap distribution, with weights proportional to

wi = e∆i on βi for i = 1, 2, . . . , B = 4000, (5.12)

estimates the posterior distribution of β given βi, starting from Jeffreys prior. The posterior
expectation of any parameter θ = t(β) is estimated by

∑
witi/

∑
wi as in (3.21).
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We will focus attention on a false discovery rate (Fdr) parameter θ,

θ(z) = Fdr(z) = [1− Φ(z)]
/

[1− F (z)] (5.13)

where Φ is the standard normal cdf and F (z) is the cdf of the Poisson regression model: in
terms of the discretized situation (5.8),

F (z) =
∑
xj≤z

µj

/
J∑
1

µj (5.14)

(with a “half count” correction at z = xj). Fdr(z) estimates the probability that a gene having
its zk exceeding the fixed value z is non-null, as discussed for example in Efron (2008).
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Figure 6: Posterior densities for θ = Fdr(3) (5.13), prostate data, based on B = 4000 parametric
bootstrap replications (5.11) from the fourth-degree Poisson regression model M4. Solid curve Jeffreys
Bayes posterior density, using (5.12); heavy dashed curve BCa confidence density (2.17). Both give 95%
interval θ ∈ (−0.154,−0.241). Light dashed curve is unweighted bootstrap density. Total computation
time was about 30 seconds.

Figure 6 concerns the choice z = 3. Using quartic model M4 to estimate the µj ’s in (5.14)
yields point estimate

θ̂ = F̂dr(3) = 0.192. (5.15)

Fdr values near 0.2 are in the “interesting” range where the gene might be reported as non-null,
making it important to know the accuracy of (5.15).

The B = 4000 bootstrap samples for M4 (5.11) yield bootstrap replications θ1, θ2, . . . , θB.
Their standard deviation is a bootstrap estimate of standard error for θ̂, ŝe = 0.024, so a typical
empirical Bayes analysis might report F̂dr(3) = 0.0192± 0.024. A Jeffreys Bayes analysis gives
the full posterior density of θ shown by the solid curve in Figure 6, with 95% credible interval

M4 : θ ∈ (0.154, 0.241). (5.16)

In this case the BCa density (2.17) ((z0, a) = (−0.047,−0.026)) is nearly the same as the Bayes
estimate, both of them lying just slightly to the left of the unweighted bootstrap density.
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The choice of philosophy, Jeffreys Bayes or BCa frequentist, doesn’t make much difference
here, but the choice of model does. Repeating the analysis using M8 instead of M4 to generate
the bootstrap samples (5.11) sharply decreased the estimate. Figure 7 compares the bootstrap
histograms; the 95% credible interval for Fdr(3) is now

M8 : θ ∈ (0.141, 0.239). (5.17)
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Figure 7: B = 4000 parametric bootstrap replications of Fdr(3) from M8 (solid histogram) compared
with those from M4 (line histogram). Closed triangles indicate 95% M8 credible limits (0.141, 0.239);
open triangles M4 limits (0.154, 0.241).

AIC calculations were carried out for each of the 4000 M8 bootstrap samples. Of these,
32% selected M4 as the minimizer, compared with 51% for M8, as shown in the Boot % column
of Table 2. Weighting each sample proportionally to exp(∆i) (5.12) narrowed the difference to
36% versus 45%, but still with a strong tendency toward M8.

It might be feared that M8 is simply justifying itself. However, standard nonparametric
bootstrapping (resampling the N zk values), gave slightly more extreme Boot percentages,

30%(M4), 9%(M5), 4%(M6), 2%(M7), 54%(M8). (5.18)

The fact is that data-based model selection is quite unstable here, as the accuracy calculations
of Section 6 will verify.

6 Accuracy

Two aspects of our methodology’s Bayesian estimation accuracy are considered in this section:
internal accuracy, the bootstrap sampling error in estimates such as (3.7) (i.e., how many
bootstrap replications B need we take?), and external accuracy, statistical sampling error, for
instance how much would the results in Figure 3 change for a new sample of 22 students?
The i.i.d. (independent and identically distributed) nature of bootstrap sampling makes both
questions easy to answer.
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Internal accuracy is particularly straightforward, The estimate (3.7) for Ê{t(β)|β̂} can be
expressed in terms of si = tiπiRi and ri = πiRi as

Ê = s̄/r̄

(
s̄ =

B∑
1

si/B, r̄ =
B∑
1

ri/B

)
. (6.1)

