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Abstract

Functional magnetic resonance imaging (fMRI) is now a well established technique
for studying the brain. However, in many situations, such as when data are acquired
in a resting state, it is difficult to know whether the data are truly stationary or
if level shifts have occurred. To this end, change-point detection in sequences of
functional data is examined where the functional observations are dependent and
where the distributions of change-points from multiple subjects are required. Of
particular interest is the case where the change-point is an epidemic change – a
change occurs and then the observations return to baseline at a later time. The
case where the covariance can be decomposed as a tensor product is considered with
particular attention to the power analysis for detection. This is of interest in the
application to fMRI, where the estimation of a full covariance structure for the three-
dimensional image is not computationally feasible. Using the developed methods, a
large study of resting state fMRI data is conducted to determine whether the subjects
undertaking the resting scan have non-stationarities present in their time courses.
It is found that a sizeable proportion of the subjects studied are not stationary. The
change-point distribution for those subjects is empirically determined, as well as its
theoretical properties examined.
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1 Introduction

An increasing number of applications from biology to image sequences in medical imag-
ing involve data that can be well represented as functional time series. This has lead
to a rapid progression of theory associated with functional data, particularly regard-
ing complex correlation structures present within and across many observed functional
data. These structures require methods that can deal both with internal and external
dependencies between the observations. Nonparametric techniques for the analysis of
functional data are becoming well established (see Ferraty and Vieu [19] or Horváth and
Kokoszka [26] for a good overview), and this paper sets out a nonparametric framework
for change-point analysis within and across dependent functional data.

Given its generality, applications for the methodology are fairly widespread, but in this
paper, we are in particular interested in functional magnetic resonance imaging (fMRI),
an image acquisition modality used to study the brain in-vivo. fMRI is concerned with
characterising relative blood flow changes, based on the changes in the proportions of
oxy- and deoxy-hemoglobin levels in regions of the brain, the so called Blood Oxygena-
tion Level Dependent (BOLD) response (Ogawa et al. [42]). Changes in the BOLD
response can be used as a surrogate indirect measure of brain (neuronal) activity due to
the increased need for oxygen being associated with neuronal activation. Change-point
analysis has recently been highlighted as a useful technique in fMRI (Lindquist et al.
[37], Robinson et al. [46]) where different subjects react differently to stimuli such as
stress or anxiety (as the time of brain state change is much less clearly linked to the
stimuli than in an experiment involving movement, for example, where the observed
movement and brain activity will be intrinsically linked). A particular type of exper-
iment that has recently become very popular is the resting state scan, where subjects
are imaged while lying in the scanner “at rest”. These data are used to infer connec-
tions in the brain which are not due to external stimuli, see for example Damoiseaux et
al. [14]. This amounts statistically to an investigation of covariance structures between
brain regions, which heavily relies on the brain activity being stationary. In this paper,
we establish a framework for testing whether this is the case or whether the observed
time series contain level shifts, including segments which return to the original state
after some unspecified duration. The latter activation-baseline pattern is a standard
assumption in most fMRI experiments.

Time series obtained in fMRI studies typically contain all the features with which func-
tional data analysis is concerned. The data are autocorrelated, recorded at a large num-
ber of locations with the associated spatial dependencies, where these spatial data are
intrinsically discretized records of a functional response (the brain as a whole). Mod-
elling the brain as a single (albeit very complex 3 dimensional) function is a natural
representation, as the brain works as a single unit rather than a disconnected series of
voxels (voxel (volume element) - 3D element within an image, similar to a pixel in a
2D picture). While the “functional” in “f”MRI refers to time, in all the descriptions in
this paper, the functional data is the whole brain as a 3-dimensional object, while the
observations at different time points are referred to as the time series.

