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Abstract

We study an economic decision problem where the actors are two
firms and the Antitrust Authority whose main task is to monitor and
prevent firms potential anti-competitive behaviour and its effect on
the market. The Antitrust Authority’s decision process is modelled
using a Bayesian network where both the relational structure and the
parameters of the model are estimated from a dataset provided by
the Authority itself. A number of economic variables that influence
this decision process are also included in the model. We analyse how
monitoring by the Antitrust Authority affects firms strategies about
cooperation. Firms strategies are modelled as a repeated prisoner’s
dilemma using object-oriented Bayesian networks. We show how the
integration of firms decision process and external market information
can be modelled in this way. Various decision scenarios and strategies
are illustrated.
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1 Introduction

Firms in many cases have incentives to cooperate (collude) to increase their

profits. The possibility for firms to collude does not depend solely on their de-

cision but also on external circumstances. First of all, firms need to comply

with antitrust laws. If the Antitrust Authority (AA) finds negative anti-

competitive effects, resulting from firms cooperative behaviour, it may inter-

vene to prevent the firms from merging.

The AA’s decision process is modelled here by using a Bayesian network

(BN) or Probabilistic Expert System (PES) (Cowell et al. 1999) estimated

from real data. A BN is a graphical model that encodes the probabilistic

relationships among the variables of interest allowing for the application of

fast general-purpose algorithms to compute inferences.

Often governments may find negative anti-competitive effects resulting

from a merger. As a consequence, the decision by firms to cooperate is

actually affected by the decision process of the AA. The AA may start an in-

vestigation either because two firms make a formal request to merge (explicit

collusion) or because the authority suspects that two firms are implicitly col-

luding. In what follows the term merger will be used for both explicit and

implicit collusion.

We also study how the AA’s monitoring affects firms’ strategies about

cooperation. For this purpose, firms set of potential strategies are mod-

elled in turn as a repeated prisoner’s dilemma using object-oriented Bayesian

networks (OOBNs) (Koller and Pfeffer 1997; Bangsø and Wuillemin 2000).

OOBNs are a recent extension of BNs which allow for a hierarchical definition

and construction of a BN. They provide a compact and intuitive represen-

tation of the repeated prisoner’s dilemma (PD). Furthermore, thanks to the

modularity and flexibility of this approach, various sources of uncertainty

within the game and generalizations of the repeated prisoner’s dilemma can

be analysed. We use the PD as a naive representation of firms economic

interaction, the focus of this paper being that of analysing the evolution of

firms behaviour according to various external scenarios. For theoretical as-

pects on suboptimal strategies in Bayesian games see, for example, Young

and Smith (1992).
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We present two different networks: the first models the AA’s decision pro-

cess, and the second represents the behaviour of the two firms in a duopoly.

OOBNs give the graphical framework to integrate these two networks and

to represent their time evolution. Both the graphical structure and the as-

sociated probability tables of AA’s decision process network are estimated

from a real dataset. As a result, we obtain the estimated probability that

AA intervenes to prevent anticompetitive behaviour of a merger. For various

economic sectors (markets of interest) we study the sensitivity of coopera-

tive outcomes with respect to factors such as geographical size, market share,

Herfindahl-Hirschman Index (HHI) variation, vertical effects, the presence of

entry barriers and buyer power. The global OOBN model which integrates

the AA’s decision process with a duopoly model is used to obtain the opti-

mal decision in light of a series of interesting scenarios that could occur in

practice.

The outline of the paper is as follows. In Section 2 we briefly outline the

merger control problem. We illustrate the BN for the AA’s decision process

estimated from the data and show its use in various scenarios in Section 3.

A brief introduction to the prisoner’s dilemma is illustrated in Section 4.1

followed by the Bayesian network representation of the PD in Section 4.2.

After introducing the repeated prisoner’s dilemma in Section 4.3, in Section

4.4 we show how this can be represented as an OOBN. In Section 5 we show

how we integrate the PD network with the AA network obtaining a general

purpose global representation of the problem, and in Section 5.1 we apply

this to several decision scenarios. Finally, in Section 6 we draw conclusions

and discuss further developments.

2 The merger control problem

The AA studies the impact of a merger on the market and its consequences

on social welfare. Hence, the AA’s decision affects the dynamics in firms eco-

nomic interaction as well as the corresponding equilibrium outcome. When

choosing between cooperating or defecting, firms take the AA’s decision pro-

cess into account, both when they formally request to merge and in the case

of implicit collusion.
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In our setup, the actors are: the Antitrust Authority and the two merging

firms, termed Firm1 and Firm2 (the duopolists). Figure 1a shows a pictorial

representation of the effects of AA’s control activity on Firms behaviour. The

two rounded rectangles, AA and Duopoly, represent the AA’s decision process

and the Firms merging strategy, respectively. The AA’s decision process is

modelled by a Bayesian network learned from real data (see Sections 3.2 and

3.3). The duopoly is modelled as a PD using a Bayesian network for decision

making (see Section 4). The two networks are then integrated giving rise to

a global model, where both the AA’s decision process and the duopoly are

represented by OOBNs. Figure 1a represents a single stage (vertical slice)

of the overall model. The merger problem, as well as AA’s activity, evolve

in time. Figure 1b gives a graphical representation of the decision process

dynamics. Details on these networks are given in Sections 4 and 5.

