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Abstract

A DNA palindrome is a segment of letters along a DNA sequence with inver-

sion symmetry that one strand is identical to its complementary one running in

the opposite direction. Searching non-random clusters of DNA palindromes, an

interesting bioinformatic problem, relies on the estimation of the null palindrome

occurrence rate. The most commonly used approach for estimating this number

is the average rate method. However, we observed that the average rate could

exceed the actual rate by 50% when inserting 5,000 bp hot-spot regions with 15-

fold rate in a simulated 150,000 bp genome sequence. Here, we propose a Markov

based estimator to avoid counting the number of palindromes directly, and thus

to reduce the impact from the hot-spots. Our simulation shows that this method

is more robust against the hot-spot effect than the average rate method. Fur-

thermore, this method can be generalized to either a higher order Markov model

or a segmented Markov model, and extended to calculate the occurrence rate for

palindromes with gaps. We also provide a p-value approximation for various scan

statistics to test non-random palindrome clusters under a Markov model.

Keywords and phrases: DNA palindrome, genome sequence, hairpin structure, higher

order Markov model, hot-spot, Markov model, occurrence rate, Poisson process, power,

p-value, segmented Markov model.
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1 Introduction

A chromosome is a long double-stranded helix of DNA that consists of adenine-thymine

(A-T) pairs or cytosine-guanine (C-G) pairs. Thus, one DNA strand decides the sequence

of its complementary strand. A DNA palindrome with minimum half length L is defined

as a segment of DNA letters with half length greater than or equal to L that one strand

is identical to its complementary one running in the opposite direction. This inversion

symmetry increases the probability to form secondary structures conferring significant

biological functions ranging from RNA transcription to DNA replication (Leach (1994)).

It has been observed that DNA palindromes are common candidates for searching

genetic motifs involved in different cellular processes, including gene transcriptions, gene

replications, and gene deletions. For example, among nine octameres (segments with 8

bp) suggested to be transcription factor binding sites, three are palindromes (FitzGerald

et al. (2004)). Many studies have focused on investigating the occurrence rates of palin-

dromes in suspicious regions against random sequences. For example, Lisnic and Svetec

(2005) investigated the frequencies of palindromes in the yeast Saccharmyces cerevisiae

genome. Chew et al. (2005) proposed various score schemes to quantify palindromes

and found an association between high score regions and the replication origins. Lu et

al. (2007) compared the scores of the suspicious regions, including introns, exons, and

upstream of transcription start sites, against simulated random sequences, and reported

that meaningful sites tend to have higher palindrome scores.

The analysis of these comparisons strongly depends on the null occurrence rate.

This rate usually is estimated by the genome-wide average or the iid model based method

using the DNA letter frequencies (Chew et al. (2005)). We tested these two methods

on a herpes virous sequence bohv1 (sequence ID ‘BHV1CGEN’). Its average rate is

0.00178 and the iid model based estimate is 0.00073. The large discrepancy between

these two alerted us, and further studies indicated that the average rate might be biased

due to hot-spots, and the iid model might be too naive to describe the DNA sequence.

Therefore, we propose a Markov based estimator using the DNA pairs’ frequencies in

addition to the letters’ and get the estimate 0.00109. Compared to the iid model, the

Markov model is more close to real sequences but yet not too complicated to estimate

its parameters. The simulation shows that our method performs better than the average

rate in estimating the null occurrence rate against hot-spots under a variety of model
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settings. We also show that this method can be generalized for either a higher order

Markov model or a segmented Markov model. Furthermore, we demonstrate that this

method can be extended to calculate the occurrence rate when the DNA palindrome

contains a gap.

Many related p-value approximations have been developed based on the assumption

that the events can be modeled as a Poisson process. This assumption has been justified

in many cases including DNA palindromes (Reinert and Schbath (1998); Leung et al.

(2005); Hansen (2009)). Chan and Zhang (2007) developed a method to approximate

the p-value for a scan of score statistics over a Poisson process, when the score can be

modeled through an exponential family. To apply their method, the analytic formula

for the moment generating function (MGF) of the score is required. However, the

distribution of the palindrome scores has not been well studied except the length score

under the iid assumption. Thus, we develop a method to derive the analytic formulae for

the MGF of various scores under a Markov model. Another challenge in calculating the p-

value approximations of scan statistics is to calculate an overshoot function (Woodroofe

(1978); Siegmund (1985); Tu (2009)). This function relates to the characteristic function

of a random variable defined by the difference between the statistic and the threshold

given the condition that the statistic exceeds the threshold. We further extend the p-

value approximations developed by Chan and Zhang (2007) to provide a more general

formula to calculate the overshoot functions on various scores under a Markov model.