In most activation fMRI studies, responses are modelled using linear regression and a
known experimental design matrix, but in some cases, such as those with resting state
data, no experimental design is known. Indeed in such situations, the hypothesis of
whether the data are stationary is of interest, in that subsequent analyses often involve
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empirical covariances which make little sense in the presence of non-stationarities. Since
level shifts and in particular epidemic changes in the mean are a reasonable alterna-
tive to stationarity as a first approximation for fMRI, change-point techniques become
increasingly relevant, with a need to extend the analysis to cases beyond at most one
change (AMOC). However, most change-point techniques are not particularly designed
for functional data. A considerable amount of literature deals with process control using
change-point techniques starting as early as Page [43]. Most of these methodologies are
based on an assumed underlying model (such as iid errors or autocorrelated error struc-
tures for example) for univariate or multivariate time series. While in many applications,
the error structure is well known, in fMRI there is still considerable controversy where
everything from AR(p) errors (Worsley et al. [51]) to fractional noise error processes
(Bullmore et al. [12]) has been proposed. Unlike in classic process control techniques,
in the present paper we do not assume a specific parametric error structure but revert
to non-parametric weak dependent errors in order to limit the assumptions made. In
addition, if univariate tests are considered at each voxel location in the brain, the im-
portant issue of multiple comparisons requires attention. By contrast, when assuming
functional observations, the brain is treated as a whole thus circumventing this problem.
Epidemics is another area where considerable use of change-point theory has been made.
In this context, change-point detection is usually based on the theory of Poisson point
processes (see for example Diggle et al. [15]), which has distinct advantages when the
data are sparsely and irregularly sampled in both time and space, with a small number
of possible spatial locations for changes. However, in fMRI, the data are very densely
sampled and changes could take place on either a small or large spatial scale making
such Poisson models more difficult to specify.

Current change-point methodology for fMRI data is applied voxelwise across spatial
locations to find epidemic changes using process control theory (Robinson et al. [46]),
requiring a mass univariate approach for this very high dimensional multivariate or
functional data, with all the problems that then ensue (particularly of spatially correlated
multiple comparisons and having to choose an error structure). For this reason, the non-
parametric functional approach considered here is of particular interest in the analysis
of fMRI data. By considering each complete image (approximately 105 observations) as
a single functional observation, we derive a true functional change detection procedure
under a weak dependent error process model. However, to achieve this computationally,
it is necessary to incorporate the three dimensional spatial structure of the observations
to estimate the covariance functions required. This motivates our investigation of the
multidimensional separable structures derived in this paper.

The paper comprises three main ideas, each of which alone provides methodology with
application to fMRI analysis, and combined enable a complete estimation of the distri-
bution of the time of structural breaks across a number of fMRI subjects.

Firstly, in Section 3, orthonormal projections for functional data are investigated. Tensor
based separable covariance functions for image data are developed, giving rise to separa-
ble projections. Tensor based methods have been previously considered in neuroimaging
data (Aston and Gunn [3], Beckmann and Smith [6]), but not where the tensor products
are taken over functions rather than vector spaces. Indeed, the use of functional data
representations of the entire brain is not a particularly well studied idea, with it only
being explicitly considered in a few papers, as for example in Zipunnikov et al. [52].

The second idea, given in Section 4 is that of using change-point analysis for functional
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data within fMRI. Epidemic change-points are shown to be a good starting point as
an alternative to stationarity in fMRI and the resulting theory integrating separable
projections and epidemic changes provides considerable insight into the performance
of the estimators in practice. While the use of separable projections would not be
limited to change-point analysis, it is shown here that they have particularly appropriate
properties in this case, in that a large enough separable change will switch the estimated
system in such a way that the change is no longer orthogonal to the projection subspace
making the change detectable (cf. Corollary 5.1). However, due to the small number
of time observations relative to the number of brain location observations, small sample
properties of the tests and estimators are investigated in Section 6.2 and a revised,
more robust, change-point test introduced to alleviate estimation issues. The preceding
analysis all takes place for a single subject.

The final idea, expanded in Section 8, allows the combination of multiple subjects’
change-point times, to evaluate a distribution of the change-point times across the pop-
ulation of subjects. In many applications, such as fMRI, sets of functional observations
are recorded from a number of subjects indicating a hierarchical structure, and the dis-
tribution of the change-points over all subjects is an item of interest (Robinson et al.
[46]). In addition to giving consistent estimators within one set of dependent observa-
tions, in Section 8.1 those estimators are used to find the distribution as well as density
of the change-points in hierarchical models, where several independent sets of time series
including a random change are observed. In this case empirical distribution functions
and kernel density estimators based on the estimated change-points for each individual
time series yield consistent results (cf. Theorems 8.1 and 8.2).

