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The issue of using informative priors for estimation of mixtures at
multiple time points is examined. Several different informative pri-
ors, and an independent prior are compared using samples of actual
and simulated aerosol particle size distribution (PSD) data. Measure-
ments of aerosol PSDs refer to the concentration of aerosol particles
in terms of their size which is typically multimodal in nature and
collected at frequent time intervals. The use of informative priors
is found to better identify component parameters at each time point
and more clearly establish patterns in the parameters over time. Some
caveats to this finding are discussed.

1. Introduction. Aerosol particles have a direct and indirect impact
on the earth’s climate. One of the most important physical properties of
aerosol particles is their size, and the concentration of particles in terms
of their size is referred to as the particle size distribution. An important
characteristic of these data is that because aerosol particles are governed by
formation and transformation processes they tend to form well distinguished
modal features. Investigating these features provides an understanding of the
dynamic behaviour of aerosol particles, their effect on the climate and their
association with adverse health effects. This type of data is increasingly be-
ing measured on a regular basis, with the potential to provide more detailed
information than for example measurements of particle mass concentrations
such as PM10 or PM2.5, traditionally used for regulatory purposes (World
Health Organisation, 2006).

The most common approach for representing particle size distributions is
by treating the size distribution at any time point as a set of individual typi-
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cally normal distributions or modes (Hussein et al., 2005; Whitby, McMurry
and Shanker, 1991). In this formulation the estimation of particle size dis-
tributions is then analagous to a finite parametric mixture model problem
at each time point.

While interest is in the representation of the particle size distribution
as a mixture at each time point, it is also of interest to describe how this
distribution evolves over time. To better understand aerosol dynamic pro-
cesses, a feature of the measurements of particle size distributions is that
they are often collected at regular points in time, and often at quite small
time intervals (e.g. every 10 minutes). In this setting, parameters of the mix-
ture model at each time point are likely to be correlated with neighbouring
time points and useful information about the parameters may be gained by
incorporating this information in estimation.

The standard setting in which mixture models have been applied has
largely been for independent random samples (Marin, Mengersen and Robert,
2005), but literature is developing for situations in which the data are spa-
tially and/or temporally structured (Fernandez and Green, 2002; Green
and Richardson, 2002; Alston et al., 2007; Dunson, 2006; Caron, Davy and
Doucet, 2007; Ji, 2009). The development has largely been driven by the
increasing availability of information in a wide variety of applications. An
example includes analysing images (CAT scan) of sheep over time in which
interest is in changes to the composition of fat, bone and tissue (Alston et al.,
2007). In Ji (2009) interest is in cell fluorescent imaging tracking modelled
using a dynamic spatial point process and a mixture representation for the
different intensity functions observed.

For the air pollution example considered in this paper, we are interested
in a mixture representation using a missing data approach, in which the
components themselves can be interpreted as potential substrata of the data
and for which further interest is in their behaviour over time. In particular,
we are interested in the evolution of the parameters of the components over
time, which in the case of the particle size distribution data is able to reveal
important information about the number and change in size of particles for
particular modes along with a measure of their variation. This information
can then be used to better understand the potential variables affecting the
dynamic behaviour of each mode (e.g. from local effects such as combustion
from petrol and diesel vehicle engines, construction activity, wind speed,
temperature, etc. and regional effects), which are likely to vary substantially
between modes, and provide for a more accurate risk assessment of potential
effects on adverse health outcomes (e.g. respiratory illnesses).

Popular recent approaches that allow for the correlated nature of the
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parameters in a mixture setting, both within and across epochs include De-
pendent Dirichlet Process mixture models (DDPM) and (spatial) dynamic
factor models (SDFM) (MacEachern, 1999; Dunson, 2006; Caron, Davy and
Doucet, 2007; Ji, 2009; Strickland et al., 2011). While these approaches are
appealing in the context of our case study, they do have some drawbacks.
Importantly, interpretation of component parameters is less straightforward
under the DDPM, and the SDFM typically requires relatively long time se-
ries (Strickland et al., 2011). An alternative that we consider here is the use
of informative priors at each epoch in a finite parametric mixture setting,
where the information required at each epoch is obtained from neighbour-
ing epochs. This has appeal both in terms of a general Bayesian learning
framework and in terms of interpretability of the mixture components and
weights, which is important in our application. Moreover, while some of the
methods developed for mixture models in the spatial setting (e.g. Fernandez
and Green (2002)) can potentially be adapted for use in a time series set-
ting, the influence or choice of informative priors in a time series framework
and the implications in different data environments has largely not been
examined.

In this paper we explore three different informative priors for estimation
of mixtures where the data are highly correlated, and all parameters in
the mixture are allowed to vary. Different simulated datasets, with features
similar to actual particle size distribution data, are used to highlight the
influence of using informative priors and identify situations where placing
informative priors may not be beneficial.

The paper is structured as follows. In Section 2, we briefly describe particle
size distributions, and provide an illustration with actual data. In Section 3,
we outline the finite parametric mixture model setup for a single time point
and then outline the three approaches to estimation of a mixture model at
multiple time points. Section 4 presents results on the performance of the
approaches on several simulated datasets and actual data, and we conclude
in Section 5 with some discussion and possibilities for further work.

2. Particle size distribution data. Figure 1 shows an example of
particle size distribution data for one measurement or time point. The his-
togram shows the number of particles N per cubic centimeter binned by
particle size, with the horizontal axis representing the natural logarithm of
the particle diameter in nm (log(Dp)). The histogram is normalized, so that
its total area equals 1.

Because aerosol particles are charged, their size can be determined from
their electrical mobility (McMurry, 2000) and a common instrument that uti-
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lizes this principle is the Differential Mobility Particle Sizer (DMPS) (Aalto
et al., 2001).

Fig 1. Histogram (normalised) of particle size data for a single time point (x-axis:
log(Dp(nm))). The black (overall) and red (components) lines show the inferred density
from estimation using RJMCMC.