In this paper, we first show that three scores for detecting DNA palindrome clusters

proposed by Chew et al. (2005) can be formulated as likelihood ratio statistics. Second,

we show that the occurrence rates can be calculated accurately under a Markov model.

Third, we derive the moment generating function for various scores under a Markov

model. Fourth, we present a p-value approximation method for those statistics to detect

DNA palindrome clusters. In Section 3, we show the results on both real data and

simulated data. This paper ends with a brief discussion. The related derivations are

collected in online supplementary materials.
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2 Method

2.1 Notations and the Log Likelihood Ratio Statistics

Let N(t) be the counting process for the palindrome events and let Nw(t) = N(t +

w)−N(t) denote the number of palindromes whose starting positions fall in the interval

(t, t+w]. Leung et al. (2005) proved that N(t) can be approximated by a Poisson process

under a Markov Model. We let Xi be the score for the ith palindrome (event) along the

genome sequence, and SNw(t) is the summation of the palindrome scores:

SNw(t) =

N(t+w)∑
i=N(t)+1

Xi. (1)

To search the clusters of palindromes, Chew et al. (2005) proposed three schemes

to quantify palindromes including the palindrome count score (PCS), the palindrome

length score (PLS), and the base-pair weighted score of order m (BWSm). PCS gives

the same score for each DNA palindrome; PLS gives the score as the palindrome length

divided by its minimum required length; and BWSm gives the score as the minus log-

likelihood under Markov order m assumption.

We would like to show that both Nw(t) and SNw(t) are equivalent to the log-

likelihood ratio statistics when the alternative hypotheses are properly constructed. This

equivalence is useful for developing the p-value approximations. Under the Poisson pro-

cess model, we also assume thatXi’s can be treated as iid with a density function fθ(x) =

f0(x) exp(θx−ϕ(θ)), where f0(x) is an unknown distribution and ϕ(θ) = log
∫
eθxf0(x) dx

is its log of the MGF. For events that occur outside of the interval (ta, ta + w], the pa-

rameters are (λ0, θ0). For events that occur in the interval (ta, ta + w], the parameters

for N(t) and Xi, are (λa, θa). The null hypothesis is that λa = λ0 and θa = θ0. When

ta is known, the likelihood ratio is fλa,θa(Nw(ta), SNw(ta))/fλ0,θ0(Nw(ta), SNw(ta)), and the

likelihood is as follows:

fλ,θ(Nw(t), SNw(t))

= fλ(Nw(t)) fθ(SNw(t) | Nw(t))

=
(λw)Nw(t)e−λw

Nw(t)!

 N(t+w)∏
i=N(t)+1

f0(xi)

 exp(θSNw(t) −Nw(t)ϕ(θ)).

Because ta is usually unknown, we search for the maximum of the statistic over all

possible t.
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Case 1. If the alternative hypothesis is constructed as Ha : λa = λ1 > λ0 and θa = θ0, then

the log-likelihood ratio statistic is equivalent to PCS in Chew et al. (2005):

max
t

lt(λ1, θ0) = max
t

log

(
fλ1,θ0(Nw(t), SNw(t))

fλ0,θ0(Nw(t), SNw(t))

)
= max

t
Nw(t) log(

λ1

λ0

)− (λ1 − λ0)w. (2)

Case 2. If the alternative hypothesis is constructed as Ha : λa = λ1 > λ0 and θa = θ1 > θ0,

where λ1 and θ1 are constrained to satisfy

log(
λ1

λ0

)− (ϕ(θ1)− ϕ(θ0)) = 0, (3)

the log-likelihood ratio statistic in formula (4) can be equivalent to PLS or BWSm

proposed by Chew et al. (2005), depending on the definition of Xi’s.

max
t

lt(λ1, θ1) = max
t

log

(
fλ1,θ1(Nw(t), SNw(t))

fλ0,θ0(Nw(t), SNw(t))

)
= max

t
{ − (λ1 − λ0)w + (θ1 − θ0)SNw(t)} (4)

It can be observed that (2) is equivalent to maxt Nw(t) and (4) is equivalent to

maxt SNw(t). While (2) tests only the Poisson parameter λ, (4) tests both the Poisson

parameter λ and the score parameter θ with the constraint (3). Nw(t) can be treated as

a special case of SNw(t) with Xi = 1 for each i.