Figure 1: a) Pictorial representation of the AA decision process and Firms

behavior in a Duopoly. b) Corresponding representation for a repeated sce-

nario.

3 Antitrust Authority’s Decision Process

3.1 Current Practice

The primary task of the AA is to enforce the antitrust law which prohibits

anticompetitive behaviour, so as to prevent a reduction in social welfare1.

In particular, the AA is responsible for detecting: a) agreements restricting

competition; b) abuses of dominant positions; c) merger operations involving

1For details on the Italian antitrust law and AA’s tasks see: http://www.agcm.it/en.
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the creation or strengthening of dominant positions in ways that eliminate

or substantially reduce competition.

Once the Authority has received a complaint or has collected informa-

tion on possible interference with competition, a preliminary examination

is carried out and if there are alleged violations of the Antitrust law, the

AA carries out a full investigation. The law requires that whenever the po-

tentially merging firms exhibit sale revenues in excess of certain predefined

thresholds, the merger operation must be notified to the authority in ad-

vance. The thresholds are updated annually according to the deflator index

for gross domestic product.

Decisions on a merger are based on a case by case examination, and to

our knowledge, currently, no specific models are used. The law also does not

give any specific thresholds for relevant variables, such as market share or a

market concentration index.

3.1.1 The data

The data we use were collected by the Italian Antitrust Authority and con-

cern all the cases examined from 1991 to 2003. This dataset consists of 6920

observations. Based on this dataset, La Noce et al. (2006) developed a logit

model to analyze the impact of different factors on the Authority decision.

Following La Noce et al. (2006) we consider relevant markets affected by

the merger as elementary units of analysis. These markets are denoted by

the ISTAT (Italian National Institute of Statistics) economic activity code

ATECO.

Table 1 describes the variables in the dataset that were used to estimate

the AA network. The Herfindahl-Hirschman Index, HHI, is defined as the

sum of the squares of firms’ market share,
∑n

i αi
2 where αi denotes firm i’s

market share and
∑n

i αi = 100. Increase in the HHI indicates a decrease in

competition and an increase in market power. Vertical effects refer to the

anticompetitive effects that a vertical merger could imply, i.e. the possibility

to raise entry barriers by input foreclosure or by customer foreclosure.

The estimation (learning) process of a Bayesian network consists of two

phases: the graphical structure estimation and the conditional probability
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Table 1: Description of the variables in the AA network.

Variable States Description

Years {1991–1996, 1997–2000, Reference periods
2001–2003}

ATECO Mining, Food & Beverage Relevant market
Manufacture, etc. (see Fig. 3)

Geo Size {Sub-national, National, Size of the relevant market
Supra-national}

Buyer Power {Yes, No} Presence (Yes) of competitive
pressure on the merging parties

Entry Barriers {Yes, No} Presence (Yes) of entry barriers
HHI Variations {0, (0,100), [100, 500), Variation in market

[500, 1000), ≥1000 } concentration index
Post Market Share {<20%, [20% 40%], >40%} Post-merger market share
Vertical Effects {Yes, No} Presence (Yes) of vertical

effects
AA Intervention {0, 1} No (0)/Yes (1)
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table estimation. These will be illustrated in turn.

3.2 Estimation of the network’s graphical structure

The graphical structure of the AA network representing AA decision process

is obtained by a combination of subject-matter knowledge, provided by a

domain expert, and the information in the data.

The Necessary Path Condition (NPC) algorithm (Steck 2001) imple-

mented in Hugin is used to estimate the graphical structure of the network.

The NPC is a constraint-based algorithm recursively testing marginal and

conditional association between categorical variables. The NPC algorithm

allows the user to choose the most suitable among independence equivalent

models. The NPC algorithm takes into account logical constraints, such as,

presence/absence of a link or assignment/ban of a specific direction between

variables.

Figure 2: Logical constraints for AA network estimation.

The logical constraints we implemented here are shown in Figure 2. These

imply that if there is a relation between two variables in different boxes,

it must have the same direction as that in Figure 2. Furthermore, if two

variables belong to the same box, their association (if it exists) can be in any

one of the two possible directions. For example, if node AA Intervention2 is

connected with any of the other variables, the direction has to be from these

into AA Intervention node (AA decision logically depends on the values of

the other variables). This means that arrows from AA Intervention to any

other variable are logically prohibited. The reference period (node Years) is

not influenced by any of the other variables in the model.