In this study we present, as an example, the aerosol particle evolution be-
fore, during, and after a new particle formation event at a Boreal Forest in
Southern Finland (Figure 2). This dataset was selected as it provides a wide
ranging representation of modes for particle size distributions (Dal Masso,
Kulmala and Riipinen, 2005). Because aerosol particles are governed by for-
mation and transformation processes, they tend to form well distinguishable
modal features. For example, during background conditions in the Boreal
Forest the particle number size distribution of fine aerosols (diameter <
2500 nm (log, 7.82)) is bimodal: an Aitken mode (below 100 nm (log, 4.60))
and an accumulation mode (over 100 nm). During a new particle formation
event a new particle mode, which is commonly known as a nucleation mode,
is formed in the atmosphere with geometric mean diameter below 25 nm
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(log, 3.22). However, in the urban atmosphere aerosol particles are more
dynamic because of the different types and properties of sources of aerosol
particles and may show more than three modes. Typically the number con-
centrations of aerosol particles in the urban background can be as high as
5×104cm−3 and close to a major road they often exceed 105cm−3 (Kulmala
et al., 2004).

3. Methods. In this section, we briefly describe the mixture model,
outline a two stage approach to estimation of parameters over time, and
describe three types of priors for temporal evolution of the parameters.

3.1. Mixture representation. The density of data (y) at a given time
period may be represented by a finite parametric mixture model

(1) p(y|θ) =
k
∑

j=1

λjf(y|θj)

where k is the number of components in the mixture, λj represents the
probability of membership of the jth component (

∑k
j=1 λj = 1), and f(y|θj)

is the density function of component j which has parameters θj.
Let i = 1, . . . , N indicate the observed data index. As component mem-

bership of the data is unknown, a computationally convenient method of
estimation for mixture models is to use a hidden allocation process and
introduce a latent indicator variable zi, which is used along the lines of a
missing variable approach to allocate observations yi to each component
(Marin, Mengersen and Robert, 2005).

In this paper we adopt the common assumption of fitting normal distribu-
tions to aerosol particle size distribution data (Whitby and McMurry, 1997).
As PSD data are often measured with a definite lower and upper bound for
the size of the particles we introduce a slight modification and assume that
the data follow a truncated normal distribution. As is commonly assumed,
we take the data (y) to be the log of particle diameters (nm), and the pa-
rameters (θj) for each component are the mean (µj) and variance (σ2

j ). The
number of components k is also assumed to be unknown.

In the first stage of the temporal analysis, for each time period we imple-
mented a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm
(Richardson and Green, 1997). Although this algorithm is easily fit at a sin-
gle time point, the use of RJMCMC for mixture models with temporal data
requires significant pre-processing with respect to mixing coverage and con-
vergence, as well as post-processing to provide adequate summary statistics
and between time component mapping.
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Fig 2. An illustration of a new particle formation event at a Boreal Forest site located in
Southern Finland. (Top) The temporal variation of the particle size distribution and (Bot-
tom) selected particle size distributions showing the different stages of the newly formed
particle mode. Particle diameter in (Top) y-axis and (Bottom) x-axis is on the log scale
(i.e log(Dp(nm)))
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As an alternative, we considered a two-stage approach. In the first stage,
the number of components was estimated at each time point using RJM-
CMC. In the second stage, we fixed the number of components (k) to the
maximum observed at any time point and independently estimated the pa-
rameters of the mixture model (µ, σ and λ) for each time point using
a MCMC sampler algorithm. Details of the MCMC scheme used for the
different cases are given below. As we do not observe all of the compo-
nents in every time point, we allow component weights to be ‘effectively’
zero (inf(λt)=0.001) if required (for details on the asymptotic behaviour of
the posterior distribution using this approach see Rousseau and Mengersen
(2011)). Estimation of parameters of the components that are effectively
‘empty’ under this criterion will then essentially be governed by their re-
spective prior information. For the results to follow in Section 4 we thus
only plot the parameters of components which are not ‘empty’.

Priors for the first stage of the analysis were:

p(µj) = N (ξ, κ−1)
p(σ2

j ) = IG(δ, β)
p(β) = Gamma(g, h)
p(λ) = Dirichlet(α1, · · · , αk)
p(k) = Uniform(1, 10)

where ξ, κ, δ, α, η, g, h are hyperparameters.
For the second stage, priors were

p(λ) = Dirichlet(α1, ..., αk)

p(µj|σ
2
j ) = N

(

ξj,
σ2
j

nj

)

(2)

p(σ2
j ) = IG

(

vj
2
,
s2j
2

)

where again αj , ξj , nj, vj and sj are hyperparameters, detailed below. The
prior for µ and σ2 could alternatively be decoupled and expressed as in Stage
1 but we did not see a noticeable difference in the results (Section 4) using
either form. For the independent prior case, we use uninformative priors for
µ, σ and λ.

3.2. Choice of temporal prior. In the second stage, four priors were con-
sidered for linking parameter values (µ,σ,λ) over time. The first of these
was the independent prior, in which the correlated nature of the data was
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ignored completely and parameters were independently estimated at each
time point. The second, third and fourth were termed the ‘informed prior’,
‘penalised prior’ and ‘hierarchical informed prior’, as described below.

3.2.1. Informed Prior. In this approach we use the information provided
from the previous time period as prior information for the current period. For
the main results we focus on a simple case where posterior estimates from
the previous period are used as prior information for the current period.
We do this to illustrate the influence of a simple prior specification on the
posterior estimates of parameters (θ).

In the case of a mixture model using Gaussian distributions, we have
three parameters (µ, σ and λ) for which we could utilise available prior
information to aid in estimation. Preliminary investigation indicates that
all three parameters are likely to show strong evidence of autocorrelation,
so here we examine the effect of smoothing on each of these parameters.

For p(λ), we allow αj in Equation (2) to reflect prior information about
λj,t−1. Thus, we set αj = θjm̄j,t−1 where m̄j,t−1 is the mean of the number
of observations allocated to component j in the previous time period, and
θj is fixed at some value. An alternative is to impose a distribution on θ,
say θj ∼ U(0, 1) (or N (1, 0.5)) but we do not present the results for this
approach in this paper.