We applied the method developed by Chan and Zhang (2007) to derive the thresh-

old value of maxt SNw(t). Let N(t) be a Poisson process with mean λ0 and the log of the

MGF of Xi is ϕ(θ). Xi’s are iid with mean µ0, then

P0( max
0<t<W

SNw(t) ≥ b)

∼ 1− exp{−(W − w)νλ1,θ1(b− λ0µ0)e
−[bθ1−w(λ1−λ0)]

(
2πwλ1[ϕ̈(θ1) + ϕ̇2(θ1)]

)−1/2

},

(5)

where W is the total length of the sequence, ϕ̇(θ1) and ϕ̈(θ1) are the first and the second

derivative of ϕ(θ1) representing the mean and the variance of Xi with density fθ1(x),

and νλ1,θ1 is an overshoot function indexed with (θ1, λ1) satisfying the equations:

wλ1ϕ
′(θ1) = b,

log(λ1/λ0) = ϕ(θ1)− ϕ(θ0).
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It is obvious from (5) that λ0 always plays a crucial role in deciding the critical

value for the tests. The most challenging part in applying (5) to calculate the p-value

is to calculate the overshoot function νλ1,θ1 . As a pioneer, Woodroofe (1978) derived a

computable formula to calculate the overshoot function for iid non-arithmetic random

variables given the characteristic functions. Tu (2009) generalized this formula for iid

arithmetic random variables. Incorporating their results, we develop Theorem 4 for more

general cases.

2.2 Occurrence rate of DNA palindromes under Markov model

Let T be a 4× 4 matrix with Tij = PbibjPb̃j b̃i
which groups together the transition prob-

abilities of symmetric complementary pairs, where (b1, b2, b3, b4) = (A,C,G,T) and b̃j

refers to the complementary letter of bj. T is considered as a quasi transition matrix

because the sum of its rows do not equal one.

Theorem 1 Assume that DNA letters along the genome sequence follow a Markov

model with transition probability {Pa,b | a, b ∈ {A, C, G, T}} and letter frequency

P ′
0 = (πA πC πG πT). The occurrence probability of a palindrome Ii (given a starting

position i) with minimum half length L is

λM ≡ P (∥Ii∥ ≥ L) = P ′
0 T

L−1P1 (6)

where ∥Ii∥ denotes the corresponding maximum length, and

P ′
1 = (PAT PCG PGC PTA) ,

and

T =


PAAPTT PACPGT PAGPCT PATPAT

PCAPTG PCCPGG PCGPCG PCTPAG

PGAPTC PGCPGC PGGPCC PGTPAC

PTAPTA PTCPGA PTGPCA PTTPAA

 .

Remark 1.1

Theorem 1 gives an exact formula to calculate the palindrome occurrence rate under a

Markov model. To apply this formula, one needs to estimate the Markov parameters
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including the stationary probabilities {πa | a ∈ {A,C,G,T}} and the transition matrix

{Pa,b | a, b ∈ {A,C,G,T}} which usually are estimated by the letter frequencies of W

letters and the pair frequencies of W − 1 letter pairs, where W is the total sequence

length. Because the size of the hot-spot regions is much smaller than W that these

Markov parameter estimations are not heavily influenced by hot-spots and neither is

λM to estimate the null occurrence rate. On the other side, for the rare events like the

DNA palindromes, the average rate counts the total number of palindromes of which a

non-negligible portion is potentially contributed from the hot-spots in real sequences,

and hence the average rate is easily inflated when estimating the null occurrence rate.

Remark 1.2 iid Model

When the Markov model is reduced to the iid model, P ′
1 becomes

P ′
2 = (πT πG πC πA),

and T becomes P2P
′
0. Thus,

λiid ≡ P (∥Ii∥ ≥ L) = P ′
0 (P2P

′
0)

L−1P2 = (P ′
0 P2)

L = γL, (7)

where γ = 2 (πAπT + πCπG). (7) has been shown in Leung et al. (2005).