2Here we indicate nodes in teletype.
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Figure 3: AA network showing the dependencies of AA on the relevant vari-

ables describing the market and the marginal probabilities of the variables.
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The dependence structure — based on the logical constraints given in

Figure 2 — learnt from the data is shown in Figure 3. The main dependence

relationships estimated from the data are:

i) The market of interest (ATECO) can depend on Year: an economic sector

could be more relevant and worth investigating during one of the three

reference periods (note that the president of the AA changed in 1997

and from 2001 Italian currency Lira was replaced by the Euro).

ii) AA Intervention depends directly on HHI Variation, Vertical Effects,

Post Market Share, Geo Size, and Entry Barriers. Furthermore,

the relevant market (ATECO) does not affect AA’s decision (AA Intervention)

directly but only through the relevant features of the market and of

the merging firms (HHI Variation, Vertical Effects, Post Market

Share, Geo Size, and Entry Barriers).

These results are consistent with those in Bergman et al. (2005) and

La Noce et al. (2006).

iii) The Herfindahl-Hirschman concentration index variation (HHI Varia-

tion) depends on all the variables that logically precede it or are on an

equal footing (as shown in Figure 2). Whereas Post Market Share de-

pends only on Entry Barriers, Geo Size and ATECO. An explanation

of this could be that when a market sector is characterized by entry bar-

riers (because of patents or increasing returns to scale) we expect that

this market may be composed of a few firms with high market shares,

thus influencing Post Market Share and a relevant HHI Variation.

Many other conditional independencies can be read off the AA network in

Figure 3, but for brevity they will not be presented here.

3.3 Estimation of the probability tables

To complete the construction of our model, we estimate the conditional

probability distributions of the variables from the data. The EM-algorithm

(Dempster et al. 1977) is used for learning the probabilities.
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The network in Figure 3 exhibits a complex association structure among

the variables. For example, node HHI variation has seven parents. Its

conditional probability table has 17×33×23×5 = 18360 entries correspond-

ing to the state space of its parent variables: ATECO, Post Market Share,

Years, Geo Size, Entry Barriers, Buyer Power, Vertical Effects, as

well as HHI Variation’s state space. Many of these combinations are not

represented in the dataset, although they cannot be considered impossible ex

ante. In fact, according to Bergman et al. (2005), if a threshold for relevant

variables – like post market share – can be detected in AA’s legal practice,

this threshold may vary according to other variables, such as, buyer power

and entry barriers. Therefore, no variable level combinations can in principle

be ruled out. So, in order to avoid that certain possible configurations in the

conditional probability tables have zero probability we set non-informative

non-zero prior probabilities.

Figure 3 displays the marginal probabilities3 estimated from our data.

Note, for example, that the probability of an AA intervention is only 0.0189

which could be due to the fact that in most cases, 74.38%, the post market

share is less than 20% and entry barriers and vertical effects are absent

(with probability 0.9793 and 0.9268, respectively), HHI index is less than

100 in 87.85% of the cases and only in 15.38% the geographical size is supra-

national.

3.4 Using the network

Once the model has been estimated, we can address a number of questions

about the AA’s decision process. Various possible scenarios can be exam-

ined by inserting and propagating the appropriate evidence throughout the

network. We illustrate three hypothetical scenarios.

Scenario A. What is the probability of an AA intervention in a merger

request when there are entry barriers in the market? This scenario is rep-

resented in Figure 4a. The posterior probability of an AA Intervention

increases from 0.0189 to 0.5790 when the evidence Entry Barriers = Yes

is inserted and propagated throughout the network.

3In all Figures probabilities are expressed as percentages.
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Scenario B. How would the probability obtained in Scenario A change

if the Herfindahl-Hirschman concentration index variation (HHI variation)

is in the class [100, 500)? Note in Figure 4b that the probability of AA

Intervention now increases to 0.7741.

The network can be used not only for direct reasoning about the prob-

ability of AA Intervention, but also for reasoning about possible “causes”

of a given AA decision.

Scenario C. A question about competition authorities behaviour that

has been rarely addressed in the literature, is about the type of mergers that

are typically prohibited (Bergman et al. 2005). Our network can be used for

this purpose. Suppose that the AA decides to intervene in a firm’s merger

request. What are the most plausible reasons of this decision? Figure 4c

gives the posterior probabilities given the evidence that AA Intervention is

equal to one. On comparing Figures 3 and 4c we see that:

• the probability of entry barriers increases from 0.0207 to 0.6367;

• the probability of vertical effects increases from 0.0732 to 0.4536. This

is an interesting result, since, although there is common agreement

about the relevance of vertical effects for AA’s decision on a merger

request, it is controversial whether vertical effects influence the market

negatively by foreclosing competitors, or positively by reducing trans-

action costs. Here we find that the presence of vertical effects is much

more probable for those firms where AA decides to intervene. La Noce

et al. (2006) found similar results.