For the specification of prior information for µ and σ, we set ξjt = µj,t−1,
vj = nj/σ

2
j,t−1 and sj = nj (to ensure p(σ2

jt) is centred on σ2
j,t−1) and increase

the value of nj from the value set for the independent case to reflect the
degree of dependency for these parameters from the previous period.

3.2.2. Penalised Prior. In this approach we base the priors at time t on
the aggregated information at all other time periods. This can be achieved
by employing a re-parameterisation of the prior to reflect the degree of de-
pendency between parameters. Gustafson and Walker (2003) proposed a
prior for λ (in a different context) which can be used in our setting to
downweight large changes in probabilities in successive time periods. Let
λ = (λjt, j = 1, . . . , k, t = 1, . . . , T ), then p(λ) is defined as

(3) p(λ) ∝ Dirichlet(1, . . . , 1) exp
(

−
1
φ

T
∑

t=2

‖λt − λt−1‖
2

)

where smaller values of φ imply greater smoothing.
A potential advantage of using information about estimates both forwards

and backwards in time is the additional information this may provide to
guide parameter estimates in the current period. This may be most useful
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if large changes in the parameter estimates occur for single periods of time.
For the purposes of comparison with Section 4.1, we compare the results of
using a similar formulation for λ in the informed prior approach (without
smoothing on µ and σ).

Thus prior distributions p(µ) and p(σ) are set as for the independent
approach (Equation 2).

For this formulation, we sampled from the posterior distribution of λ using
a rejection sampling approach outlined in Appendix 1.

3.2.3. Hierarchical informed prior. In this approach an informative prior
is placed at two different levels. The aim of allowing for different levels is
to provide flexibility to the form in which prior information is given in the
model. This flexibility may be needed in cases where the correlation struc-
ture can vary greatly over time: instead of imposing a smoothing structure
directly on strongly varying parameters, we can provide a less restrictive
smoothing through the hyperparameters.

For the hierarchical approach, we will focus on parameters µ and λ as
they are the main parameters of interest for the PSD data (See Section 4.4
and the Discussion). The hierarchical approach for µ is specified as,

(4)
µjt ∼ N (φjt, ǫ

(d)
µ )

φjt ∼ N (φj,t−1, ǫ
(s)
φ )

where ǫ
(d)
µ and ǫ

(s)
φ are scalars, reflecting the variability of µjt and φjt respec-

tively. Under this formulation, µ is used to estimate the mixture distribution
at the level of the data, and φ represents the underlying correlation of µ over
time (assuming in this case an AR(1) process). In this setting, we can in-
terpret the ratio ǫ

(s)
φ /ǫ

(d)
µ as reflecting the amount of information we have

about the underlying behaviour (signal) of µ in comparison to estimates at
the level of the data (noise).

For the first time period (t = 1), we set φjt = µjt. For estimation of µ
and φ we use a Gibbs sampling scheme. For details see Appendix 2.

For the parameter λ, the Dirichlet prior used in Equation (2) for the in-
dependent model and the informed prior approach is a very common prior
for discrete probabilities. A natural extension to the Dirichlet prior with
a temporal component is to use its representation in terms of a Gamma
distribution. However, the inflexibility of the Gamma distribution makes it
difficult to construct a temporal structure to the Dirichlet prior. An alterna-
tive formulation of the Dirichlet in terms of the Beta distribution does not
appear to provide greater flexibility.
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Another alternative is to use a Logistic-Normal prior for λ where,

(5)
Wt ∼ Nk−1(Xt,Σd)

λjt =
exp(Wjt)

∑k−1
j=1 exp(Wjt)

and where Xt is the mean value (number of particles) at time period t.
Using this functional form, the parameterisation of λ in terms of a mul-

tivariate normal distribution allows for a suitably flexible form in which
to explore a hierarchical structure for this parameter. Such flexibility, in
comparison to the Dirichlet distribution, has been investigated in a hier-
archical approach for pooling of estimates across different sampling units
(Hoff, 2003).

In a hierarchical setting and similar to the model used for µ we can further
say that,

(6)
Xt ∼ Nk−1(Xt−1,Σs)

γjt =
exp(Xjt)

∑k−1
j=1 exp(Xjt)

where Σd and Σs reflect the variability of Wt and Xt respectively. Analogous
to the above discussion for µ, under this formulation the parameter λ is used
to estimate the mixture model at the level of the data, and γ represents the
underlying or smoothed behaviour of λ over time, which may be prone to
large fluctuations from the data.

For the simulation results and actual data to follow we specify the di-
agonal entries of Σd and Σs, and fix off-diagonal entries to be zero. For
comparability with the hierarchical approach for µ, and using similar nota-
tion for the smoothing parameters, we specify Σd = ǫ

(d)
λ Id and Σs = ǫ

(s)
γ Id.

The interpretation of ǫ(d) and ǫ(s) is then the same as before but this time
in terms of λ.

For estimation of λ and γ we use a Gibbs sampling scheme with a Metropo-
lis Hastings step. For details see Appendix 2. For identifiability both Wt and
Xt are k−1 dimensional, and λk = 1−

∑k−1
j=1 λj (with the same identification

used for γ).
In practice it may be difficult to specify a priori the parameter values

for ǫ(d) and ǫ(s), as little information about the variability of the parameters
for the mixture components may be known. Estimation of these parameters
also requires a choice to be made about the degree of smoothing required.
For the purposes of this paper we focus on specifying the parameter values
for ǫ(d) and ǫ(s), and explore briefly the effect on the results of varying
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these values. In the discussion we talk about this issue further. For now,
one approach to specifying ǫ(d) may be to use the results from a RJMCMC
approach used in the first stage, estimate or explore the variability of µ or
λ over time, and then use this information to set the parameter values for
ǫ(d). The parameter value for ǫ(s) could be set as a smaller multiple of ǫ(d),
and be varied to assess the influence of the results. Using the information
from the results of the independent approach for a fixed upper bound k
could also be used. Although there is extra computational time involved in
running either approach in the first stage, such a strategy may prove useful
in order to assess the influence of different prior information on the results.

