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Abstract For many neurological disorders, prediction of disease
state is an important clinical aim. Neuroimaging provides detailed
information about brain structure and function from which such pre-
dictions may be statistically derived. A multinomial logit model with
Gaussian process priors is proposed to: (i) predict disease state based
on whole-brain neuroimaging data and (ii) analyze the relative infor-
mativeness of different image modalities and brain regions. Advanced
Markov chain Monte Carlo methods are employed to perform poste-
rior inference over the model. This paper reports a statistical assess-
ment of multiple neuroimaging modalities applied to the discrimina-
tion of three Parkinsonian neurological disorders from one another
and healthy controls, showing promising predictive performance of
disease states when compared to non probabilistic classifiers based
on multiple modalities. The statistical analysis also quantifies the
relative importance of different neuroimaging measures and brain re-
gions in discriminating between these diseases and suggests that for
prediction there is little benefit in acquiring multiple neuroimaging
sequences. Finally, the predictive capability of different brain regions
is found to be in accordance with the regional pathology of the dis-
eases as reported in the clinical literature.

1. Introduction. For many neurological and psychiatric disorders, making a
definitive diagnosis and predicting clinical outcome are complex and difficult prob-
lems. Difficulties arise due to many factors including overlapping symptom profiles,
comorbidities in clinical populations and individual variation in disease phenotype
or disease course. In addition, for many neurological disorders the diagnosis can only
be confirmed via analysis of brain tissue post-mortem. Thus, technological advances
that improve the efficiency or accuracy of clinical assessments hold the potential to
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2 FILIPPONE ET AL.

improve mainstream clinical practice and to provide more cost-effective and person-
alized approaches to treatment.

In this regard, combining data obtained from neuroimaging measures with sta-
tistical discriminant analysis has recently attracted substantial interest amongst
the neuroimaging community (e.g., Klöppel et al. (2008); Marquand et al. (2008)).
Neuroimaging data present particular statistical challenges in that they are often
extremely high dimensional (in the order of hundreds of thousands to millions of
variates) with very few samples (tens to hundreds). Further, multiple imaging se-
quences may be acquired for each participant, each aiming to measure different
properties of brain tissue. Each sequence may in turn give rise to several different
measurements. In the present work, we will use the term ’modality’ to describe such
a set of measurements. In response to those challenges, most attempts to predict
disease state from neuroimaging data employ the Support Vector Machine (SVM;
see e.g. Schölkopf and Smola (2001)) based on information obtained from a sin-
gle modality. Such an approach however is not able, in any statistical manner, to
fully address questions related to the importance of different modalities. As we will
show in the experimental section of this paper, even the multi-modality SVM-based
classifier proposed in Rakotomamonjy et al. (2008) lacks a systematic way of char-
acterizing the uncertainty in the predictions and in the assessment of the relative
importance of different modalities.

In this work, we adopt a multinomial logit model based on Gaussian process
(GP) priors (Williams and Barber, 1998) as a probabilistic prediction method that
provides the means to incorporate measures from different imaging modalities. We
apply this approach to discriminate between three relatively common neurological
disorders of the motor system based on data modalities derived from three distinct
neuroimaging sequences. In this application we aim to characterize uncertainty with-
out resorting to potentially inaccurate deterministic approximations to the integrals
involved in the inference process. Therefore, we propose to employ Markov chain
Monte Carlo (MCMC) methods to estimate the analytically intractable integrals as
they provide guarantees of asymptotic convergence to the correct results. The par-
ticular structure of the model and the large number of variables involved, however,
make the use of MCMC techniques seriously challenging (Filippone, Zhong and Giro-
lami, 2012; Murray and Adams, 2010). In this work, we make use of reparametriza-
tion techniques (Yu and Meng, 2011) and state-of-the-art sampling methods based
on the geometry of the underlying statistical model (Girolami and Calderhead, 2011)
to achieve efficient sampling.

The remainder of the paper is structured as follows: in section 2, we describe the
motivating application of statistical discrimination of movement disorders from brain
images. In section 3 we introduce the multinomial logit model with GP priors and
in section 4 we present the associated MCMC methodology. In section 5 we report

imsart-aoas ver. 2011/05/20 file: aoas11.tex date: April 24, 2012



3

a comparison of MCMC strategies applied to our brain imaging data and in section
6 we investigate the predictive ability of different data sources and brain regions,
comparing the results with a non-probabilistic multi-modality classifier based on
SVMs. Section 7 shows how predictive probabilities can be used to refine predictions,
and section 8 draws conclusions commenting on the questions that this methodology
addresses in this particular application.

2. Discriminating among Parkinsonian Disorders.

2.1. Introduction to the disorders. For this application, we aim to discriminate
between healthy control subjects (HCs) and subjects with either multiple system
atrophy (MSA), progressive supranuclear palsy (PSP) or idiopathic Parkinson’s dis-
ease (IPD), which are behaviorally diagnosed motor conditions collectively referred
to as ’Parkinsonian disorders’. MSA, PSP and IPD can be difficult to distinguish
clinically in the early stages (Litvan et al., 2003) and carry a high rate of misdiag-
nosis, even though early diagnosis is important in predicting clinical outcome and
formulating a treatment strategy (Seppi, 2007). For example, MSA and PSP have
a much more rapid disease progression relative to IPD and carry a shorter life ex-
pectancy after diagnosis. Further, IPD responds relatively well to pharmacotherapy,
while MSA and PSP are both associated with a modest to poor response. Thus,
automated diagnostic tools to discriminate between the disorders is of clinical rele-
vance where they may help to reduce the rate of misdiagnosis and ultimately lead
to more favourable outcomes for patients.

2.2. The clinical problem of discriminating among Parkinsonian Disorders. In
this study, we employed magnetic resonance imaging (MRI) as it is non-invasive,
widely available and, unlike alternative measures such as positron emission tomog-
raphy, does not involve exposing subjects to ionizing radiation. A detailed discussion
of the imaging modalities employed in this study is beyond the scope of the present
work but see Farrall (2006) for an overview. Briefly, the different imaging modalities
employed here measure different properties of brain tissue: T1-weighted imaging is
well-suited to visualizing anatomical structure, while T2-weighted structural imag-
ing often shows focal tissue abnormalities more clearly. Diffusion tensor imaging
(DTI) does not measure brain structure directly, but instead measures the diffusion
of water molecules along fibre tracts in the brain, thus quantifying the integrity of
the fibre bundles that connect different brain regions (see Basser and Jones (2002)
for an introduction to DTI).