Let cov be the 2× 2 empirical covariance matrix of the B vectors (si, ri). Then standard delta-
method calculations yield a familiar approximation for the bootstrap coefficient of variation of
Ê,

ĉv2 =
1

B

( c̄ss
s̄2
− 2

c̄sr
s̄r̄

+
c̄rr
r̄2

)
(6.2)

where c̄ss, c̄sr, and c̄rr are the elements of cov.
The Jeffreys Bayes estimate for eigenratio (4.11) was Ê = 0.799 (nearly the same as the

MLE 0.793). Formula (6.2) gave ĉv = 0.002, indicating that Ê nearly equaled the exact Bayes
estimate E{t(β)|β̂}. B = 10, 000 was definitely excessive. Posterior parameters other than
expectations are handled by other well-known delta-method approximations: the upper 97.5%
credible limit 0.241 in Figure 6 had ĉv = 0.0015, again indicating near-zero bootstrap estimation
error.

As far as external accuracy is concerned, the parametric bootstrap can be employed to assess
its own sampling error, a “bootstrap-after-bootstrap” technique in the terminology of Efron
(1992). Suppose we have calculated some Bayes posterior estimate Q̂ = Q(β̂), for example Ê or
a credible limit, and wonder about its sampling standard error, i.e., its frequentist variability.
As an answer, we sample K more times from fβ̂(·),

fβ̂(·) −→ γ̂1, γ̂2, . . . , γ̂K (6.3)

where the γ notation emphasizes that these replications are distinct from β1, β2, . . . , βB in (3.6),
the original replications used to compute Q̂. Letting Q̂k = Q(γ̂k), the usual bootstrap estimate
of standard error for Q̂ is

ŝe
(
Q̂
)

=

[
K∑
k=1

(
Q̂k − Q̂·

)2/
(K − 1)

]1/2

, (6.4)

Q̂· =
∑
Q̂k/K. K = 200 is usually plenty for reasonable estimation of se(Q̂); see Table 6.2 of

Efron and Tibshirani (1993).
This recipe looks arduous since each Q̂k requires B bootstrap replications for its evalu-

ation. Happily, a simple reweighting scheme on the original B replications finesses all that
computation. Define

Wki = fβi (γ̂k)
/
fβi

(
β̂
)
. (6.5)

Lemma 4. If Q̂ is a posterior expectation Ê =
∑
tiπiRi/

∑
πiRi, then the importance sampling

estimate of Q̂k is

Q̂k =
B∑
i=1

tiπiRiWki

/
B∑
i=1

πiRiWki; (6.6)

for general quantities Q̂, reweighting βi proportionately to πiRiWi gives Q̂k.
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The proof of Lemma 4 follows immediately from

RiWki = fβi (γ̂k)
/
fβ̂(βi), (6.7)

which is the correct importance sampling factor for converting an fβ̂(β) sample into an fβ(γ̂k)
likelihood.

Formula (6.6) requires no new computations of t(β), π(β), or R(β), and in exponential
families the factor Wki is easily calculated:

Wki = e(αi−α̂)′(γ̂k−β̂) (6.8)

where αi is the canonical vector in (3.1) corresponding to βi. This usually makes the computa-
tion for the bootstrap-after-bootstrap standard error (6.4) much less than that needed originally
for Q̂. (Note: formula (6.5) is invariant under smooth transformations of β, and so Wki can be
calculated directly in other coordinate systems as a ratio of densities.)

A striking use of (6.4) appears in the last two columns of Table 2, Section 5. Let t4(βi) be the
indicator function of whether or not Model 4 minimized AIC for the ith bootstrap replication:
Ê{t4(β)|β̂} = 0.36 according to the Bayes % column. However, its bootstrap-after-bootstrap
standard error estimate was ŝe = 0.20, with similarly enormous standard errors for the other
model selection probabilities. From a frequentist viewpoint, data-based model selection will be
a highly uncertain enterprise here.

Frequentist assessment of objective Bayes procedures has been advocated in the literature,
for example in Berger (2006) and Gelman et al. (1996), but seems to be followed most often in
the breach. The methodology here can be useful for injecting a note of frequentist caution into
Bayesian data analysis based on priors of convenience.