3.3. Labelling issues. Where component parameters are themselves the
subject of the analysis, an important and commonly encountered issue in
Bayesian mixture modelling relates to the labelling of these parameters dur-
ing the MCMC run. As the likelihood of a mixture is by definition multi-
modal, using exchangeable or non-informative priors can (and should) re-
sult in parameters moving freely over the parameter and component la-
belling space during sampling (In theory, for a k component mixture, k!
permutations of the labelling of the parameters are possible). Estimation of
functionals of these parameters (conditional on labelling) at the end of sam-
pling is thus then problematic. Several empirical approaches to deal with
this issue (commonly called ‘label switching’) have been proposed in the lit-
erature (Stephens, 1997, 2000; Celeux, Hurn and Robert, 2000; Frühwirth-
Schnatter, 2001, 2006; Jasra, Holmes and Stephens, 2005; Marin, Mengersen
and Robert, 2005; Sperrin, Jaki and Wit, 2010; Yao, 2012), generally by re-
labelling parameters in proximity to one of the k! modal regions during
the run (e.g. Frühwirth-Schnatter (2001)) or at the end of sampling (e.g.
Stephens (1997)).

Under exchangeable or non-informative priors the main reason for label
switching relates to a lack of identifiability of the mixture model (partic-
ularly with respect to enforcing a unique labelling). Given two component
parameter sets θj and θk a finite mixture model is weakly identifiable if at
least one element of θj and θk differs. For practical purposes then, the ele-
ment that differs can be used to enforce a unique labelling. For exchangeable
priors, in the sense that priors for θj and θk are the same, it is clear that
there is a lack of identifiability.

In the case of using informative priors on θj and θk, the issue of model
identifiability is less clear. Although the use of different informative priors
can help to separate θj and θk, in practice it will depend on the strength of
the informative prior to separate at least one element of each parameter set.
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To our knowledge there has been very little theoretical investigation of this
issue. In practice, one can assess whether parameters are well separated by
analysing the path of parameters over the sampling run and/or from plots
of marginal densities. However, only part of the picture may be revealed
by doing this. Firstly, a relatively long sampling run is needed to allow the
parameter to fully explore the space (perhaps many thousands of iterations).
In the case of Gibbs sampling, the sampler may also become trapped in one of
the modal regions (Celeux, Hurn and Robert, 2000). Apart from the case of
using a fully exchangeable prior, this second case is more difficult to identify
in practice as it can be unclear whether the Gibbs sampler is truly trapped
or has found a uniquely labelled parameter space. A pragmatic solution
could be to start the sampler from different values, although good starting
locations can be difficult to determine in high-dimensional space. Alternative
(and often more involved) solutions could be to: re-parameterise and change
the conditioning (Marin, Mengersen and Robert, 2005); use tempering to
facilitate more exploration (Celeux, Hurn and Robert, 2000); and/or modify
the Gibbs sampling proposal and acceptance (Celeux, Hurn and Robert,
2000; Marin, Mengersen and Robert, 2005).

For both the independent and informed prior approaches outlined previ-
ously, it is possible to relabel the output using existing empirical approaches.
In these cases, the posterior is updated sequentially across time and rela-
belling can take place during or at the end of each time period. In the results
to be presented, we used the maximum a posteriori (MAP) estimate to se-
lect one of the k! modal regions and chose either a distance based measure
on the space of parameters (Celeux, Hurn and Robert, 2000), or on the space
of allocation probabilities (Stephens, 1997; Marin, Mengersen and Robert,
2005) to relabel parameters in proximity to this region.

In the case of the penalised and hierarchical informed priors, a joint pos-
terior that includes all components and all parameters over time is used and
sampling updates occur globally over time. Relabelling of sampling output
thus necessitates a permutation of labels for all time points together. Such a
joint approach is similar in spirit to the Viterbi algorithm approach used in
state space models (Godsill, Doucet and West, 2001), but the joint posterior
in our case is different and would require further work outside the scope of
this paper.

Using informative priors that are incompatible with the data can also
force too many distinct components and lead to overfitting, which can in
some cases lead to label switching. The potential for label switching could
arise if two components with similar parameters are fitted where one com-
ponent would suffice under the true model. As before, the similarity of the
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parameters could result in a lack of identifiability of the model. In using
an informative prior there is also a model choice issue in terms of selecting
the best model for the data, where ‘best’ is defined for example as the most
parsimonious model in terms of the smallest value of k. In practice, discrim-
ination between the choice and use of informative priors can be made by
fitting several mixture models to the data. Point-process representations of
the estimated parameters from using a non-informative prior (such as Fig-
ure 8) can also offer a good visual guide as to the potential range and scope
of the parameter space.

3.4. Accounting for binning and truncated data. Aerosol particle mea-
surements are commonly recorded in the form of a number of distinct par-
ticle size ranges, or channels, the size and number of the channels being
governed by the type and setup of the measurement instrument. For exam-
ple, in the sampled data from Hyytiälä (See Figure 1 and Section 4.4), we
observed 32 distinct size partitions (bins) covering the range from 3nm to
650nm.

Such coarsening of the data created by binning has an impact on density
estimates and in a mixture context the number of components required to
adequately model the data (Alston and Mengersen, 2010). To address this,
we add another step in the Gibbs sampler in which we simulate a new latent
variable (say x) which is drawn from the believed underlying density of
the data (y), in this case the fitted mixture model at current estimates of
the parameters, at each iteration of the Gibbs sampler. As the sampling
takes place within each bin, the simulation of the latent variable essentially
involves sampling from a truncated Normal distribution for which there are
a number of proposed approaches. For computational efficiency we used the
slice-sampling approach of Robert and Casella (2004). For details of the
approach and of the Gibbs sampler see Alston and Mengersen (2010). As
the number of observations within each bin (and hence the latent sample
size) is quite large an extra step can be added after the latent variables are
simulated in which the samples within each bin are divided into a number of
sub-bins and computations in the Gibbs sampler proceed based on the new
binned data. This can greatly speed up computations compared to using
the full latent sample whilst reducing the coarsening of the data created by
the original bins. In general, we found comparable results to the full latent
sample by using 3 additional sub-bins for each original bin (in total 97 bins
are used compared to the original 32 bins).