Remark 1.3 Higher Order Markov Models

When the DNA sequence does not follow a first-order Markov model, a higher order

Markov model may be considered. Theorem 1 can also be applied to higher order

Markov models. For example, a four-state second-order Markov model can be described

as a first-order Markov model with sixteen states, in which each state represents one

adjacent letter pair, like a1a2 where ai ∈ {A,T,G,C} and the probability model be-

comes P (a1a2a3) = P (a1a2)P (a2a3 | a1a2). Under this setting, only four elements in

each row or each column of the 16 × 16 transition matrix will be non-zero, because

Pa1a2,a3a4 = 0 if a2 ̸= a3. The elements in the corresponding quasi transition matrix will

be like Pa1a2,a3a4Pã4ã3,ã2ã1 . The corresponding P1 in (6) is a column vector with length

sixteen, in which the elements are like Pa1a2,a2ã2Pa2ã2,ã2ã1 .

Remark 1.4 Segmented Markov Models

Another alternative model is the segmented Markov model which relaxes the stationary
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condition (Chen and Zhou (2010)). Considering a three-state segmented Markov model

{ξ1, ξ2, ξ3} that each state contributes total length W1, W2 and W3 and has its own

p-values p1, p2 and p3. Two constraints on these p-values are 1 − (1 − p1)(1 − p2)(1 −

p3) = 0.05 by the Bonferroni approximation on the overall 0.05 significance level and

p1
W1

= p2
W2

= p3
W3

that the p-values are proportional to their contributed length. Given

change points that separate different hidden states ξ’s, each parameter set can be esti-

mated respectively. As such, Theorem 1 and Theorem 4 can be applied to calculate the

palindrome occurrence rate for each set and their corresponding thresholds.

Remark 1.5 Hairpin Structures

It is of interest to consider DNA palindromes with gaps. When a gap exists at the center

position of a DNA palindrome, the single strain segment may form a hairpin secondary

structure (Leach (1994)). Theorem 1 can be extended to calculate the occurrence rate

for such patterns. Consider a palindrome with the half-length ≥ L and a gap with length

β at the center position of the palindrome, then the probability to see such a pattern

given a start position is P ′
0 T

L−1diag((P β − P β−2)P̃ ) when β ≥ 2 and P ′
0 T

L−1diag(PP̃ )

when β = 1, where P̃ is the transition matrix with the index order (A C G T) for row

and (T G C A) for column. The technical derivation is in the Appendix A.2.

Theorem 2 Under the same assumption discussed in Theorem 1, the PLS score for the

ith palindrome is defined as Xi = ∥Ii∥/L conditional on ∥Ii∥ ≥ L. As such, the MGF

for Xi is

KPLS(t) ≡ E
(
eXit | ∥Ii∥ ≥ L

)
=

et

λM

P ′
0 T

L−1(I − et/L T )−1(I − T )P1. (8)

Remark 2.1 iid model

When the Markov model is reduced to the iid model,

KPLS(t) =
∞∑

k=L

ekt/L(γk − γk+1)/γL =
et(1− γ)

1− et/Lγ
.
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Theorem 3 Under the same assumption discussed in Theorem 1, the BWS score is

defined as Xi = − log(P (Ii)) conditional on ∥Ii∥ ≥ L. Then, the MGF for Xi is

KBWS(t) ≡ E[eXit | ∥Ii∥ ≥ L] =
1

λM

v′(t)(I −Q(t))−1(Q(t))L−1u(t), (9)

where v(t) = (v1(t) v2(t) v3(t) v4(t))
′ is defined as vi(t) =

(
[(I−T )P0]i

)1−t
; Q(t) is defined

as Qij(t) = (Tij)
(1−t); and u(t) = (u1(t) u2(t) u3(t) u4(t))

′ is defined as ui(t) =
(
[P1]i

)1−t

with i = 1, . . . , 4.

Remark 3.1 iid model

When the Markov model is reduced to the iid model,

KBWS(t) =
(1− γ)1−t

1− γt

(
γt
γ

)L

, (10)

where γt = P ′
0(t)P2(t) = 2[(πAπT)

1−t + (πCπG)
1−t]. To provide a more general approxi-

mation for the p-value of maximum of (1), we develop Theorem 4.