A review of the neuropathology of the Parkinsonian disorders is also beyond
the scope of this work but briefly we note that MSA and PSP are characterized by
distinct cellular pathologies and subsequent degeneration of widespread and partially
overlapping brain regions. For MSA, affected regions include the brainstem, basal
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ganglia (e.g. caudate and putamen), cerebellum and cerebral cortex (Wenning et al.,
1997). Note that MSA is sometimes subdivided into Parkinsonian and cerebellar
subtypes (MSA-P and MSA-C respectively) but for the present work we included
both variants in the same class. For PSP the brainstem and basal ganglia both
undergo severe degeneration (Hauw et al., 1994) although cortical areas are also
affected. In contrast, IPD is characterized in the early stages by relatively focal
pathology in the substantia nigra (a pair of small nuclei in the brainstem), which is
difficult to detect using conventional structural MRI where the scans of IPD patients
can appear effectively normal (Seppi, 2007).

There is however, some evidence that changes in IPD can be detected using DTI
(see, e.g., Yoshikawa et al. (2004)). Thus, it is of interest to investigate which data
modalities are best suited to discriminating between MSA, PSP, IPD and HCs, which
has practical implications in planning future diagnostic studies: MRI scans are costly,
so it is desirable to know which data modalities provide the best discrimination of
the diagnostic groups and which scans can be omitted from a scanning protocol to
avoid wasting money acquiring scans that do not provide additional predictive value.

2.3. State of the art in diagnosis and prediction. We are aware of only one exist-
ing study that employed a discriminant approach to diagnose these diseases based
on whole-brain neuroimaging measures (Focke et al., 2011). This study employed
binary SVM classifiers to discriminate MSA-P from IPD, PSP and HCs based on
a similar sample to the present study. The authors reported that (i) PSP could be
accurately discriminated from IPD, (ii) that separation of the MSA-P group from
IPS and from controls was only marginally better than chance and (iii) that no
separation of the IPD group from HCs was possible. The authors did not attempt
to combine the distinct binary classifiers to provide multi-class predictions.

The problem of combining different modalities in classification models can be seen
as a Multiple Kernel Learning (MKL) problem (Lanckriet et al., 2004; Sonnenburg
et al., 2006). A recent MKL approach to classification referred to as ’simpleMKL’
has been proposed by Rakotomamonjy et al. (2008). SimpleMKL is based on a SVM
learning algorithm and shows good performance relative to other MKL approaches;
for this reason we will consider it as a baseline against which we aim to compare the
performance of the proposed approach.

2.4. Data acquisition and preprocessing. Eighteen subjects with MSA, 16 sub-
jects with PSP, 14 subjects with IPD (all in mid disease stage) and 14 HCs were
recruited according to clinical and experimental criteria described in Blain et al.
(2006). For each subject, a T2-weighted structural image, a T1-weighted spoiled
gradient recalled (SPGR) structural image and a DTI sequence were acquired and
preprocessed (see the appendix for the details on acquisition.)

All images were screened by a trained radiologist and were examined for gross
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Figure 1. Examples of each data source (after preprocessing), taken from the same slice and subject

structural abnormalities, including white matter abnormalities. Diffusion tensor im-
ages were then preprocessed according to an in-house protocol and were summarized
by measures of fractional anisotropy (FA) and mean diffusivity (MD) at every brain
location (see Basser and Jones (2002)). SPGR images were preprocessed using the
DARTEL toolbox included in the SPM software package (www.fil.ion.ucl.ac.uk/spm),
which involved non-linear registration to a common reference space, segmentation
into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in addi-
tion to smoothing with a 6mm isotropic Gaussian kernel.

For this analysis, whole-brain (unmodulated) GM and WM images derived from
the SPGR scans, the T2 structural images plus the FA and MD images derived
from the DTI sequence were used for classification, yielding a total of five distinct
modalities for each subject. For illustrative purposes, an example of each type of
image after preprocessing is provided in figure 1.

3. Multinomial logit model with GP priors. The aim of this study is
twofold: the first is to reliably estimate the probability that new subjects have MSA,
PSP, IPD, or none of them and the second is to assess the importance of different
sources of information in the discrimination among these diseases. We cast this
problem as a multi-modality classification problem, whereby we associate class labels
corresponding to MSA, PSP, IPD, and HCs to n subjects described by s = 1, . . . , q
distinct representations (i.e. modalities), each defined by ds covariates.

Denote each modality by an n × ds matrix Xs. Let {y1, . . . ,yn} be the set of
observed labels for the n subjects. Assume a 1-of-m coding scheme (m = 4 in our
application), whereby the membership of subject i to class c is represented by a
vector yi of length m where (yi)r = 1 if r = c and zero otherwise.

In this work we propose a probabilistic multinomial logit classification model
based on Gaussian process (GP) priors to model the probability πic := p(yic =
1|X1, . . . , Xq) that subject i belongs to class c. The multinomial logit model assumes
that the class labels yi are conditionally independent given a set ofm latent functions
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fc that model the πic using the following transformation:

(1) πic =
[exp(fc)]i

[
∑m

r=1 exp(fr)]i
.

We assume that the latent variables fc are independent across classes and drawn
from GPs, so that fc ∼ N (0,Kc). The assumption of independence between variables
belonging to different classes can be relaxed in cases where there is prior knowledge
about that. Note that the assumption of conditional independence of the class labels
given the latent variables is not restrictive as the prior over the latent variables
imposes a covariance structure that is reflected on the class labels.

In order to assess the importance of each modality in the classification task, we
propose to model each covariance Kc as a linear combination of covariances obtained
from the q modalities, say Cs with s = 1, . . . , q. We constrain the linear combination
of covariance functions to be positive definite by modeling Kc =

∑q
s=1 exp[θcs]Cs.