4. Results. In this section we present and assess the results using sim-
ulated data and then present the results of applying the approaches to par-
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ticle size distribution data from Hyytiälä, Finland. We use the simulated
data to test the impact of the different prior representations and the degree
of smoothing. We first use an informative and penalised prior only on the
weights (λ), and then assess the influence of using an informative prior on
µ and σ in order to assess the influence of using prior information for each
parameter separately.

For the independent, informed and penalised prior approaches the results
are based on 50,000 iterations with a burnin period of 20,000 (i.e the first
20,000 samples are discarded). Results using RJMCMC (used in the case
study) are based on 200,000 iterations with a burnin period of 100,000.
Convergence was assessed by visual inspection and using the Gelman-Rubin
statistic (Brooks and Gelman, 1998).

4.1. Simulated Data.

4.1.1. Data Setup. We simulated datasets indicative of the type of be-
haviour of aerosol particle size distribution data observed at Hyytiälä, a
Boreal forest site in Southern Finland (SMEAR II) (Vesala et al., 1998). A
particular feature of these particle size distribution data is both a growth in
the mean and weight for some of the modes (components) and a decline in
weight for others. Changes can also occur to the variance of the modes and
at times they can follow a similar pattern to the weights over time.

We simulated data from two different cases. In the first case (D1), we
simulated data which are highly correlated across time, a feature of parti-
cle size distribution data observed in practice for most time periods where
measurements are commonly taken at small time intervals. This dataset was
also simulated with parameter estimates where at times the mixture is not
well identified (component means and weights are not well separated). Of
interest in this setting is the effect of using either the informed prior or
penalised prior approach compared to the independent approach.

In practice it is quite common to observe sudden large changes in the
number of particles measured which may persist for a number of time peri-
ods. This is more often observed when there are relatively few particles for a
particular size group, and more so for the smaller sized particles (an example
of this type of data is examined in Section 4.4). Thus, for the second data
set (D2) we simulated data for the first component where the weight for the
smaller sized particles is quite volatile. For this dataset the mixture is well
identified. Further details and results are available in the Supplementary
Materials.

For both cases (D1 and D2), we simulated data using three components
on 32 distinct size partitions (bins) equally spaced (on the log scale) covering
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the range from 3nm to 20nm in particle diameter (on the log scale 1 to 3)).
The sample size for each time period is 1000 and the total number of time
periods was 100. Further details of the sampling process for each case are
provided in Section 4.2 and the Supplementary Materials (second dataset
(D2)).

For the results to follow, except as specified otherwise, for the indepen-
dent, informed prior and penalised prior approaches, we set the hyperpa-
rameters to be: ξ = (1.5, 3.5, 5.0); s2t,j = 10; vt,j = 10/0.62; and nj = 2
which were chosen to be weakly uninformative considering the range and
size of the data. For the independent and informed prior approaches, the
original Gibbs sampling output has been relabelled using a distance based
measure on the space of parameters (Celeux, Hurn and Robert, 2000) and
also (as a check) on the allocation space (Stephens, 1997; Marin, Mengersen
and Robert, 2005).

4.2. Simulated dataset (D1): Highly correlated data.

4.2.1. Smoothing on λ. As shown in Figure 3 (black line), for the first
data set (D1) we simulated data for the first component with a mean value
increasing from 1.5 to 3.0, and weight increasing from 0.1 to 0.6 and then
decreasing to 0.3, over time. Often a consequence of the growth in the first
component is a decline in size and weight for the larger sized particles and
this is reflected in the weight for the second component following an oppo-
site pattern to the first component. For the third component, the weight
increases from 0.1 to 0.3 over time. The parameters µ and λ are simulated
with some noise around the parameter values, and the sample size is 1000.

Figure 3 also shows the results of using the independent approach. We see
that at times the parameter estimates for the independent approach deviate
from the actual data.

Figures 4 and 5 show the results for the informed prior and penalised
prior compared to the actual data, respectively. In Figure 4, the results
show the effect of varying the degree of smoothing on λ for the informed
prior using θ=(0.1,0.8,1.3). For the results of the penalised prior, we vary
the degree of smoothing on λ using φ=(0.04,0.08,0.12).

In Figure 4, we can see that the parameter estimates for λ for all three
values of θ appear to closely follow the actual data, with the closest esti-
mates to the actual data being for θ = 0.8 and 1.3. As we are only using an
informed prior on the weights the parameter estimates for µ and σ appear to
be quite variable over time compared to the actual data. However, the vari-
ability appears to be slightly less for these variables than for the independent
approach (Figure 3) and closer to the actual data over time. Of interest is
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Fig 3. Results for simulated dataset D1 (Highly correlated data) with growth and influx of
new particles for Component 1. Plot of estimated posterior mean for parameters (µ (top),
σ2 (middle) and λ (bottom)) over time (x-axis) for Independent approach: Simulated data
(Black); Independent (Red), and 95% credible interval (dotted line). The columns represent
the components (Components 1 to 3).
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the closeness of the parameter estimates of µ and σ for components 1 and
2 which more clearly follow the true growth occurring in component 1 and
the stability over time for component 2 compared to that observed for the
independent approach.

In Figure 5, the parameter estimates for the penalised prior approach
appear to deviate slightly from the actual data for components 1 and 2.
For the third component, the parameter estimates for the penalised prior
approach follows the actual data with some noise. Overall, the results from
the penalised prior approach are similar to the independent approach but
with less variability over time.