The data analysis of nearly 200 resting state scans is given throughout the paper as the
methodology is developed. In Section 2 details about the data set are given and examples
of data shown. In Section 3.3, examples indicate that epidemic changes are indeed a
good first approximation to the deviation from stationarity that can be expected. Even
though the scans are not sparsely represented in terms of basis functions, only a very
small number of basis functions are needed to detect change-points in practice (which
confirms our theoretic results). In Section 7 the test results for the data are reported
indicating that 40 – 50% of the resting scans exhibit deviations from stationarity, even
after correction for multiple comparisons across subjects. This indicates that substantial
care should be taken when combining resting state scans, as non-stationarities will likely
be present and these could greatly confound analyses based on correlations for example.
Finally, in Section 8.2 the estimators for the position and duration of the change are
given for those data sets that contained evidence of an epidemic change showing various
patterns of locations and durations for the change-points in the 200 subject sample.

For most sections, the amount of mathematical detail has been kept somewhat minimal
to hopefully make the material more accessible. However, Section 5 explains theoretical
details behind the statistical ideas in this paper, justifying our proposed analysis for
fMRI data. These insights explain why only a tiny fraction of the data’s variance is used
for the change-point procedure. Should the implementation of the procedure for fMRI
be most of interest, then this section could be skipped on first reading. However, to the
reader who is interested in applying the procedure in different applications, this section
is likely to be essential to determine whether the assumptions required are justified
in another application. In addition to the main paper, the electronic supplementary
material contains some further information regarding the more technical details of the
estimation procedures as well as the proofs of the results in the paper.
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2 Functional Magnetic Resonance Imaging: 1000 Connectome
Resting State Data

To obtain a resting state scan an individual is asked to lie in the scanner for a period of
time, usually with their eyes closed, and asked to think of nothing in particular while not
falling asleep (see for example, Damoiseaux et al. [14]). Scans of this type are used to
study the brain regions that are involved in the underlying brain activity, also sometimes
known as the default network. Various techniques used to determine this network either
explicitly or implicitly rely on stationarity of the time series (see Cole et al. [13] for an
overview of the current methods of analysis and pitfalls associated with them). However,
it is not known whether the areas just exhibit some stationary variation, or whether there
are changes in activity during the scan that are more than could be expected just as a
result of stationary variability. Indeed, it has been recently postulated that the resting
state network itself might be non-stationary, with different modes of the network active
dependent on the thought processes at the time (see work by Doucet et al. [16] and
Vanhaudenhuyse et al. [48] for examples of changes in activation patterns during resting
state scans).

Consequently, stationarity in the time series can be seen as a crucial assumption for
this kind of analysis but is by no means guaranteed. Imagine, for example, that a
strong stimulus affected the subject while undergoing the scan, such as a loud unex-
pected noise occurring during the scanning session or the person suddenly recollecting
they had forgotten something important. In such cases, the activation level of those
regions processing these stimuli will change at the same time, falsely indicating a strong
correlation between these regions in a resting state, which is in no way linked to the
default network. However, even in the default network, there is evidence that switches
take place when the mind starts wandering (Doucet et al. [16]). The thought processes
of people in the scanner are thus unlikely to always be stationary, and as such, tests to
determine possible positions of non-stationarity would enable these changes to be taken
into account.

We use data from the 1000 Connectome project which are publicly available1 (Biswal et
al. [9]). This project consists of in excess of 1200 resting state data sets. However, a
subset of this data will be used here so that confounding factors such as different scanner
types and different locations of the subjects can be ignored. The data used were from
a single site (Beijing China) and consist of 198 resting state scans, each comprising 225
time points of a 3 dimensional image of size 64 × 64 × 33 voxels with each temporal
scan being taken 2 seconds apart (1 scan was discarded due to a different orientation of
reconstruction, leaving 197 scans in the analysis below). Each scan had a polynomial
trend of order 3 removed from each voxel time series prior to estimation to remove
scanner drift and other low frequency components (Worsley et al. [51]), in addition to
being corrected for motion using the FSL software library (Jenkinson et al. [30]).