Theorem 4 Let N be a Poisson process with constant rate λ0 > 0 and let random

variables X1, . . . , Xn
iid∼ fθ0(·) with the MGF exp(ϕ(θ)). Let λ1 and θ1 satisfy two

conditions : (a) wλ1ϕ
′(θ1) = b. (b) log(λ1/λ0) − (ϕ(θ1) − ϕ(θ0)) = 0. Let W → ∞ as

w → ∞ such that W − w → ∞. Then

P0( max
0<s<W

SNw(s) ≥ b)

≈ 1− exp

{
−(W − w)νλ1,θ1(b− λ0µ0)e

−I(b)w
(
2πwλ1[ϕ̈(θ1) + ϕ̇2(θ1)]

)−1/2
}
,

where νλ1,θ1 = 1−E0e
−Sτ+(θ1−θ0)

(1−e−(θ1−θ0))E0Sτ+

and I(b) = b(θ1 − θ0)/w − (λ1 − λ0). The definition of

Sτ+ and the proof of Theorem 4 are put online.

Remark 4.1

Theorem 4 follows Theorem 1 of Chan and Zhang (2007) but extends their result to

allow more varieties of scores on the events. The assumptions of Theorem 4 include that

the event can be modeled as a Poisson process and the scores for those events are iid.

It has been reported that the approximation error percentage (compared to the Monte

Carol simulation) is less than 5% when W = 20w and w = 9 unit length in Tu (2012).

However, in such an application to search non-random palindrome clusters, the window
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size 9 bp can not cover even one palindrome. Thus, the issue of choosing w is addressed

by efficiently searching the clusters. The criterion should be that w needs to be large

enough to cover the clusters but not too large to dilute its density. In our experience,

500 to 1,000 bp is a reasonable size of w to search the palindrome clusters of the herpes

virus genomes. Another example appeared in Chan and Zhang (2007) that they used the

window size 245 to search GATC clusters as DAM sites in an E. coli genome sequence.

3 Real Data Analysis and Simulations

We studied 27 herpes virus genome sequences among which bohv1 with total length

135,301 bp is chosen as our model sequence. Two replication origins of bohv1 have

been reported in the literature (Leung et al. (2005)) and there exist distinct deviations

among its average rate (0.00178), Markov model estimate (0.00109) and the iid estimate

(0.00073). Its transition matrix and stationary probabilities are estimated as

Pbohv1 =



A C G T

A 0.1854 0.3288 0.3556 0.1303

C 0.1258 0.2932 0.4347 0.1463

G 0.1343 0.4512 0.2994 0.1151

T 0.1141 0.3151 0.3695 0.2012


,

πbohv1 = ( 0.1354 0.3588 0.3654 0.1405 ) . (11)

We also employed a second-order Markov model on bohv1, and got the occurrence

rate estimator 0.00113. The closeness of this value to that from a first-order Markov

model (0.00109) suggests the appropriateness of a first-order Markov model for this

sequence. We followed the criterion that minimum half length times the square of the

occurrence rate is most close to 0.16 proposed in Leung et al. (2005). Thus, among

the 27 herpes virus sequences, we use L ≥ 6 as the palindrome criterion for 5 sequences

including bohv1, cehv1, hsv2, muhv4 and thv, and L ≥ 5 for the remaining 22 sequences.

3.1 Real Data Analysis

We downloaded from the EBI Nucleotide Sequences database 27 herpes virus genome

sequences. For each sequence, we estimated its own transition matrix and stationary

probabilities. Theorem 1 was then applied to estimate the null occurrence rate for each
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Figure 1: 27 herpes virus genomic sequences were downloaded from the EBI Nucleotide

Sequences database. Two methods for estimating the null palindrome rates are presented,

including the average rate and the Markov model based estimator. We used the abbrevi-

ation for naming the genome sequences that was used in Leung et al. (2005).

sequence. These results are compared with the average rate estimates in Figure 1. As

shown, the average rate estimates have higher values except for the sequence athv3.

Based on these two occurrence rate estimates and given the total length for each se-

quence, Theorem 4 is applied to derive the 0.05 significance thresholds for the scan

statistics of PLS and BWS, shown in Figure 2. Both the PLS and the BWS scan scores

of bohv1, hhv6 and hhv8 become significant at the 0.05 thresholds when the average

rate estimator is replaced by the Markov rate estimate. These results suggest that the

Markov rate estimate is potentially more powerful in detecting non-random clusters.