4.2.2. Smoothing on µ and σ. We turn now to an assessment of the
impact of using an informative prior for µ or σ over time. We present results
for the highly correlated data set, since this is the most sensitive of the
simulated data as discussed above. Here we set nj = 25, ξjt = µj,t−1, vj =
200/σ2

j,t−1 and sj = 200.
In Figure 6, the parameter estimates for the informative prior for µ appear

to more closely follow the actual data than using an informative prior for σ.
Although the parameter estimates for both approaches appear to be further
away from the actual data than using an informative prior for λ, they do
appear to be closer than under the independent approach.

4.2.3. Smoothing on µ and λ. Figure 7 shows the results of using an
informative prior on both µ and λ. In this example, the results are similar
to using an informative prior only on λ. Thus, depending on the objectives
of the analysis, using an informative prior on both parameters may not be
needed.

4.3. Simulated dataset (D2): Noisy data. For the second simulated dataset,
where the weight for the smaller sized particles is quite volatile, the results of
smoothing on µ, σ and λ for the informed prior and penalised prior suggests
that large adjustments to one parameter (e.g. from volatility in some time
periods) are not supported unless compensatory measures can be taken by
the other parameters. In contrast to these results, we don’t see any large com-
pensatory adjustments being made to parameters by using a hierarchically
based informative prior for γ. Details are available in the Supplementary
Materials (Wraith et al., 2013).

4.4. Case study. The data set studied here was taken from a measure-
ment site at Hyytiälä, Finland; a plot of the measurements for the day
selected is shown in Figure 2. This particular day was selected as it shows a
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Fig 6. Results for simulated dataset D1 (Highly correlated data) with growth and influx of
new particles for Component 1. Plot of estimated posterior mean for parameters (µ (top),
σ2 (middle) and λ (bottom)) over time (x-axis) for Informed Prior approach: Simulated
data (Black); Smoothing on µ (Orange); Smoothing on σ (Dark Green)); and 95% credible
interval (dotted line). The columns represent the components (Components 1 to 3).



USING INFORMATIVE PRIORS IN THE ESTIMATION OF MIXTURES ... 21

Component 1

1.
5

2.
0

2.
5

3.
0

µ

0.
55

0.
60

0.
65

0.
70

σ2

0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

0.
5

λ

Component 2

3.
3

3.
4

3.
5

3.
6

3.
7

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0 20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Component 3

4.
7

4.
8

4.
9

5.
0

5.
1

5.
2

5.
3

0.
50

0.
55

0.
60

0 20 40 60 80 100

0.
10

0.
15

0.
20

0.
25
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new particle formation event occurring, whereby a new mode of aerosol par-
ticles appears with a significant influx of particles (as high as 106 per cm3)
with a geometric mean diameter (< 10 nm), growing later into the Aitken
(25-90nm) or accumulation modes (100+nm). In terms of a temporal mix-
ture model setting, we will be able to assess the performance of the four
prior specifications outlined previously as new components are introduced
and both a growth in the mean and weight for those components are ob-
served.

The data from Hyytiälä consists of measurements which were taken every
10 minutes (144 time periods) and for each time period in the form of 32
distinct size partitions (bins) equally scaled (on the log scale) covering the
range of 3nm to 650nm (on the log scale 1 to 6.5).

As outlined in Section 3, the first stage of our approach is to apply RJM-
CMC to each time period. These results are then used to guide the choice
of the number of components and initial parameter estimates for the second
stage analysis, in which temporally correlated priors are used to model the
evolution of the mixture parameters over time. Figure 8 shows the results of
the first stage of the algorithm, with a plot of the posterior mean estimates
for µjt at each time point t (bottom panel), with the size of the circles in-
dicating the corresponding weight λjt. The average number of components
estimated with the highest probability over the day was four; the minimum
number of components was one, and the maximum number of components
was five (See top panel of Figure 8).

For the second stage, we fixed the number of components to be five with
the initial mean values equally spaced across the range of possible diameter
values (ξ = (1.1, 2.0, 3.0, 4.0, 5.0)) and κ=10. Figure 9 shows the results of
estimation using the independent approach (original output has been rela-
belled using a distance based measure on the space of parameters (Celeux,
Hurn and Robert, 2000) (similar results were obtained by relabelling on the
allocation space (Stephens, 1997; Marin, Mengersen and Robert, 2005))).

Due to the large number of particles (per cm3) observed over the day (See
Figure 2) the results of estimation using the informed prior approach for µ
and/or λ are very similar to the results of the independent approach, so are
not shown here. As we are interested in the effect of using an informative
prior in this context we re-scale the number of particles by a factor of 10
and assess the results. The median number of particles over the course of
the day is then 6,893, reaching a maximum of 17,740. Using this rescaling
of the data, the results of the independent approach are the same as shown
in Figure 9.

Figure 10 shows the results of estimation using the informed prior ap-
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Fig 8. Top: Plot of estimates of k (posterior median) from RJMCMC algorithm over
time (every 10 minutes) (Hyytiälä). Bottom: Plot of posterior mean estimates for
µj (log(Dp(nm))) from RJMCMC algorithm over the same time period. Stage 1 of
analysis for temporal evolution of parameters. The size of the circles is proportional
to the weight (λjt) corresponding to µjt
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nents to which parameter estimates belong (The parameter estimates for the first
component are Black, parameters for the second component are Red, for the third
component they are Green, etc.). Note: only components where λ > 0.01 are plotted.
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proach for µ and λ. For these results, θ = 0.2, nj = 15, and ξjt = µj,t−1

which provides for a moderately informative prior across time. Similar re-
sults were obtained using the hierarchical model with similar strength of
prior information. Of interest to note, is that in the original output we did
not see any evidence of label switching within the gibbs sampling runs. Al-
though there is some evidence of instability between 12:00 and 13:00 for the
weight (λj) of two of the components (newly formed and background par-
ticles) this appears to be due to instability in the data (see Figure 8) with
the means of these components remaining reasonably well separated during
this period.