If our original data set y consists of n i.i.d. vectors yi, as in Table 1, we can jackknife instead
of bootstrapping the γ̂k’s. Now γ̂k is β̂ recomputed from the data set y(i) having yi removed
for k = 1, 2, . . . , n. Formulas (6.5)–(6.8) still hold, yielding

ŝejack =

[
n− 1

n

n∑
k=1

(
Q̂k − Q̂·

)2
]1/2

. (6.9)

An advantage of jackknife resampling is that the γ̂k values lie closer to β̂, making Wki closer to
1 and putting less strain on the importance sampling formula (6.6).

7 Summary

The main points made by the theory and examples of the preceding sections are as follows:

• The parametric bootstrap distribution is a favorable starting point for importance sam-
pling computation of Bayes posterior distributions (as in Figure 2).

• This computation is implemented by reweighting the bootstrap replications rather than
by drawing observations directly from the posterior distribution as with MCMC (formulas
(3.7), (3.8)).

• The necessary weights are easily computed in exponential families for any prior, but are
particularly simple starting from Jeffreys invariant prior, in which case they depend only
on the deviance difference ∆(β) ((3.9)–(3.12), (3.21), (4.7), (5.5)).
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• The deviance difference depends asymptotically on the skewness of the family, having a
cubic normal form (3.29).

• In our examples, Jeffreys prior yielded posterior distributions not much different than the
unweighted bootstrap distribution. This may be unsatisfactory for single parameters of
interest in multiparameter families (Figure 3).

• Better uninformative priors, such as the Welch–Peers family or reference priors, are closely
related to the frequentist BCa reweighting formula ((2.17), Figure 2, Figure 6).

• Because of the i.i.d. nature of bootstrap resampling, simple formulas exist for the accuracy
of posterior computations as a function of the number B of bootstrap replications. Even
with excessive choices of B, computation time was measured in seconds for our examples
(6.2).

• An efficient second-level bootstrap algorithm (“bootstrap-after-bootstrap”) provides esti-
mates for the frequentist accuracy of Bayesian inferences ((6.3)–(6.6)).

• This can be important in assessing inferences based on formulaic priors, such as those of
Jeffreys, rather than on genuine prior experience (last column, Table 2 of Section 5).

A Appendix

Transformation of coordinates: Let J(β) be the Jacobian of the transformation γ = m(β),
that is, the absolute value of the determinant of the Hessian matrix (∂βi/∂γj). Then f̃γ(γ̂) =

fβ(β̂)J(β̂) gives

ξ̃(γ) =
fβ̂(β̂)J(β̂)

fβ(β)J(β)
= ξ(β)

J(β̂)

J(β)
(A.1)

in (4.2), and

R̃(γ) =
f̃γ (γ̂)

f̃γ̂(γ)
=
fβ(β̂)

fβ̂(β)

J(β̂)

J(β)
= R(β)

J(β̂)

J(β)

= ξ(β)e∆(β)J(β̂)

J(β)
= ξ̃(γ)e∆̃(γ),

(A.2)

since ∆̃(γ) = ∆(β) by the transformation invariance of the deviance.
For any prior density π(β) we have π̃(γ) = π(β)J(β) and

π̃(γ)R̃(γ) = π(β)J(β)R(β)J(β̂)
/
J(β)

= J(β̂)π(β)R(β).
(A.3)

J(β̂) acts as a constant in (A.3), showing that (4.4) is identical to (3.7). This also applies to
Jeffreys prior, π̃Jeff(γ), which by design is transformation invariant, yielding (4.5).

Theorem 1: In a one-parameter exponential family, (3.13)–(3.14) give

ψ(α)− ψ (α̂)
.
= β̂dα+ V̂ (dα)2/2 + Û(dα)3/6 (A.4)

and

β − β̂ .
= V̂ dα+ Û(dα)2/2 (A.5)
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where dα = α− α̂, V̂ = V (α̂), and Û = U(α̂). Expression (3.12) for ∆ can be written as

∆ =
(
β − β̂

)
dα+ 2

[
β̂dα−

(
ψ − ψ̂

)]
. (A.6)

Applying (A.4)–(A.5) reduces (A.6) to

∆
.
=

1

6
Û(dα)3 =

1

6
γ̂
[
V̂

1
2 (α− α̂)

]3

.
=

1

6
γ̂
[
V̂ −

1
2

(
β − β̂

)]3
=

1

6
γ̂Z3

(A.7)

with γ̂ = Û/V̂ 3/2 the skewness, the last line following from Z ≡ V̂ −1/2(β − β̂)
.
= V̂ 1/2(α − α̂)

(A.5). Standard exponential family theory shows that Z → N (0, 1) under repeated sampling,
verifying the theorem (remembering that the asymptotics here are for β ∼ fβ̂(·), with β̂ fixed).