• the probability of post market share less than 20% decreases from

0.7438 to 0.0922, whereas the probability of post market share greater

than 40% increases from 0.0777 to 0.7006.

• The HHI index decreases in the first two classes and increases in the

last three classes.

Note that when evidence is propagated in the network, all marginal proba-

bility tables are updated accordingly.
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Figure 4: Scenarios a), b) and c) giving marginal posterior probabilities for

the AA network.
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4 Duopoly representation

4.1 The prisoner’s dilemma

The prisoner’s dilemma (Flood 1958) describes cooperation by rational agents.

The PD is a 2-player symmetric game where the two players have the same

rôle and have the same set of potential strategies termed cooperate C, and

defect D. The PD is a simultaneous game where the players choose just

once and simultaneously and the unique equilibrium4 is the pair of strategies

(D, D). Players’ payoffs are such that defect is a dominant strategy, i.e.

a strategy that is preferred by each player independently of his/her rival.

The problem is that this strategy is inefficient since both players would gain

more if they cooperated and adopted the (C, C) strategy. The source of the

dilemma lies in the fact that each player has an incentive to defect if the rival

player cooperates; so that an agreement to cooperate would not be credible.

Simultaneous games, such as the PD, are commonly represented in either

the normal or the extensive form. In the normal form representation, the PD

can be described by the payoff matrix in Table 2. The two firms, Firm1 and

Firm2, have two available strategies: cooperate C, or defect D. The payoffs

need to be such that d > a > b ≥ c and 2a > (c + d) > 2b, so that (C, C)

maximizes players’ joint payoff. Given that b < a, the strategy pair (D, D)

is strictly worse than (C, C).

Firm2

C D

Firm1
C a,a c,d

D d,c b,b

Table 2: Payoff matrix for the prisoner’s dilemma

In the extensive form the game is represented by a tree. Figure 5a shows

the tree representation (equivalent to Table 2) of the simultaneous duopoly

4An equilibrium is a strategy pair such that no player can improve his position by
unilaterally changing his decision. In other words, it is a situation in which all players
choose mutual best responses.
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game. Firm1 moves first and chooses either C or D, Firm2 moves second

but without knowing what Firm1 did.

Figure 5: a) Tree representation of the simultaneous duopoly game. b) Cor-

responding Bayesian network representation.

A symmetric duopoly, such as a market with two symmetric profit-maximising

firms in mutual competition, can be modelled as a PD. The duopoly profit

is the gain of each of the sellers in this market.

Suppose the two firms produce identical goods, incurring constant marginal

costs, and they compete setting their prices. Since consumers will buy from

the firm charging the lowest price, firms have an incentive to undercut their

price to conquer the market (non-cooperative or defect strategy). At equilib-

rium firms will set the competitive price (the market price under perfect com-

petition which is equal to firms marginal cost of production) gaining duopoly

profit b = 0. This result is often called a paradox, since there are just two

firms in the market and still the perfectly competitive strategy yields zero

profit. However, if firms decide to cooperate and set the monopoly price,

they can share positive monopoly profits. The monopoly profit is always

greater than twice the duopoly profit, 2a > 2b.

In most markets, from a consumer’s point of view, goods are not identical.

This gives firms the ability to raise the price above the marginal cost of

production without losing their customers to competitors. In a symmetric
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duopoly with product differentiation firms produce and sell differentiated

goods (imperfect substitutes). As long as product differentiation is not too

large, firms face a PD: if they cooperate they could share monopoly profit, but

they have incentive to defect if the rival cooperates. However, when goods

are imperfect substitutes, firms make positive duopoly profit, b > 0, under

the non-cooperative strategy pair (D, D). This duopoly profit is smaller than

half the monopoly profit, b < a, so that the cooperative strategy C is superior

for each firm singly.

4.2 The prisoner’s dilemma network

Bayesian networks for decision support systems can incorporate both decision

nodes and utility nodes (Jensen 2001) giving rise to an influence diagram (ID)

representation. IDs were extended by Lauritzen and Nilsson (2001) to allow

for limited information decision problems (LIMIDs). A different approach to

represent and solve games using graphical models was initially proposed by

Smith (1996), and later by La Mura (2000), Kearns et al. (2001) and Koller

and Milch (2003).