Note that given the additivity of the linear model under the GP it is possible to
interpret this model as one where each latent function is a linear combination of
basis functions with covariances Cs. Since the data modalities employed in this study
potentially have different numbers of features which are are also scaled differently,
we employed two simple operations to normalize the images prior to classification.
First we divided each feature vector by its Euclidean norm then standardised each
feature to have zero mean and unit variance across all scans. We then chose a
covariance for each modality to be Cs = XsX

T
s . Given that the modalities are

normalized and that the covariances are linear in the data sources Xs, the inference
of the corresponding weights allows to draw conclusions on their relative importance
in the classification task. In this work we imposed Gamma priors on the weights
exp[θcs], but for the sake of completeness and to rule out any dependencies of the
results from the parametrization of the weights and the specification of the prior, we
have also explored the possibility to use a Dirichlet prior inferring the concentration
parameter; we will discuss this in more detail in the sections reporting the results.

We note here that the representation in eq. 1 is redundant as class probabilities
are defined up to a scaling factor of the exponential of the latent variables. Choosing
a model in which m− 1 latent functions are modeled and one is fixed would remove
any redundancy, but, as described in Neal (1999) “forcing the latent values for one
of the classes to be zero would introduce an arbitrary asymmetry into the prior”.
Also, modeling m− 1 latent functions would not allow a direct interpretation of the
importance of different modalities given by the hyper-parameters.

We used all features to perform the classification because in our experience feature
selection does not provide a benefit in terms of increasing the accuracy of classifica-
tion models for neuroimaging data but does increase their complexity. In line with
this, a recent comparative analysis of alternative data preprocessing methods on
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a publicly available neuroimaging dataset indicated that feature selection did not
improve classification performance but did substantially increase the computation
time (Cuingnet et al., 2011).

We now discuss how to make inference for the proposed model. In order to keep the
notation uncluttered, we will drop the explicit conditioning on Xs. We will denote
by f the (nc)×1 vector obtained by concatenating the class specific latent functions
fc, and similarly by y and π the vectors obtained by concatenating the vectors y·c

and π·c. Finally, let the m× q matrix θ denote the set of hyper-parameters, and K

be the matrix obtained by block-concatenating the covariance matrices Kc.
Given the likelihood for the observed labels, the prior over the latent functions,

and the prior over the hyper-parameters, we can write the log-joint density as

L = log[p(y, f ,θ)] = log[p(y|f)] + log[p(f |θ)] + log[p(θ)] .

One of the goals of our analysis is to obtain predictive distributions for new
subjects. Let y∗ denote the corresponding label; the predictive density is obtained
by marginalizing out parameters and latent functions via

p(y∗|y) =
∫

p(y∗|f∗)p(f∗|f ,θ)p(f ,θ|y)df∗dfdθ .

In this work, we propose to estimate this integral by obtaining posterior samples
from p(f ,θ|y) using MCMC methods. The Appendix gives details of how Monte-
Carlo estimates of this predictive distribution may be obtained. Obtaining samples
from p(f ,θ|y) is complex because of the structure of the model that makes f and
θ strongly coupled a posteriori. Also, there is no closed form for updating f and θ

using a standard Gibbs sampler, so samplers based on an accept/reject mechanism
need to be employed (Metropolis-within-Gibbs samplers) with the effect of reducing
efficiency. This motivates the use of efficient samplers to alleviate this problem as
discussed next.

4. MCMC sampling strategies.

4.1. Riemann Manifold MCMC methods. The proposed model comprises a set
of m latent functions, each of which has dimension n, and a set of q × m weights.
Given the large number of strongly correlated variables involved in the model, we
need to employ statistically efficient sampling methods to characterize the posterior
distribution p(f ,θ|y).

Recently, a set of novel Monte Carlo methods for efficient posterior sampling
has been proposed in Girolami and Calderhead (2011) which provides promising
capability for challenging and high dimensional problems such as the one considered
in this paper. In most sampling methods (with the exception of Gibbs sampling)
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it is crucial to tune any parameters of the proposal distributions in order to avoid
strong dependency within the chain or the possibility that the chain does not move
at all. As the dimensionality increases, this becomes a hugely challenging issue, given
that several parameters need to be tuned and are crucial to the effectiveness of the
sampler.

The sampling methods developed in Girolami and Calderhead (2011) aim at pro-
viding a systematic way of designing such proposals by exploiting the differential
geometry of the underlying statistical model. The main quantity in this differential
geometric approach to MCMC is the local Riemannian metric tensor which is the
expected Fisher Information (FI) that defines the statistical manifold; see Girolami
and Calderhead (2011) for full details. The intuition behind manifold MCMC meth-
ods is that the statistical manifold provides a structure that is suitable for making
efficient proposals based on Langevin diffusion or Hamiltonian dynamics. In the
case of the sampling of f using RM-HMC, let Gf be the metric tensor computed
as the FI for the statistical manifold of p(y|f) plus the negative Hessian of p(f |θ)
(see the appendix for further details). Introducing an auxiliary momentum variable
p ∼ N (p|0, Gf ) as in HMC, RM-HMC can be derived by solving the dynamics
associated with the Hamiltonian:

H(f ,p) = − log[p(y, f |θ)] +
1

2
log |Gf |+

1

2
pTG−1

f
p+ const.

Given that the metric tensor is dependent on the value of f , the Hamiltonian
is therefore non-separable between p and f , and a generalized leapfrog integrator
must be employed (Girolami and Calderhead, 2011). RM-HMC can be seen as a
generalization of Hybrid Monte Carlo (HMC) (Neal, 1993), where the mass matrix
is now substituted by the metric tensor.