Compared to the results from the independent approach (Figure 9), the
results from the informed prior approach for µ and λ suggest a clear pattern
for both over the course of the day. In particular, and of interest to aerosol
physicists, is the clear growth pattern shown for the mean of the first compo-
nent representing the smaller sized particles. The results indicate that these
particles grow from approximately 1.40 (4nm) to 3.0 (20nm) in diameter on
the natural log scale (or in nanometers).

The path of the parameters for the first component (black) is less clear
using the independent approach, principally as a result of the newly formed
smaller particles merging into the component representing the background
particles (green). There is also some evidence of instability in the labelling
across time which is natural given the absence of temporal information in
the prior.

We note that different representations of this data are possible depend-
ing on prior assumptions. If we relax the assumed moderate correlation of
the new and background particles, then there is less separation between
the component associated to the newly formed particles and to that of the
background particles similar to the results we see for the independent ap-
proach. Ideally more information is needed to model these data; this could
take the form of greater assumptions about the underlying stochastic pro-
cess and the possible inclusion of external factors (e.g. meteorological data)
impacting/influencing the observed process. We discuss this issue more in
the following section.

5. Discussion. In this paper, we explored the problem of estimating
Bayesian mixture models at multiple time points. Under different situations,
approaches that employ information about neighbouring time points com-
pared favourably to results based on an independent approach. By including
additional temporal information about parameters for correlated time peri-
ods we may be able to better identify individual components at each time
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Fig 10. Plot of estimated parameters over time for actual data. Informed prior
approach for µ and λ. Posterior mean estimates for µ (top, log(Dp(nm))), λ (mid-
dle) and particle count (per cm3)(bottom) and 95% credible interval (dotted line).
Stage 2 of the analysis for the evolution of parameters. Measurements taken every
10 minutes. Colours indicate the components to which parameter estimates belong
(The parameter estimates for the first component are Black, parameters for the sec-
ond component are Red, for the third component they are Green, etc.). Note: only
components where λ > 0.01 are plotted.
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point. As an aid for inference, we may also be able to obtain smoother
parameter estimates over time and from this be able to clearly establish
patterns or identify anomalies from the data.

The results highlight a number of observations about mixture representa-
tions at multiple time points. First, analysis of the evolution of parameters
of a mixture over multiple time points highlights the large degree of depen-
dency that exists between component parameters. Changes to a parameter
in one component may flow on to the parameter in a nearby component.
Depending on the context of the study, we can anticipate this dependency
to be more readily apparent for the weight parameters but we found simi-
lar dependencies to exist for other parameters. The second is the need to be
mindful that the same parameter in one component may have a different cor-
relation structure over time to the same parameter in another component.
In the context of particle size distribution data, we often observed greater
volatility in estimates for the smaller particles compared to the larger sized
particles and so at times the correlation structure of the parameters between
these respective components appeared to be quite different.

A possible effect of using informative priors in this context is to impose a
prior not supported by the data or to impose a temporal correlation struc-
ture where such a structure does not exist, and thereby cause unnecessary
adjustments to other parameters. We observed this most clearly in the re-
sults from the simulated data where at times the data was quite noisy. For
this dataset, using an informative prior for a parameter which supported
large adjustments away from the actual data, resulted in large compen-
satory adjustments being made by other parameters not only within the
same component, but also to parameters in neighbouring components. The
easy solution may be to use an appropriate correlation structure for compo-
nents but of course this may not always be known a priori.

A further result of the dependency that can exist between parameters
of components and within component parameters is that the inclusion of
correlation information to aid in the identifiability of the mixture, may not
be required for all parameters or alternatively all components. In the con-
text of a mixture with a small number of components, we may only need
to provide more information about one parameter for an influential compo-
nent in order to separate out the influence of competing components. This
result will also be useful if the correlation structure for one parameter or
parameters for one component are more readily known. In the context of
a mixture of Gaussians, we generally found that an informative prior was
only needed on µ or λ or possibly both. This result could well be context
specific and influenced by any reliance on the means for defining (in terms
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of size) and ordering of components. The choice of which parameter to use
more information may also be guided by whether it is a parameter of inter-
est for inference as demonstrated in analysis of the case study where most
interest was in the behaviour of both µ and λ over time. In this case, and
in general, one must be careful in the analysis of selected parameters as it
can largely be a conditional analysis in view of the behaviour of other pos-
sible cross-correlated parameters within the same component and between
components.

In the hierarchical informed prior approach the influence of the informa-
tive prior at the two levels was specified by parameters ǫ(d) (low level) and
ǫ(s) (high level), and the values assigned to these parameters is critical in
carrying information about the correlation structure of the parameter of in-
terest. In this paper, we decided to choose parameter values based on prior
belief in the correlation structure of the data; alternatively these parame-
ters could be estimated. To this effect, a number of approaches are available
for estimation (West and Harrison, 1997; Fahrmeir, Kneib and Lang, 2004).
However, in order to estimate ǫ(d) and ǫ(s), we still face a choice as to the
degree of penalisation or smoothing of the parameter in light of the appar-
ent variability in the data. This is a common issue in temporal and spatial
modelling in general.

While many of the above difficulties may seem to be avoided if smoothing
approaches are applied retrospectively on parameter estimates from an in-
dependent mixture model, this type of analysis may largely ignore the true
mapping of components or path of parameters over time. From the results of
the simulated data, the large degree of dependency that we observe between
the parameters of a mixture over time suggests that including temporal in-
formation to better identify one of the parameters at a single time point
can flow on to affect other parameters. This could change inference about
both the mixture representation at a point in time, and also the behaviour
of mixture parameters over time.