The one stage PD being a symmetric game can be represented by the ID

network in Figure 5b. The simultaneity of the game is implemented by rep-

resenting Firm1 as a random variable (oval node), and Firm2 as the decision

maker (rectangular node) having two possible actions: defect D, and coop-

erate C. Firm2’s decision is influenced by Firm1. Firm1’s associated prior

probability distribution represents Firm2’s subjective opinion about Firm1’s

behaviour. Random variable Firm1 has two states, defect (coded as 0) and

cooperate (coded as 1), with uniform prior probabilities indicating Firm2’s

ignorance about Firm1’s choice. Firm2 could assign different prior proba-

bilities based on his/her prior knowledge about Firm1’s behaviour. Table 3

shows Firms2’s utility (node Firm2’s utility U2 in Figure 5b) based on

Firm1 and Firm2’s actions. Thanks to game symmetry, Table 3 is equivalent

to the normal form payoff matrix given in Table 2.

Once the network is compiled, the optimal decision for Firm2 is automati-

cally computed by maximising expected utility. Since the game is symmetric,

Firm2’s optimal strategy coincides with Firm1’s optimal strategy and this
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Table 3: Firm2’s utility U2 conditional on Firm1 and Firm2’s actions.

Firm1 defect (0) cooperate (1)

Firm2 defect (0) cooperate (1) defect (0) cooperate (1)

U2 b c d a

pair of strategies constitutes a Nash equilibrium. Thus in the ID representa-

tion the choice of Firm2 as decision maker is without loss of generality.

In what follows we always consider Firm2 as the decision maker. The

prior probability distribution on the random variable Firm1 reflects Firm2’s

subjective opinion on the type of rival player he/she is playing against.

4.3 Repeated prisoner’s dilemma

Since firms interact more than once we need to consider the repeated version

of the PD. In repeated games, players actions are observed at the end of

each period and their overall payoff is the sum of the payoffs in each stage

discounted by a factor δ ∈ [0, 1]. Thus players may condition their play on

the opponents past play. Here we assume that firms never forget previous

moves and other information acquired, in other words we assume that firms

have perfect recall.

The repeated PD analyzes how threats and promises about future be-

haviour can affect and improve current behaviour. When the time horizon

is indefinite firms may decide to adopt a cooperative strategy where the dis-

count factor δ represents uncertainty about the number of stages faced by

firms. This uncertainty is usually not modelled within the game itself. In

Section 5 we illustrate how to incorporate this uncertainty in the merger

control problem.

4.4 OOBN for repeated prisoner’s dilemma

Generalizing the tree representation in Fig 5a to repeated games is both

computationally and graphically demanding. The game tree grows exponen-

tially with the number of stages. For example, Figure 6a shows the tree
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representation of a two-stage PD.

Figure 6: a) Tree representation of the two-stage duopoly game. b) Corre-

sponding OOBN representation.

OOBNs are particularly well suited for an application area such as the

present because the similarity between network elements (the stages of the

game) can be exploited in a modular and flexible construction. Object-

oriented Bayesian networks have a hierarchical structure where a node it-

self can represent a (object-oriented) network containing several instances of

other generic classes of networks. Instances have interface input and out-
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put nodes as well as ordinary nodes. Instances of a particular class have

identical conditional probability tables for non-input nodes. Instances are

connected by arrows from output nodes into input nodes. These arrows, as

well as those from ordinary nodes to input nodes, represent identity links,

whereas arrows between two ordinary nodes or an output node and an or-

dinary node represent probabilistic dependence. The graphical simplicity

automatically produces computational efficiency. As a result, increasingly

complex networks can be constructed by simply adding new objects which

perform different tasks.

Since we assume perfect recall, Hugin 5 version 6.9 software, which auto-

matically implements the fact that at every stage the decision maker recalls

all previous decisions, is used to build the networks. This implies that each

decision depends on the decisions taken in all previous stages, so even though

the graphical representation does not implicitly represent this, in the junc-

tion tree construction (Cowell et al. 1999) these dependencies are explicitly

considered. In what follows we indicate an instance in bold. Figure 6b shows

the OOBN two-stage repeated game that corresponds to the tree represen-

tation in Figure 6a. Each rounded rectangle represents an instance termed

Duopoly and models a stage of the repeated game. In order to specify the

links between successive stages (instances) Figure 5b (which represents each

Duopoly instance) needs to be generalized as shown in Figure 7.

The node Firm1∗ models the behaviour of Firm1 in the next stage. In

each stage the game can either continue or terminate. Firm1 and Firm1∗

now need to be given three states: defect (0), cooperate (1) and stop (2).

Since in a repeated game every stage depends on the actions taken in the

previous stages, Firm1∗ is logically dependent on Firm2. Uncertainty about

the existence of further stages is modelled by adding a new random node

stop?. Node stop? has two states, {0, 1} according to whether the game

continues or stops and has a Bernoulli distribution Bin(1, 1 − delta). The

parameter node delta is the probability that the game continues P (stop? =

0). Node delta has a uniform prior distribution over a plausible set of values.