4.2. Ancillary and Sufficient augmentation. The proposed classification model
is hierarchical, and the application of a Metropolis-within-Gibbs style scheme, sam-
pling f |θ,y then θ|f ,y, leads to poor efficiency and slow convergence. This effect has
drawn a lot of attention in the case of hierarchical models in general (Papaspiliopou-
los, Roberts and Sköld, 2007; Yu and Meng, 2011), and recently in latent Gaussian
models (Murray and Adams, 2010; Filippone, Zhong and Girolami, 2012). In or-
der to decouple the strong posterior dependency between θ and f we can apply
reparametrization techniques, whereby we introduce a new set of variables νc re-
lated to the old set of latent variables by a transformation fc = g(νc,θc). This
transformation can be chosen to achieve faster convergence as studied, e.g., in Pa-
paspiliopoulos, Roberts and Sköld (2007), and should be designed to handle both
strong and weak data limits, namely situations where data overwhelm the prior or
not. In the terminology of Yu and Meng (2011), we identify two particular cases,
namely Sufficient augmentation (SA), and Ancillary augmentation (AA). In the SA
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scheme the sampling of θ is done by proposing θ′|θ, f ,y. In the case of weak data,
as it is the case in this application, the SA parametrization is inefficient, given the
strong coupling between f and θ. In contrast, in the AA scheme, the new set of
latent variables νc is constructed to be a priori independent from θ; this is a good
candidate to provide an efficient parametrization in cases of weak data. To see this,
in the case of no data, the posterior over hyper-parameters and the newly defined
latent variables νc corresponds to the prior which is factorized and easy to explore.

This parametrization makes the νc ancillary for y. We propose to realize this by
defining fc = Lcνc, where Lc is any square root of Kc (in the remainder of this paper
we will consider Lc as the Cholesky factor of Kc). This sampling scheme amounts to
sampling θ′|θ,ν1, . . . ,νm,y. In the next section we will report experiments showing
the relative merits of SA and AA combined with manifold methods, with the ultimate
goal of achieving efficiency in inferring latent functions and hyper-parameters in our
application. All implemented methods were tested for correctness as proposed by
Geweke (2004), and convergence analysis was performed using the R̂ potential scale
reduction factor (Gelman and Rubin, 1992).

5. Comparison of MCMC sampling strategies. In this section we investi-
gate the efficiency of various MCMC sampling strategies in our application. Table
1 lists the sampling approaches that we considered for this study. All approaches
make use of RM-HMC for sampling the latent variables with different metrics. Ap-
proach (a) uses a simple isotropic metric so that RM-HMC is effectively HMC with
an identity mass matrix. Approaches (c), (d), and (f) use the metric derived from
the FI (see appendix), while approaches (b) and (e) use an alternative homoge-
neous metric, defined as F̂ = K−1 + diag(πp)− ΦpΦ

T
p . Note that this is similar to

the definition of the metric tensor outlined in the appendix, except πp and Φp are
defined by the prior frequency of the classes in the training set instead of by the
likelihood. Employing this homogeneous metric is less efficient than employing a po-
sition specific metric but it holds two practical advantages: (i) it has a substantially
lower computational cost since it does not recompute and invert the metric tensor
at every step and (ii) the explicit leapfrog integrator may be used in place of the
generalized (implicit) leapfrog integrator used in Girolami and Calderhead (2011).

In sampling the hyper-parameters, approaches (a)-(c) effectively employ an HMC
proposal with identity mass matrix with SA parametrization. Approach (d) uses RM-
HMC with metric derived from the FI as shown in appendix, whereas approaches
(e) and (f) make use of Metropolis-Hastings (MH) with an identity covariance with
AA parametrization.

Approach (a) can be viewed as a simple baseline approach since it does not incor-
porate any knowledge on the curvature of the target distribution and attempts to
explore the parameter space by isotropic proposals. It is presented primarily as a ref-
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Table 1

Sampling schemes evaluated

Approach p(f ′|f ,θ) p(θ′|f ,θ)
Sampler Metric Sampler Metric Scheme

(a) RM-HMC I RM-HMC I SA

(b) RM-HMC F̂ RM-HMC I SA
(c) RM-HMC Gf RM-HMC I SA
(d) RM-HMC Gf RM-HMC Gθ SA

(e) RM-HMC F̂ MH – AA
(f) RM-HMC Gf MH – AA

erence for the other approaches. Approaches (b) and (c) employ manifold methods
to efficiently sample the latent variables only while approaches (d) also applies them
to sample the hyper-parameters. Approaches (e) and (f) employ manifold methods
for the latent variables and an MH sampler with AA for the hyperparameters.

For all the experiments that follow, we applied an independent Gamma prior to
each weight exp(θcs), with a = b = 2, where a and b refer respectively to shape
and rate parameters. This prior is relatively vague but nevertheless constrained the
sampler to a plausible parameter range.

We tuned each of the sampling approaches described above using pilot runs and
assessed convergence by recording when all sampled variables had R̂ < 1.1. Accord-
ing to this criterion, sampling approaches (e) and (f) converged after 1,000 iterations
for the latent function variables and after a few thousands of iterations for the hy-
perparameters. Sampling approaches (a-d) did not converge even after 100,000 iter-
ations, so will not be considered further. This demonstrates that the structure of the
model poses a serious challenge in efficiently sampling f and θ, no matter how effi-
cient are the individual samplers employed in the Metropolis-within-Gibbs sampler.
For all subsequent analysis, we discarded all samples acquired prior to convergence
(burn-in). A plot reporting the evolution of Gelman and Rubin’s shrink factor vs
the number of iterations (for the first 10,000 iterations) for the slowest variable to
converge is reported in figure 2. The left and right panel of figure 2 correspond to
the slowest variable in the approach (e) for the multi-modality and multi-region
classifiers (see next section) respectively; in both cases the slowest variable was one
of the hyper-parameters.

For the latent function variables, we used an RM-HMC trajectory length of 10
leapfrog steps and a step size of 0.5 for sampling approaches (e) and (f). This ap-
peared to be near optimal and yielded an acceptance rate in the range of 60-70%,
while keeping correlation between successive samples relatively low. For the hyper-
parameters, a step size of 0.2 yielded an acceptance rate in the range of 60-70%
although correlation between successive samples remained high (see below).

We report the Effective Sample Size (ESS) (Geyer, 1992) for each method in ta-
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Figure 2. Convergence analysis: plot reporting the evolution of Gelman and Rubin’s shrink factor vs
the number of iterations for the slowest variable to converge in approach (e) for the multi-modality
classifier (left panel) and the multi-region classifier (right panel).