The skewness γ̂ is then O(n−1/2), making ∆ of order Op(n
−1/2). The first missing term in the

Taylor expansion (A.7) for ∆ is δ̂Z4/12, δ̂ the kurtosis, and is of order Op(n
−1).

The multiparameter version of Theorem 1 begins by considering a one-parameter subfamily
of (3.1) now indexed by α rather than β,

f (v)
a

(
β̂
)

= fα̂+av

(
β̂
)

= e(α̂+av)′β̂−ψ(α̂+av)f0

(
β̂
)

(A.8)

where v is some fixed vector in Rp; a here is not connected with that in (2.17). The deviance

difference within f
(v)
a is

∆(v)(a) = ∆ (α̂+ av) (A.9)

since deviance is entirely determined by the two densities involved.

The exponential family terms (3.1) for family f
(v)
a (·) are

α(v) = a, β̂(v) = v′β̂, β(v) = v′β, V̂ (v) = v′V̂ v,

and Û (v) =

p∑
j=1

p∑
k=1

p∑
l=1

Ûjklvjvkvl,
(A.10)

giving skewness γ̂(v) = Û (v)/V̂ (v)3/2. Applying the one-dimensional result gives

∆ (α̂+ av)
.
=

1

6
γ̂(v)Z(v)3 with Z(v) =

v′(β − β̂)

(v′V̂ v)1/2
. (A.11)

Since v can be any vector, (A.11) describes the asymptotic form of ∆(·) in the neighborhood
of α̂.

Theorem 2: For a single observation y ∼ Nd(µ,Σ), let f1 and f2 represent its density under
(µ1,Σ1) and (µ2,Σ2), respectively. Then

2 log
f1(y)

f2(y)
= log

|Σ1|
|Σ2|

+ (y − µ2)′Σ2(y − µ2)− (y − µ1)′Σ1(y − µ1). (A.12)

But if y ∼ Nd(µ1,Σ1),

Ef1
{

(y − µ2)′Σ−1
2 (y − µ2)

}
= (µ2 − µ1)′Σ−1

2 (µ2 − µ1) + trΣ1Σ
−1
2 (A.13)
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while Ef1{(y − µ1)′Σ−1
1 (y − µ1)} = d. Taking the f1 expectation of (A.12) gives the deviance

D ((µ1,Σ1), (µ2,Σ2)) = log |Σ2|/|Σ1|+ (µ2 − µ1)′Σ−1
2 (µ2 − µ1) + trΣ1Σ

−1
2 − d (A.14)

for sample size n = 1. The deviance difference for sample size n

∆ =
n

2

{
D
(

(µ,Σ)), (µ̂, Σ̂)
)
−D

(
(µ̂, Σ̂), (µ,Σ)

)}
(A.15)

is then seen to equal (4.7).
The density of (µ̂, Σ̂) from a Np(µ,Σ) sample of size n is proportional to{

|Σ|−
1
2 e−

n
2

(µ̂−µ)′Σ−1(µ̂−µ)
}{
|Σ̂|

n−d−2
2 e−

n
2

trΣ−1Σ̂
/
|Σ|

n−1
2

}
, (A.16)

yielding (4.6).

Table 3: BCa constants z0 and a for our three examples.

θ̂ z0 a

student correlation .498 −.069 0
student eigenratio .793 −.222 0

prostate data Fdr(3) .192 −.047 −.026

The BCa weights: The BCa system of second-order accurate bootstrap confidence intervals
was introduced in Efron (1987) (Sect. 2 giving an overview of the basic idea), and restated
in weighting form (2.17) in Efron and Tibshirani (1998). The bias correction constant z0 is
obtained directly from the MLE θ̂ and the bootstrap replication θ1, θ2, . . . , θB according to

z0 = Φ−1
(

#
{
θi ≤ θ̂

}/
B
}
. (A.17)

DiCiccio and Efron (1992) discusses “ABC” algorithms for computing a, the acceleration con-
stant. The program abc2 is available in the supplement to this article. It is very fast and
accurate, but requires individual programming for each exponential family. A more computer-
intensive R program, accel, which works directly from the bootstrap replications (βi, ti) (as in
(3.6)–(3.7)) is also available in the supplement.

Table 3 shows z0 and a for our three main examples. Notice the especially large bias
correction needed for the eigenratio.
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