In the first stage, to ensure that the game starts Firm1 can only choose

between defect and cooperate. Table 4 gives the conditional probability dis-

5www.hugin.com
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Figure 7: Class network for repeated PD with associated marginal prior

probability tables.

tribution of Firm1∗ given stop? and Firm2. It shows that if the game stops

(stop?=1) Firm1∗ stops with certainty, else Firm1∗ cooperates or defects

according to Firm2’s decision. This implements the tit for tat (TFT) strat-

egy in which Firm1 begins by cooperating and cooperates as long as Firm2

cooperates, and defects otherwise. Variations on this strategy will be shown

in Section 4.4.1.

Table 4: Conditional probability table for Firm1∗ given stop? and Firm2.

stop? no (0) yes (1)

Firm2 defect (0) cooperate (1) defect (0) cooperate (1)

defect (0) 1 0 0 0

cooperate (1) 0 1 0 0

stop (2) 0 0 1 1

4.4.1 Other Strategies

Experimental results show that people, contrary to standard prescriptions of

game theory, may cooperate more frequently than expected (Andreoni and
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Miller 1993). An explanation behind this empirical evidence is provided by

the theoretical models of Kreps and Wilson (1982) and Kreps et al. (1982).

Figure 7 can be modified to provide a general class network that explicitly

incorporates a set of potential strategies for Firm1 other than TFT. This

network is displayed in Figure 8. The network can, for example, model

a repeated PD with incomplete information, i.e. where there is uncertainty

about the type of rival that a firm is going to face. The conditional probability

distribution of Firm1∗ reflects Firm2’s uncertainty about its opponent. If

Firm2 believes Firm1 to be “altruistic” it can expect Firm1 to cooperate,

with probability αD > 0, even if it defected in the previous stage. On the

other hand, if Firm2 believes Firm1 to be “egoistic”, then it expects Firm1

to cooperate, with probability αC < 1, even if it cooperated in the previous

stage.

Additional nodes, Firm1∗|D and Firm1∗|C, having Bernoulli distributions

with parameter nodes alpha D and alpha C are added to the network of

Figure 7. Node Firm1∗ takes value 2 if the game stops in the current stage,

whereas, if the game continues (stop?=0), the value of Firm1∗ depends on

that of Firm2. If Firm2 defects (cooperates) Firm1∗ is Firm1∗|D (Firm1∗|C),

with alpha D (alpha C) being the probability that Firm1 will cooperate in

the next stage given that Firm2 defected (cooperated) in the previous stage.

The conditional probability distribution of Firm1∗ is thus defined by the

logical expression if (stop == 1, 2, if (Firm2 == 0, Firm1∗|D, Firm1∗|C)).6

Firm1∗ represents Firm2’s subjective opinions about Firm1’s behaviour in

each single stage of the repeated game.

This model can also incorporate a large set of strategies, including TFT,

and it can model scenarios where the probability that the game continues

depends on external factors. An illustrative example is given in Section 5.

5 Global network

Thanks to the modularity and flexibility of OOBNs, it is possible to integrate

the AA and the Duopoly networks, giving rise to a unique overall OOBN

6The function if (A, x, y) takes value x if condition A is satisfied, otherwise y.
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Figure 8: Generalized repeated PD network representing various strategies

and incomplete information.

representation of the problem (Figure 1a). An expanded representation of

this model is shown in Figure 9.

The Duopoly network (the bottom network) in Figure 9 is similar to

the network in Figure 8 except that the uncertainty about the next stage

delta is now identified with AA Intervention in the AA network (the top

network in Figure 9) representing AA’s decision process.

The AA decision process is usually dynamic, it can change over time due

to changes in the antitrust law as well as changes in market conditions. We

are thus interested in the repeated version of the model in Figure 9.

Figure 10 represents the global model (Figure 9) repeated four times for

a three stage merger game with uncertainty on the number of stages. In gen-

eral, an OOBN with n + 1 instances models a game repeated n times with

uncertainty about the successive stage. In this model, the AA’s decision

process is represented by the same instance in each period. This is justi-

fied by assuming that, even if the AA decides not to intervene, it continues

monitoring firms’ behaviour in successive stages.
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Figure 9: Integrated AA-duopoly merger stage game.
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Figure 10: OOBN representing a three-stage repeated merger game with

uncertainty about the number of stages.

5.1 Firms’ strategy

We now study the sensitivity of cooperative behaviour with respect to two

sets of utilities and all the factors that might directly or indirectly influence

the AA’s decision. We consider both the TFT strategy and a more general

strategy. The TFT strategy can be implemented using the global network

by setting Firm1∗= 1 in stage Duopoly 1 and Firm1∗|C= 1, Firm1∗|D= 0

in all other stages.