Table 2

Efficiency of converged sampling schemes (Multi-source classifier) Min and max refer to the
minimum and maximum ESS across all sampled variables

Approach mean % ESSf mean % ESSθ

(min, max) (min, max)

(e) 27.04 (5.31, 48.06) 0.34 (0.21, 0.48)
(f) 24.11 (5.71, 42.86) 0.31 (0.19, 0.42)

ble 2, expressed as a percentage of the total number of samples. The ESS is an
autocorrelation based method that is used to estimate the number of independent
samples within a set of samples obtained from an MCMC method. Both approaches
(e) and (f) sampled the latent function variables relatively efficiently although there
was some variability between different variables. Sampling of the hyperparameters
was much more challenging than the sampling of the latent function variables, and
the MH samplers achieved an ESS less than 0.5% for all variables. Thus, for sub-
sequent analysis we ran a relatively long Markov chain (5 million iterations) which
we thinned by a factor of 500, ensuring independent sampling for all variables. Note
that RM-HMC with metric F̂ and RM-HMC with matrix Gf (approaches (e) and
(f)) performed approximately equivalently for sampling the latent function variables.
Thus, for the remainder of this paper we focus on the results obtained from the sam-
pler that employed the homogeneous metric F̂ for the latent functions and MH for
the hyperparameters (i.e. approach (e)) owing to its lower computational cost. The
results reported in this section are in line with what observed in a recent extensive
study on the fully Bayesian treatment of models involving GP priors (Filippone,
Zhong and Girolami, 2012). In particular, it has been reported that the sampling of
the latent variables can be done efficiently using RM-HMC and a variant with the
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homogeneous metric F̂ , and that for the hyper-parameters the MH proposal with
the AA parametrization is a good compromise between efficiency and computational
cost.

6. Predictive accuracy and assessment of neuroimaging data modali-

ties. In this section, we have three main objectives: first, we aim to demonstrate
that the predictive approach we propose can accurately discriminate between multi-
ple neurological conditions. Second, we investigate which neuroimaging data modal-
ities carry discriminating information for these disorders and whether greater pre-
dictive performance can be achieved by combining multiple modalities. Finally, we
investigate the predictive ability of different brain regions for discriminating between
each of the disorders.

For estimating the predictive ability of the classifiers we performed four-fold cross-
validation (CV) In the CV procedure, we randomly partitioned the data into four
folds so that each CV fold contained approximately the same frequency of classes
as in the entire data set. We then carried out the inference leaving out one fold that
we used to assess the accuracy of the proposed method; leaving out one fold at a
time it is possible to obtain an estimate of performance on unseen data.

We compared the performance of the proposed multinomial logit model with
simpleMKL. Similar to the proposed method, simpleMKL allows an optimal linear
combination of data sources or brain regions to be inferred from the data but unlike
the proposed approach, simpleMKL is not a probabilistic model. In the MKL liter-
ature, each data source is referred to as a ’kernel’ which corresponds to a covariance
function for the proposed multinomial logit model. Since SVMs do not support true
multi-class classification, we employed a ’one-vs-all’ approach to combine multiple
binary classifiers to provide a multi-class decision function. This has the consequence
that simpleMKL estimates a linear combination of kernels that provides optimal ac-
curacy across all binary classification decisions, and is therefore not able to estimate
an independent set of kernel weighting factors for each class. To ensure the com-
parison with the multinomial logit model was as fair as possible we used nested
cross-validation to find an optimal value for the SVM regularization parameter C.
We achieved this by performing an inner ’leave-one-out’ cross validation cycle (’val-
idation’) within each outer four fold cycle (’test’) while we varied C logarithmically
across a wide range of values (10−5 to 105 in steps of 10). We selected the value of C
that provided the optimal accuracy on the validation set, before applying it to the
test set. To further examine whether any performance difference could be attributed
to the extension of simpleMKL to multiclass classification, we also compared the
accuracy of simpleMKL and the proposed model on all possible binary classification
decisions. For simpleMKL, we used the implementation provided by Rakotomamonjy
et al. (2008) where we used the ’weight variation’ stopping criterion and the default
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options.
We employed two measures of predictive performance (i) balanced classification

accuracy, which measures the mean number of correct predictions across all classes
assuming a zero-one loss and (ii) a multi-class Brier score, which also quantifies the
confidence of classifier predictions on w unseen samples and can be computed as the
following error measure: B = 1

w

∑w
i=1

∑m
c=1(π

∗

ic − y∗ic)
2. Note that SimpleMKL does

not provide probabilistic predictions, so the Brier score is not appropriate to evaluate
the performance of this algorithm. Gneiting and Raftery (2007) reported studies on
the connections between the Brier score and predictive accuracy in the case of two
class classification, reporting that simple accuracy is a proper score unlike the Brier
score which is strictly proper. We are unaware of any results on the connections
between the two scores in the case of multi-class classification.

For comparison we also present predictive accuracy measures derived from clas-
sifiers using each data source independently, and a classifier using an unweighted
linear sum of data sources (i.e. Kc =

∑q
s=1Cs for all c).

6.1. Multi-modal classifier. We first studied the classification problem based on
the five data sources obtained from the three modalities, namely GM, WM, T2, FA,
and MD, as explained in section 2, so that q = 5. The overall performance of each
model is summarized in table 3. Note that all classifiers exceeded the predictive
accuracy that would be expected by chance (i.e. p < 0.05, χ2 test).

Table 3

Predictive accuracy (multi-source classifier). Min and max values refer to minimum and maximum
values across CV folds

Input data Accuracy (min, max) Brier score (min, max)

1 GM only 0.627 (0.321, 0.854) 0.667 (0.636, 0.712)
2 WM only 0.603 (0.350, 0.771) 0.653 (0.609, 0.710)
3 T2 only 0.545 (0.500, 0.604) 0.663 (0.619, 0.695)
4 FA only 0.569 (0.442, 0.688) 0.675 (0.645, 0.703)
5 MD only 0.623 (0.533, 0.750) 0.631 (0.588, 0.680)
6 Weighted sum 0.598 (0.350, 0.708) 0.588 (0.517, 0.662)
7 Unweighted sum 0.610 (0.400, 0.708) 0.553 (0.469, 0.646)
8 SimpleMKL 0.418 (0.143, 0.625) -