Figure 3 presents a more detailed analysis for bohv1. For both PLS and BWS plots,

two peaks occurs at position 113,488 and 124,582, and they are close to two replication

origins respectively at positions 111,080–111,300 (OriS) and 126,918–127,138(OriS) (Le-
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(a) PLS method
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(b) BWS method
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Figure 2: The thresholds based on the two occurrence rate estimates for the 27 herpes

virus genomic sequences are compared. The solid circles label the thresholds derived by

the average rates and the empty circles by the Markov model estimates. The crosses are

the maximum scores for each sequence.

bohv1 Scores of Thresholds by Thresholds by
Sequence Two Peaks Markov Model Average Method

PLS 8.67 7.84 10.08

BWS 105.3 100.9 127.4

Table 1: Two peaks which are close to two replication origins of bohv1 happen to share

the same scores for both PLS and BWS. Markov model estimate provides a more robust

occurrence rate estimate against non-random clusters which leads to more appropriate

threshold values and gains power.

ung et al. (2005)). The scores and the threshold values by both the Markov rate estimate

and the average rate are summarized in Table 1. The scores are above the thresholds by

the Markov rate and below that by the average rate. The analysis based on the Markov

rate estimate is consistent with the hypothesis that non-random palindrome clusters

may play a role to search the replication origins, proposed by Chew et al. (2007). The

discrepancies between these two methods could be due to the non-random palindrome

clusters of bohv1 which cause the inflation of the average rate. The Markov rate esti-

mates are based on the letter frequencies and the pair frequencies of the whole genome

in which the effect from those clusters becomes negligible.
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Figure 3: The PLS and BWS scan scores are shown verse their genomic positions of

bohv1. The blue horizontal lines are the thresholds by our occurrence rate estimate and

the green lines are by the average rates. The red circles label the position of the replication

origins of bohv1. Two peaks of PLS and BWS occurs at position 113,488 and 124,582,

and they are close to two replication origins respectively at positions 111,080–111,300

(OriS) and 126,918–127,138 (OriS) (Leung et al. (2005)).
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No hot-spots λ̂i λ̂M λ̄

iid random sequences 0.00073 0.00073 0.00071

Markov random sequences 0.00073 0.00109 0.00101

Table 2: Three methods for estimating the palindrome occurrence rate are compared on

both iid and Markov random sequences. If the model is correctly specified, both model

calculation estimators are consistent with the mean rate. If the model is not correct, λ̂M

still performs well but λ̂i does not.

3.2 Simulation Study

When there exists no non-random clusters, the palindrome events along these random

sequences could be well approximated by a homogeneous Poisson process, for either a

Markovian sequence or an iid sequence (Leung et al. (2005)). In this case, the aver-

age rate is the maximum likelihood estimator (MLE) for the occurrence rate and can

be treated as a target reference. Table 2 shows that when iid random sequences are

generated, all the three methods perform equally well. However, when Markov random

sequences are generated, the iid model-based estimator 0.00073 falls below 27.7% of the

target 0.00101. The reason is that the iid model is a sub-model of the Markov model

while the reverse is not true. Thus, the Markov model is a better choice than the iid

model.

We designed a simulation experiment to investigate the power performance of the

estimates when hot-spot regions exist for a first-order Markov model. We used Pbohv1

and πbohv1 to generate stationary random sequence of length 150,000 and then simulated

the hot-spots by inserting various intensity of palindromes that are resampled from the

bohv1 palindrome bank. The length distribution of this bank is shown in Table 3. We

set five 1,000 bp regions with palindrome occurrence rates (r1, r1, r1, r2, r2)× λ̂M , where

λ̂M = 0.00109 is the Markov rate estimate of the bohv1 sequence.

We chose r1 = 20 to make the average rate close to that of bohv1 and let r2 ∈

{6, 7, 8, 9, 10} to check their power performance. The palindrome insertion for each

hot-spot includes three steps: (a) to generate a Poisson random number M̂ with mean

1000 λ̂Mri; (b) to resample M̂ palindromes from the bohv1 palindrome bank; (c) to

start at M̂ uniformly random positions inside the 1,000 bp segments, the DNA letters

are replaced with the resampled palindromes. For each generated sequence, both Markov
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half length 6 7 8 9 10 11 12

counts 132 54 22 10 12 4 4

half length 13 14 15 16 17 18 > 19

counts 1 0 0 1 0 1 0

Table 3: The length distribution of the palindromes collected from bohv1. The genome

length is 135,301 bp and the total number of palindromes (half length ≥ 6) is 241.

rate and average rate are estimated and their corresponding threshold values are derived

by Theorem 4. The comparisons between the two estimate methods on occurrence rates,

threshold values and powers based on 250 replicas are presented in Table 4. The powers

for those hot-spots with intensity r1 = 20-fold intensity reach one for both two methods

of all cases and thus are omitted from the table.