5.1.1 TFT strategy: perfect substitutability

Table 5 shows an example of Firm2’s utility for a market with perfect sub-

stitutable goods. Figures 11, 12 and 13 show the marginal probabilities for

a selection of random variables and the expected utilities for the decision

nodes in the first stage AA 1 and Duopoly 1.

When no evidence about the variables in the market is inserted in the

network (Figure 11) Firm2’s optimal decision is to cooperate (1) having ex-
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Table 5: Firm2’s utility U2 for a market with perfect substitutability

Firm1 defect (0) cooperate (1)

Firm2 defect (0) cooperate (1) defect (0) cooperate (1)

U2 0 -10 150 100

pected utility equal to 443.40 (while defect has expected utility equal to

385.47). This could be in part due to the small probability of an AA inter-

vention, 0.0189.

Figure 11: Marginal probabilities and optimal decision in the first stage

AA 1 and Duopoly 1, under perfect substitutability, when Firm1 plays

TFT.

Figure 12 shows the case where there are entry barriers in the market of

interest (Entry Barriers = Yes) and the merger causes the HHI variation to

be in the last class (HHI Variation >= 1000). The resulting probability of

AA intervention shoots up to 0.9435 and Firm2’s optimal decision is to defect

with expected utility of 394.72, against 350.93 for cooperating. This strategy

still remains optimal (although with a smaller gap between the expected
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utilities) when based only on the presence of entry barriers.

Figure 12: Marginal probabilities and optimal decision in the first stage

AA 1 and Duopoly 1, under perfect substitutability, when Firm1 plays

TFT, Entry Barriers = Yes and HHI Variation >= 1000.

Figure 13 shows the case where, as before, there are entry barriers, the

HHI variation is ≥ 1000, and customers exert competitive pressure on the

merging parties (Buyer Power = Yes). The probability of AA intervention

decreases from 0.9435 to 0.2915 and Firm2’s optimal decision is to cooperate

having expected utility of 416.14. It is interesting to note that buyer power

is able to counterbalance the effect of both entry barriers and a large HHI

variation.

5.1.2 TFT strategy: imperfect substitutability

We now use Firm2’s utility for a market with imperfect substitutable goods

given in Table 6.

Figure 14 shows results when evidence about the market is not available.

Firm2’s optimal decision is to cooperate (1) having expected utility equal
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Figure 13: Marginal probabilities and optimal decision in the first stage

AA 1 and Duopoly 1, under perfect substitutability, when Firm1 plays

TFT, Entry Barriers = Yes, HHI Variation >= 1000 and Buyer Power

= Yes.
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to 601.33 (while defect has expected utility equal to 513.21). Again, this is

most plausibly due to the small probability of an AA intervention.

Table 6: Firm2’s utility U2 for a market with imperfect substitutability.

Firm1 defect cooperate

Firm2 defect cooperate defect cooperate

U2 100 50 160 150

Figure 14: Marginal probabilities and optimal decision in the first stage

AA 1 and Duopoly 1, under imperfect substitutability, when Firm1 plays

TFT.

When Entry Barriers = Yes and HHI Variation >= 1000, Firm2’s

expected utility to cooperate or to defect is almost equal, although the prob-

ability of AA intervention is close to 1 (Figure 15).

Furthermore, in contrast to perfect substitutability, accounting for the

presence of entry barriers alone is not sufficient to modify the optimal deci-

sion from cooperate to defect. The main reason being that when the firms’
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Figure 15: Marginal probabilities and optimal decision in the first stage

AA 1 and Duopoly 1, under imperfect substitutability, when Firm1 plays

TFT, Entry Barriers = Yes and HHI Variation >= 1000.
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products are imperfect substitutes, the set of utilities reflects the fact that

the defect strategy does not correspond to such a strong punishment, so that

a firm can continue to cooperate even if there is high risk that the game

might stop.

5.1.3 Incomplete information

Assume that Firm2 has incomplete information about the type of rival it is

going to face. This is a reasonable scenario as firms are likely to be uncertain

about their rivals’ costs and benefits from cooperation.