From table 3, it is apparent that classifiers based on the T2 and FA data sources
achieved lower classification accuracy than all the other data sources, suggesting
they are not ideally suited to discriminating between these disorders. Further, the
linear combinations of sources did not achieve higher accuracy than the best in-
dividual data source and the highest accuracy was obtained using the GM images
only, although the difference is relatively small. The SimpleMKL classifier produced
lower accuracy than either linear combination derived from the multinomial logit
model. The mean accuracy for the binary classifiers over all pairs of classes was
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Figure 3. Posterior distributions for the predictive weights for the multi-modality classifier (A)
and the multi-region classifier (B). Panel A: Data sources: (1) GM, (2) WM, (3) T2, (4) FA, (5)
MD. Panel B: Regions: (1) brainstem, (2) cerebellum, (3) caudate, (4) middle occipital gyrus, (5)
putamen, (6) all other regions

slightly higher for the GP classifiers (0.807) relative to simpleMKL (0.741), suggest-
ing that most of the performance difference between simpleMKL and the proposed
multinomial logit approach can be attributed to the extension of simpleMKL to the
multiclass case.

In contrast to the outcomes for classification accuracy, the linear combinations
of data sources produced more accurate probabilistic predictions than any of the
individual modalities, indicative of a disjunction between categorical classification
accuracy and accurate quantification of predictive uncertainty (table 3). This is
probably a result of this model having greater flexibility to scale the magnitude of
the latent function variables.

6.1.1. Covariance parameters for the latent functions. The posterior distribution
of the weights is an important secondary outcome from this model and is summarized
in figure 3A. These hyper-parameters collectively describe the relative contribution
(or weighting factors) for each modality in deriving the prediction for each class.

The posterior class distribution for covariance weights in this model is relatively
flat across all modalities for each class although each weight has slightly greater
magnitude for the PSP and MSA classes relative to the other classes. Overall, the
results from this section provide evidence that all imaging modalities contain similar
information for discriminating disease groups. In other words, we found little benefit
from combining multiple neuroimaging sequences. This has the important implica-
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Figure 4. Weights of the neuroimaging modalities (left panel) and brain regions (right panel) ob-
tained by SimpleMKL across the four folds. Left panel: Data sources: (1) GM, (2) WM, (3) T2, (4)
FA, (5) MD. Right panel: Regions: (1) brainstem, (2) cerebellum, (3) caudate, (4) middle occipital
gyrus, (5) putamen, (6) all other regions

tion that for the purposes of discrimination it appears sufficient to acquire a single
structural MRI scan (i.e. SPGR image), which is comparatively rapid and inexpen-
sive to acquire. Although the T2 images are also relatively inexpensive, they do not
offer the same discriminative value and the DTI images, which are time-consuming
and expensive to acquire, and appear to offer little additional benefit.

In the left panel of Fig. 4 we report the kernel weights obtained by SimpleMKL
across the four folds. We can see how the values of the weights are not consistent
across the folds; for example, GM is given zero weight in the fourth fold, whereas
it seems to be important for the other three cases. Modality T2, instead, is con-
sistently given zero weight across the four folds suggesting that this might not add
any information to the other modalities. This is in contrast with the results of the
probabilistic classifier that suggests that there is not much evidence in the data to
completely ignore the information from one of the modalities.

6.2. Multi-region classifier. In this section, we illustrate how the proposed method-
ology may be used to estimate the predictive value of different brain regions for
classification although we will investigate the relative contribution of different brain
regions in greater detail and comment on the clinical significance of these findings
in a separate report. For neurological applications, it is primarily important to as-
sist interpretation, since it is desirable to identify differential patterns of regional
pathology for each disease. While there are other methods to achieve this goal, an
advantage of the proposed approach is that it provides a full posterior distribution
over regional weighting parameters. For this analysis we used only the GM data
modality, since it showed the highest discrimination accuracy, and used an anatom-
ical template (Shattuck et al., 2008) to parcellate the GM images into six regions:
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Table 4

Efficiency of converged sampling schemes (multi-region classifier). Min and max refer to the
minimum and maximum ESS across all sampled variables

Approach mean % ESSf mean % ESSθ

(min, max) (min, max)

(e) 8.52 (2.37, 34.85) 0.28 (0.11, 0.64)
(f) 9.42 (2.32, 35.44) 0.31 (0.11, 0.50)

(i) brainstem, (ii) bilateral cerebellum, (iii) bilateral caudate, (iv) bilateral middle
occipital gyrus, (v) bilateral putamen and (vi) all other regions, so that now q = 6.
As described above, the cerebellum, brainstem, caudate and putamen are affected
to varying degrees in MSA, PSP or IPD. The middle occipital gyrus region was se-
lected as a control region, as this is hypothesized to contain minimal discriminatory
information.

All sampling approaches performed similarly for this problem in that none of
the sampling approaches (a-d) converged after 100,000 iterations and sampling ap-
proaches (e) and (f) converged after 1,000 iterations for the latent function variables
and after a few thousands of iterations for the hyperparameters (see the right panel
of figure 2). Table 4 reports the efficiency of the sampling approaches (e) and (f) as
they were the only ones that converged in a reasonable number of iterations.

The sampling efficiency for the latent function values was somewhat lower for
this problem than for the multi-modal prediction problem described in the previous
section. On average, the sampling efficiency for the hyper-parameters was approxi-
mately equivalent to the values reported above, but the minimum ESS was slightly
lower. To accommodate this, we thinned all Markov chains by a factor of 1,000
ensuring approximately independent sampling for all variables.