When there exists no hot-spot (r1 = r2 = 0), both methods match very well

on estimating the occurrence rate and thus share similar thresholds. When the three

hot-spots are generated (r1 = 20 and r2 = 0), the average rate becomes 0.00151 (39%

increase) while the Markov rate is 0.00111 (2% increase), resulting in threshold values

9.21 and 7.97 for PLS, and 122.40 and 102.34 for BWS. When r1 = 20 and r2 increases

up to 10, the difference made by the Markov estimate is no more than 3%, while that by

the average rate goes up to 54%. The PLS and BWS threshold values for our Markov

method are virtually the same and that for the average method goes more than 23%.

Evidently, our method gains more power.

We further applied a hidden Markov model (HMM) to generate segmented Markov

DNA sequences. We first generated a three-state-Markov chain St ∈ {ξ1, ξ2, ξ3} whose

stationary probabilities are (0.8, 0.1, 0.1) for 1 ≤ t ≤ 30. Given each state St = ξi,

we used its own transition matrix to generate the DNA letters of length 5,000. Thus,

we generated a segmented Markovian DNA sequence of length 150,000 (Chen and Zhou

(2010)). We used Pbohv1 as the transition matrix for ξ1 and added 0.05 on the second and

the third column and deducted 0.05 from the first and the fourth columns of Pbohv1 to

generate the transition matrix for ξ2 and then we exchanged the addition and deduction

to generate that for ξ3. By doing so, ξ2 has higher CG ratio and ξ3 has lower CG ratio

compared to that of bohv1 and the average transition matrix keeps the same as Pbohv1.

The stationary probabilities and the occurrence rates for the three states are summarized
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PLS

r1 r2
Markov Model Average Method

λ̂M Threshold Powers λ̄ Threshold Powers

0 0 0.00109 7.90 0.000 0.000 0.00109 7.88 0.000 0.000

20 0 0.00111 7.97 0.000 0.000 0.00151 9.21 0.000 0.000

20 6 0.00111 7.98 0.644 0.616 0.00161 9.53 0.480 0.464

20 7 0.00111 7.97 0.756 0.776 0.00164 9.63 0.636 0.628

20 8 0.00112 7.99 0.844 0.836 0.00165 9.67 0.708 0.716

20 9 0.00111 7.99 0.920 0.900 0.00166 9.74 0.840 0.800

20 10 0.00111 7.99 0.972 0.964 0.00168 9.79 0.912 0.916

BWS

r1 r2
Markov Model Average Method

λ̂M Threshold Powers λ̄ Threshold Powers

0 0 0.00109 101.65 0.000 0.000 0.00109 101.45 0.000 0.000

20 0 0.00111 102.22 0.000 0.000 0.00151 118.62 0.000 0.000

20 6 0.00111 102.34 0.644 0.608 0.00161 122.40 0.452 0.460

20 7 0.00111 102.28 0.736 0.768 0.00164 123.41 0.640 0.572

20 8 0.00112 102.41 0.856 0.828 0.00165 123.78 0.696 0.708

20 9 0.00111 102.39 0.912 0.884 0.00166 124.41 0.812 0.788

20 10 0.00111 102.39 0.972 0.956 0.00168 124.91 0.892 0.908

Table 4: Powers are compared for using λ̂M and λ̄ to estimate the null occurrence rates

of DNA palindromes when five 1,000 bp hot-spots are inserted with relative intensity

(r1, r1, r1, r2, r2) into a 150,000 bp DNA sequence generated by a Markov model. r1 =

r2 = 0 is presented as the control group that no palindromes are inserted. Powers are

defined as the frequencies of detecting the hot-spot based on 250 replicates. For the hot-

spot region with r1 = 20, the power reaches 1 and hence is not shown in the table. Only

the powers for the two sites with r2 intensity are shown. λ̄ tends to overestimate the

occurrence rates and constructs an overly conservative test, leading to power loss.
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State A C G T Occurrence Rate

ξ1 0.1354 0.3588 0.3654 0.1405 0.00109

ξ2 0.0833 0.4138 0.4162 0.0867 0.00310

ξ3 0.1874 0.3038 0.3146 0.1941 0.00049

Table 5: Three hidden states (ξ1, ξ2, ξ3) are constructed to generate the segmented Markov

model. The letter frequencies and the palindrome occurrence rates for the three states ξ1,

ξ2 and ξ3 are presented. ξ2 has a higher CG ratio and ξ3 has a lower one. The stationary

probability distribution for (ξ1, ξ2, ξ3) is (0.8, 0.1, 0.1).

in Table 5.