Table 7: Firm2’s expected utility for different values of αC and αD, without

evidence, with evidence E1 and E2, for likelihood evidence and for the TFT

strategy.

without evidence with evidence E1 with evidence E2

αC αD IE[u(D)] IE[u(C)] IE[u(D)|E1] IE[u(C)|E1] IE[u(D)|E2] IE[u(C)|E2]

1 0.25 337 388 329 339 322 298
0.8 0.25 286 316 278 277 271 245
0.6 0.25 238 250 228 219 220 193
0.4 0.25 203 193 190 170 180 152

1 0.2 332 388 326 339 321 298
0.8 0.2 281 316 275 277 270 245
0.6 0.2 231 247 225 217 219 193
0.4 0.2 192 188 183 167 177 149

1 0.1 321 388 321 339 320 298
0.8 0.1 270 316 270 277 269 245
0.6 0.1 219 243 219 215 218 193
0.4 0.1 172 179 171 159 170 143

likelihood 280 313 273 275 268 243
TFT 385 443 390 394 395 353

Table 7 shows Firm2’s expected utility in case of perfect substitutabil-

ity (based on Firm2’s utility given in Table 5) for different probability val-

ues of αC and αD (nodes alpha C and alpha D in Figure 9). Three types
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of information about the relevant market are considered: no evidence, ev-

idence E1={Post Market Share≥ 40%, Entry Barriers= Yes and Buyer

Power= Yes} and evidence E2={Entry Barriers= Yes and HHI Variation

∈[500–1000]}. The optimal decision yielding the highest expected utility for

each scenario is italicised.

The second last row of Table 7 gives the results when inserting a uniform

likelihood function for αC > 0.5 and αD < 0.5. In this case, Firm2’s optimal

decision is to cooperate under no evidence and E1. Whereas, for E2, when

the probability of AA intervention is close to one, IE[u(D)|E2] > IE[u(C)|E2],

so Firm2’s optimal decision is to defect. These results coincide with those

obtained using the TFT strategy shown in the last row of Table 7. Recall

that the TFT strategy corresponds to setting αC = 1 and αD = 0 in all

Duopoly instances.

Now, suppose Firm2 believes that its rival cooperates — with probabil-

ity αC = 0.8 — if Firm2 cooperates; and cooperates — with probability

αD = 0.25 — even if Firm2 defects. This is implemented in the network

inserting and propagating evidence alpha C=0.8 and alpha D=0.25 in each

Duopoly instance. As we can see in Table 7, Firm2’s expected utility to

cooperate, IE[u(C)] = 316, is greater than to defect IE[u(D)] = 286. In-

troducing evidence E1 in AA 1, the two decisions become almost utility

equivalent. Whereas, under the TFT strategy, E1 yields an optimal decision

to cooperate IE[u(C)|E1] = 394, whereas IE[u(D)|E1] = 390.

Recall that when information about the relevant market is not taken into

account, the probability of AA intervention is 0.0189. If the probability that

Firm1 cooperates when Firm2 defects is very small (αD = 0.1), then its op-

timal decision is to cooperate, even for small values of αC . On the other

hand, when αD ≥ 0.2, defecting is Firm2’s best choice for αC = 0.4, yielding

a different behaviour from that obtained using the TFT strategy. How-

ever, using evidence E1, when the probability of AA intervention is 0.514,

IE[u(D)|E1] > IE[u(C)|E1] even when Firm1 is slightly altruistic, αD ≤ 0.2

and αC ≤ 0.6. Furthermore, if αD = 0.25, then IE[u(D)|E1] > IE[u(C)|E1]

also for αC ≤ 0.8. If the TFT strategy is adopted, Firm2 optimally co-

operates both under no evidence and E1. Whereas, for E2, the associated

probability of AA intervention is very large, so that Firm2’s optimal decision
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is to defect for all values of αC and αD considered here.

While the examples shown here are merely illustrative, the number of

questions and different strategies that can be analysed is clearly huge and

increases with the number of stages considered.

6 Conclusion

When the antitrust authority starts an investigation, the two potentially

merging firms are likely to represent a relevant share of the market, hence

they might affect the price of the goods traded. In contrast, the decisions of

other firms inside the market, but outside the merged entity, can be assumed

to be irrelevant. In circumstances such as these, a PD duopoly model is a

reasonable representation.

From an economic perspective, the methodology we present can be seen

as a useful decision support system. It models and integrates the different

uncertainty sources deriving from a rival competitor and from the economic

environment. Furthermore, the model can be updated as we consider new

cases, changes in market conditions or new antitrust regulations. The em-

phasis in this paper is to show the potentiality of OOBNs in the analysis of

duopoly markets with external uncertainty. For the sake of simplicity, the

duopoly is represented by a rather naive game theoretic model; in future

studies we wish to implement a more complex interaction model between

firms.

As is standard in industrial organization the firm is seen as a single de-

cision making unit; generalizations of our OOBN to model firms internal

organization could also be considered. Indeed, firm’s top and middle man-

agement may have different objectives from its owner. An appropriate BN

could be built to model these interrelationships and incorporate them into a

more general OOBN model. This would yield a more complete and realistic

picture of firms’ cooperative behaviour. We hope to develop this and other

aspects in the future.
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