Predictive accuracy measures for the multi-region classifier are presented in ta-
ble 5. All classifiers exceeded the predictive accuracy that would be expected by
chance (p < 0.05, χ2 test) except the simpleMKL classifier which performed very
poorly for this dataset. As for the multi-modal classifier, we compared the predictive
accuracy of simpleMKL to the logit model across all binary classification decisions.
In this case, the models produced similar accuracy (0.765 for the GP classifiers, 0.780
for simpleMKL. This provides further evidence that the suboptimal performances
of simpleMKL can be traced to the extension of the binary SVM to the multi-class
setting. In particular, it is likely that the suboptimal performance of simpleMKL in
the multi-class context is due to the fact that it does not support different weighting
factors for each class. In this case, the classifiers using weighted and unweighted
covariance sums of brain regions produced the most accurate predictions and quan-
tified predictive confidence most accurately. Again, there was negligible difference
between the classifiers using the weighted and unweighted sums.
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Table 5

Predictive accuracy (multi-region classifier). Min and max values refer to minimum and maximum
values across CV folds

Input data Accuracy (min, max) Brier score (min, max)

1 Brainstem only 0.578 (0.500, 0.688) 0.595 (0.555, 0.643)
2 Cerebellum only 0.478 (0.333, 0.562) 0.634 (0.593, 0.643)
3 Caudate only 0.349 (0.221, 0.520) 0.737 (0.693, 0.764)
4 Mid. Occipital Gyrus only 0.419 (0.333, 0.479) 0.741 (0.677, 0.773)
5 Putamen only 0.438 (0.354, 0.521) 0.668 (0.604, 0.718)
6 All other regions 0.424 (0.321, 0.563) 0.753 (0.724, 0.779)
7 Weighted sum 0.614 (0.500, 0.708) 0.547 (0.499, 0.593)
8 Unweighted sum 0.624 (0.500, 0.708) 0.546 (0.501, 0.592)
9 SimpleMKL 0.229 (0.111, 0.375) -

6.2.1. Covariance parameters for the latent functions. The posterior distribution
of the weights for the multi-region classifieris summarized in figure 3B. The posterior
means of the weighting factors were again relatively constant between brain regions
and also showed a high variance. This indicates that the relative contribution of dif-
ferent brain regions was not strongly determined by the data and that we should be
cautious about interpreting the relative contributions of the different brain regions
using this approach. Nevertheless, the clearest differential effect among regions was
for the cerebellum, where the lower quartile of the posterior distribution for the MSA
class was greater than the mean of all other regions. In addition, the brainstem also
made a small positive contribution towards predicting the MSA class. As described
above, both the cerebellum and brainstem are known to undergo severe degenera-
tion in MSA. The strongest positive contributions to predicting the PSP class were
obtained from the brainstem, caudate and putamen, which once again are regions
known to show the extensive degeneration in PSP. The regional weighting factors
for the IPD and control groups were somewhat flatter, which is consistent with fo-
cal nature of the degeneration in early-mid IPD and with the observation that the
brain scans of these groups are difficult to discriminate from one another. However,
the posterior suggests that the cerebellum showed a relatively increased weighting
relative to other regions for the IPD class, and that the putamen was assigned a
relatively increased weighting for the IPD and HC classes, which is congruent with
the expectation that these classes are characterized by greater GM concentration in
those regions relative to the PSP and MSA classes respectively. From the current
analysis, it is difficult to determine the regions having the greatest predictive value
for discriminating the PD from the HC group. As future work, separate binary clas-
sifiers trained to discriminate these classes directly may be beneficial in this respect.
We notice also that the control region (i.e. the middle occipital gyrus) was assigned
comparatively low weighting for every class.

Overall, the results from this section suggest that distributed patterns of abnor-
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mality across multiple brain regions are necessary to accurately discriminate between
classes. The neurodegenerative disorders studied in the present work have relatively
well-defined regional pathology, but even in this case the most accurate predictions
were obtained from the classifiers using all brain regions.

Again, the analysis of the weights obtained by simpleMKL (right panel of Fig. 4)
shows that the non-probabilistic classifier obtains sparse solutions for the weights
that are not consistent across the folds, thus preventing one from being able to
properly assess the role played by each region in the classification task.

6.3. Results with the Dirichlet prior. Here we briefly discuss the results obtained
when imposing a Dirichlet prior on the weights exp(θcs), focusing only on the multi-
region classifier for the sake of brevity. The sampling strategy was as in approach (e),
with the difference that the update of the hyper-parameters followed a MH sampling
with proposal based on Dirichlet distributions. In order to test the robustness to prior
specification, we added a further level in the hierarchy of the model by imposing
a prior over the concentration parameter of the Dirichlet distribution, so that the
model had a joint density p(y, f ,θ, α) = p(y|f)p(f |θ)p(θ|α)p(α). Including a hyper-
prior over the concentration parameter has the effect of averaging out the choice
of the prior and inferring the concentration parameter allows inference of levels of
sparsity from the data.

From the computational perspective, the sampling of α induces a further level
of correlation in the chains. We ran thorough convergence tests, and we obtained
similar convergence and efficiency results as in the previous analysis. We chose a
fairly diffuse hyper-prior p(α) as exponential with unit rate, so that E[α] = 1, which
corresponds to a uniform prior over the simplex for the weights.

Note that data has quite a weak effect in informing the posterior over the concen-
tration parameter, as they are three levels apart in the hierarchy (Goel and DeGroot,
1981). Nevertheless, comparing prior and posterior over α, we notice a slight reduc-
tion in the interquartile range from [0.29, 1.39] to [0.51, 1.49] and a shift of the mean
from 1 to 1.16, thus supporting a diffuse (non-sparse) prior over the weights. In
terms of questions addressed in this particular application, the results obtained by
adding a hyper-prior lead to the same conclusions.

7. Refining predictions using predictive probabilities. We have discussed
how a probabilistic approach allows us to assess the importance of different neu-
roimaging modalities in disease classification. Another advantage of employing a
probabilistic classification model is that predictive probabilities quantify the uncer-
tainty in the outcome, which allow a ”reject option” to be specified. Under this
framework, the researcher specifies in advance a confidence threshold below which
a prediction is considered to be inconclusive. In cases where the maximum class
probability does not exceed this threshold, the final decision may be deferred to
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Figure 5. A: Accuracy-reject curve for multi-modality classifiers. B: Accuracy-reject curve for
multi-region classifiers.

another classification model or a human expert. To investigate the suitability of
the proposed classifier for this approach and to assess the accuracy of the classifier
across varying rejection thresholds, we plotted accuracy-reject curves for each of the
classifiers investigated in this work (figure 5). These were constructed by varying the
rejection threshold monotonically from 0 to 1 in steps of 0.01. At each threshold,
we computed the rejection rate as the proportion of samples for which the most
confident class prediction did not exceed the rejection threshold and measured the
accuracy of the remaining samples. The accuracy-reject curves were then generated
by plotting accuracy as a function of rejection rate.