In general, one of the potential difficulties in using an informative prior
approach to smooth parameter estimates over time is the variable degree
of influence the prior may have in the posterior. If the primary objective is
to obtain smoothed parameter estimates over time, larger sample sizes and
noisiness of the data at times may warrant increasingly restrictive priors. In
such cases where the objective might be to downplay the influence of the
data, a number of alternative approaches to increase the influence of prior
information can be used (Ibrahim, Chen and Sinha, 2003). In all cases, it is
valuable to undertake a sensitivity analysis in order to assess the effect of the
prior. Such an analysis should include the independent prior as a baseline
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comparison.
A further limitation of the approach outlined is that it is computation-

ally expensive. Most of this expense is experienced in the first stage of the
analysis (which can be skipped in the presence of good prior knowledge of
the parameter space). For estimation of PSD data over one day using 144
time points, the running time of the RJ approach with 200,000 iterations
was approximately 3 hours using an Intel Centrino 2 processor 2.80GHz. In
comparison, the second stage approach using 50,000 iterations took approxi-
mately one hour. Such computational expense quickly becomes burdensome
if analyses is required for several days or indeed several weeks. Of course, the
use of the first stage for subsequent days may not be required, considerably
reducing the computational time involved.

Although we have focussed on developing a hierarchical approach for pa-
rameters µ and λ we could equally apply the same approach to consider
estimation of σ. Such an approach may be to consider a half-t distribution
which has previously been used in similar hierarchical settings (Gelman,
2006).

The hierarchical approach considered here can be readily generalised to
include covariates. Moreover, through the flexibility of assuming a logistic
normal distribution on the weights we can better explore and estimate tran-
sitory movements between components.

In some situations it may be of interest to combine components and allow
components to share a common grouping. This could be of interest where
some components are only needed to account for the skewness of a larger
component or to allow an analysis based on a mixture representation with
fewer components of most interest. Although this grouping of components
could be undertaken retrospectively, it may also be interesting to see the
effects such a grouping has upon estimation of the parameters and their
evolution over time.

For estimation of aerosol particle size distributions, the dynamics of the
aerosol process and the complexity of the influences on particle concentration
and size, demand the use of approaches which utilise as much information
from the data as possible. To this end, the inclusion of temporal information
may be helpful.

6. Acknowledgements. The authors gratefully acknowledge funding
from the Australian Research Council (ARC) as part of two ARC Discov-
ery Projects and the ARC Centre of Excellence in Complex Dynamic Sys-
tems and Control. Tareq Hussein would like to acknowledge support by
the Academy of Finland through the Finnish Center of Excellence (project



30 D. WRAITH ET AL.

number 1118615). The authors are also grateful for helpful discussions with
Christian P. Robert and Tony Pettitt in early stages of this work, and to
comments from the Editor, Associate Editor and referees.

Appendix 1: Penalised Prior. In this section we outline the rejection
sampling algorithm for λ proposed by Gustafson and Walker (2003) for the
penalised prior approach.

Prior

(7) p(λ) ∝ Dirichlet(1, . . . , 1) exp
(

−
1
φ

T
∑

t=2

‖λt − λt−1‖
2

)

Posterior
(8)

p(λ|φ,m) ∝
k
∏

j=1

{

T
∏

t=1

Dirichlet(mjt + 1)I(λjt)
}

exp
(

−
1
φ

T
∑

t=2

‖λt − λt−1‖
2

)

Gustafson and Walker (2003) suggest sampling λjt/s from a Beta(mjt +
1,mkt + 1) distribution and accepting when U ≤ g1(λjt)/g2(λjt) (U ∼
U(0, 1)), where

g1(λjt) = λ
mjt

jt (s− λjt)mktI(λt)

× exp[−φ−2{(λjt − λj,t−1)2 + (λjt − (s− λj,t−1))2

+ (λjt − λj,t+1)2 + (λjt − (s− λk,t+1))2])(9)

and

g2(λjt) = λ
mjt

jt (s− λjt)mktI(λt)

× exp[−φ−2{(λ∗ − λj,t−1)2 + (λ∗ − (s− λj,t−1))2

+ (λ∗ − λj,t+1)2 + (λ∗ − (s − λk,t+1))2]),(10)

where

(11) λ∗ = max
{

0,min
{1

4
(λj,t−1 + s− λk,t−1 + λj,t+1 + s− λk,t+1), s

}}

,

s = λjt +λkt and g1(λjt) ≤ g2(λjt). Here I(λt) is an indicator function equal
to 1 when λt ∈ [0, 1]2 and 0 otherwise.

Appendix 2: Details of MH Gibbs sampler for Hierarchical model.
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Hierarchical model for µ. Update z, β, λ, σ2 as in the independent ap-
proach.
Update φ and µ by sampling from the conditionals,

φjt|. ∼ N

(

ǫ(d)φj,t−1 + ǫ(s)µjt

ǫ(d) + ǫ(s)
,

1
(ǫ(d))−1 + (ǫ(s))−1

)

,

µjt|. ∼ N

(

φjt + mj ȳjǫ
(d)σ−2

jt

ǫ(d)mjσ
−2
jt + 1

,
ǫ(d)

(ǫ(d)mjσ
−2
jt + 1)

)

Hierarchical model for λ. Update z, β, µ, σ2 as in the independent ap-
proach. Update γt by sampling from the conditional,

Xt ∼Nk−1

(

Σ−1
d Wt + Σ−1

s Xt−1

Σ−1
d + Σ−1

s

,
1

Σ−1
d + Σ−1

s

)

,

γjt =
exp(Xjt)

∑k−1
j=1 exp(Xjt)

,

where Xkt = 0.

Update λt using a Metropolis Hastings step.

Sample from Wt ∼ Nk−1

(

Xt, σ
2
pI
)

where λjt = exp(Wjt)/
∑k−1

j=1 exp(Wjt)
and σ2

p is the variance of the proposal.
Let Wk1 = 0 and for t = 2, Wj2 = log (mj1/mk1), where mj1 is the mean

number of observations allocated to component j in the previous time period
(under the independent approach).

SUPPLEMENTARY MATERIAL

Simulated dataset (D2): Noisy data
(doi: ??; .pdf). Details and results for the second simulated dataset (D2)
where the data is quite noisy
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