In Table 6, we compare the power performance of the average method and the

Markov method when the underlying sequence follows a segmented model. Table 6 has

similar results as that in Table 4. The two methods, by the Markov model and the

average rate, match very well when no hot-spot exists. When hot-spots constitute a

significant portion of the total counts, the average rate is inflated to result in power loss

and, by contrast, our Markov method is robust against the hot-spot effect and gains

more power in detecting the non-random clusters.

In summary, both simulations of the first-order Markov model and the segmented

model show that the average rate can overestimate the occurrence rate seriously due to

the hot-spots effect and lead to power loss eventually. On the other hand, the Markov

rate estimate is robust against the hot-spots and can maintain the threshold values

appropriately and thus gains more power than the average rate method.

4 Discussion

In scan statistics, the average rate method is popular for estimating the null occurrence

rate. In this paper, however, we report that the average rate method does not always

work. The average rate can overestimate the null occurrence rate up to 50% above

the actual number, because the hot-spots have the potential of contributing to a large

portion of the number of events, especially when the null occurrence rate is very low.

Thus, we propose an estimator based on a Markov model and define it as a function of the

Markov parameters so we can estimate the Markov parameters by the letter frequencies

and the adjacent pair frequencies without using the number of events. Therefore, as
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PLS

r1 r2
Markov Model Average Method

λ̂M Threshold Powers λ̄ Threshold Powers

0 0 0.00109 7.91 0.000 0.000 0.00109 7.89 0.004 0.000

20 0 0.00111 7.96 0.000 0.000 0.0015 9.18 0.000 0.000

20 6 0.00111 7.97 0.632 0.656 0.00161 9.54 0.488 0.512

20 7 0.00111 7.98 0.768 0.764 0.00164 9.62 0.628 0.644

20 8 0.00111 7.98 0.896 0.868 0.00164 9.64 0.780 0.712

20 9 0.00111 7.99 0.940 0.936 0.00166 9.70 0.872 0.836

20 10 0.00112 7.99 0.948 0.924 0.00167 9.78 0.884 0.880

BWS

r1 r2
Markov Model Average Method

λ̂M Threshold Powers λ̄ Threshold Powers

0 0 0.00109 101.74 0.000 0.000 0.00109 101.54 0.000 0.000

20 0 0.00111 102.17 0.000 0.000 0.00150 118.34 0.000 0.000

20 6 0.00111 102.27 0.636 0.640 0.00161 122.57 0.464 0.488

20 7 0.00111 102.32 0.744 0.764 0.00164 123.36 0.584 0.600

20 8 0.00111 102.33 0.876 0.848 0.00164 123.53 0.776 0.728

20 9 0.00111 102.39 0.944 0.924 0.00166 124.18 0.860 0.804

20 10 0.00112 102.4 0.932 0.916 0.00167 124.72 0.888 0.872

Table 6: Powers are compared for using λ̂M and λ̄ to estimate the null occurrence rates

of DNA palindromes when five 1,000 bp hot-spots are inserted with relative intensity

(r1, r1, r1, r2, r2) into a 150,000 bp DNA sequence generated by a three-state segmented

Markov model. The parameters of the three states are in Table 5. r1 = r2 = 0 is

presented as the control group that no palindromes are inserted. Powers are defined as

the frequencies of detecting the hot-spot based on 250 replicates. For the hot-spot region

with r1 = 20, the power reaches 1 and hence is not shown in the table. Only the powers

for the two sites with r2 intensity are shown. λ̄ tends to overestimate the occurrence

rates and constructs an overly conservative test, leading to power loss.
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long as the size of the hot-spot regions is much smaller than the total length of the

genomes, the estimated Markov parameters would have little influence on the presence

of the hot-spots, rendering our method insensitive to the hot-spot effect. Our study

suggests that a model based estimator might be more appropriate than the average rate

for null occurrence rate estimation, especially when the Poisson process involves rare

events with hot-spot regions, which are quite common in epidemiology studies involving

rare diseases.
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