The accuracy-reject curves show that: (i) predictive performance increases mono-
tonically across most rejection rates and (ii) the multi-source classifiers perform
better than any of the individual modalities or brain regions across most rejection
rates. This implies that the multi-source classifiers not only make fewer errors, but
also quantify predictive uncertainty more accurately than any of the individual re-
gions. At high rejection thresholds, the multi-modality classifier is outperformed by
the GM modality, owing to two confident misclassifications deriving from the FA
and MD modalities, suggesting the possibility of atypical white matter pathology in
these subjects.

8. Conclusions. In this paper we presented the application of a multinomial
logit model based on GP priors to the problem of classification of neurological dis-
orders based on neuroimaging measures. The proposed model is flexible and highly
descriptive, and it can be employed in scenarios where the focus is on gaining in-
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sights into the relative importance of different data modalities or brain regions in the
application under study. Also, it allows accurate quantification of the uncertainty in
the predictions, which is crucial in several applications and especially for predicting
disease state in clinical applications.

From a statistical perspective, carrying out the inference task in the model pre-
sented in this paper and in latent Gaussian models in general represents a serious
challenge. This paper presented a combination of advanced inference techniques
based on MCMC methods that allowed us to tackle this problem in an efficient way.
Predictions for unseen data were obtained by integrating out all the parameters
in the model, thus capturing the uncertainty in the inferred parameters. We also
investigated the use of a hyper-prior to integrate out the choice of the prior.

The motivating application for this study aimed to use neuroimaging measures to
classify a cohort of 62 participants, consisting of both healthy controls and patients
affected by one of three variants of Parkinsonian disorder. We demonstrated accu-
rate classification of all disease classes, which is an improvement on the only existing
study of which we are aware of employing whole-brain neuroimaging measures to
discriminate between these disorders (Focke et al., 2011). For future work it will be
important to: (i) validate how well the predictive accuracy obtained here generalizes
to earlier disease stages and (ii) investigate methods to improve the predictive accu-
racy beyond what was reached here, which will become increasingly important when
the proposed method is evaluated in early stage disease. Construction of classifica-
tion features from brain images that better reflect the underlying pathology may
be particularly beneficial in this regard. We showed how the results of the inference
allowed us to draw conclusions regarding the relative importance of neuroimaging
measures and brain regions in discriminating between classes. We also compared
the results with SimpleMKL, a non-probabilistic multi-modality classifier based on
SVMs, which shows lower accuracy and most importantly is not able to address
questions regarding the relative importance of neuroimaging measures and brain re-
gions in a statistically consistent way. In contrast, the proposed method was able to
give insights into the predictive ability of the different neuroimaging sequences, and
suggested that all the modalities investigated in this study carry similar discrimina-
tive information. This has important implications for planning future studies, and
suggests that there is little benefit in acquiring multiple neuroimaging sequences.
Instead, for the purposes of prediction, acquiring a single structural brain image
is probably the most cost-effective approach. Another level of the analysis showed
that the proposed method was able to quantify the predictive ability of different
brain regions for discriminating between classes. Similar to the previous analysis,
this analysis showed that all regions carry some discriminative information, but at
the same time seems to indicate that some of them have greater predictive ability
than others for different classes. Further, the regional distribution of these regions
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is in accordance with the known pathology of the disorders based on the clinical
literature.

APPENDIX A: DATA ACQUISITION DETAILS

For each subject, a T2-weighted structural image, a T1-weighted spoiled gradient
recalled (SPGR) structural image and a DTI sequence were acquired using a 1.5T
GE Signa LX NVi scanner (General Electric, WI, USA). All images had whole brain
coverage and imaging parameters for the T2 weighted images and DTI sequence have
been described previously (Blain et al., 2006). Imaging parameters for the SPGR
imaging sequence were: repetition time = 18ms, echo time = 5.1 ms, inversion time =
450 ms, matrix size = 256×152, field of view (FOV) = 240×240. SPGR Images were
reconstructed over a 240×240 FOV, yielding an in-plane resolution of 0.94×0.94mm
and 124 1.5 mm thick slices. Subjects provided informed written consent, and the
study was approved by the local Research Ethics Committee.

APPENDIX B: MCMC ADDITIONAL DETAILS

Let K∗· be an m× (mn) block diagonal rectangular matrix where entries in the r-
th diagonal block contain the covariance of the test sample with the training samples
corresponding to the r-th covariance Kr. Also, let K∗∗ be an m ×m matrix where
the i, j entry is the covariance of the test sample corresponding to the covariances Ki

and Kj . A priori we assumed zero covariance across latent functions, so K∗∗ will be
diagonal. Using the properties of GPs, given f and θ, then p(f∗|f ,θ) = N (f∗|µ∗

,Σ∗)
with µ

∗
= K∗·K

−1f and Σ∗ = K∗∗ −K∗·K
−1K·∗. Given N1 independent posterior

samples for f and θ, we can estimate the integral by

p(y∗|y) ≈
1

N1

N1
∑

i=1

∫

p(y∗|f∗)p(f∗|f(i),θ(i))df∗ .

Each of the former integrals can be estimated again by a Monte Carlo sum, by
drawing N2 independent samples from p(f∗|f(i),θ(i)) which is Gaussian:

∫

p(y∗|f∗)p(f∗|f(i),θ(i))df∗ ≈
1

N2

N2
∑

j=1

p(y∗|(f∗)(j)) .

The required gradients of the joint log-density follow as ∇fL = −K−1f + y − π

and

∂L

∂θcj
= −

1

2
exp[θcj ]Tr

(

K−1
c Cj

)

+
1

2
exp[θcj ]f

T
c K

−1
c CjK

−1
c fc +

∂p(θc)

∂θcj
.

and the FI for the two groups of variables, along with the negative Hessian of the pri-
ors are Gf = K−1+diag(π)−ΦΦT and (Gθ)cjr =

1
2 exp[θcr+θcj ]Tr

(

K−1
c CrK

−1
c Cj

)
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where Φ is a (mn)×nmatrix obtained by stacking by row the matrices diag(πc). The
derivatives of the two metric tensors needed to apply RM-HMC can be computed
by using standard properties of derivatives of expressions involving matrices.
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