In Figure 2.1 an example of the Connectome data can be seen. The data set is a four
dimensional volume, with three spatial dimensions and one temporal dimension. At
each spatial location, there is a recording of a time series, or more relevantly for our
functional data analysis, for each time, there is a complete three dimensional volume
present. In this paper, we will consider the spatial data as a function, and the time

1The data can be accessed at http://www.nitrc.org/projects/fcon 1000/
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(a) Spatial Image of temporally averaged signal

(b) Time series of central voxel of image

Figure 2.1: Example of fMRI data set for a single subject from the 1000 Connectome
Beijing Data. The top image shows a three dimensional view of the tempo-
rally averaged brain data and is formally equivalent to the mean function for
these data. The bottom image shows the time series for the central voxel of
the image. The analysis considers all the time series of all the voxels together
(as a single functional time series).

series to be repeated (and correlated) observations of that function. This implies that
the spatial covariance function will be six dimensional, and it is this covariance that is
intrinsically of interest in resting state fMRI studies (as connectivity maps are simply
approximations to this covariance). While it might be possible in individual cases to use
a supercomputer to handle matrices of this order (see Long et al. [38] for example), in
most cases where there are large numbers of subjects to process, an approximation, or
equivalently dimension reduction will be needed, and this will now be the focus of the
next section.

3 Projections for Functional Data

In functional neuroimaging, two main analysis options are usually considered; mass
univariate analysis or projection subspace analysis. Examples of the second include
analyses such as those using eigenimages (Friston et al. [20]) and independent component
analysis (ICA) (see Beckmann and Smith [6] for example). In this paper, a projection
subspace approach will be taken.

In this section, we detail some projections that can be used for functional observations
Xt(u), u ∈ U , t = 1, . . . , n, where U is some compact set. In fMRI, this corresponds
to u being the voxel location in the brain (or a continuous analogue of a voxel), while
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t is the scan number from the total n scans taken. Thus, the complete brain itself is
treated as a single function and this function is observed n times. Of course, due to
slice timing events and voxel discretisations, this will be an approximation, but one
which naturally encodes the brain as a single observed unit. However, should a high
dimensional multivariate approach be preferred, the results in this paper will equally
apply. In addition, we will assume that each fMRI observation is made up of a common
mean function µ(u), i.e. Xt(u) = µ(u)+Yt(u) where Yt(u) are deviations from the mean
(with assumed mathematical properties {Yt(u) : 1 6 t 6 n} are elements of L2(U),
EYt(u) = 0 and form a stationary time series).

Below, we will define an orthonormal system {v̂j(·), j = 1, . . . , d} for the projection
components. Associated with each system is the score, which is determined by the inner
product of the data with the component, η̂t,l := 〈Xt, v̂l〉 =

∫
U Xt(u)v̂l(u)du.

The orthonormal system could be either chosen in advance, as in for example wavelet
based methods for functional data, or derived from the data, as in functional principal
components. In particular, if a region based analysis in fMRI of connectivity was of in-
terest, then the regions of interest can be expressed as a projection of the original data.
In such a situation, whether this regional data is stationary or not is the key question,
and thus the tests of the next section should be applied using this projection. Other-
wise, if the stationarity of the complete data is of interest rather than that of a specific
projection, then a projection should be chosen that also contains the non-stationarities.
Possible methods for choosing bases include principal component analysis (PCA) or ICA.
ICA is very popular in resting state analyses (Beckmann et al. [5]), but PCA is often
a preprocessing step in the ICA analysis and additionally is very much linked to the
analysis of covariances, which plays a prime role in connectivity analysis, and therefore
we shall concentrate on PCA here. It will also be shown in Section 5.3.2 that estimat-
ing the projections using PCA can have good power for detecting non-stationarites. As
estimation of PCA components is more complex than non-estimated bases, we will con-
centrate on this case (with analogous results for the testing and estimation procedures
of Section 4 following in the non-estimated basis function case).

3.1 Principal components

Classical dimension reduction techniques are often based on the first d principal compo-
nents, which choose a subspace explaining most variance for any subspace of an equiva-
lent dimension. The notation below is in terms of integrals, which is simply the function
based analogue of traditional multivariate vector based PCA. To elaborate, consider the
(spatial) covariance kernel of Yt(·) given by

c(u, s) = E(Yt(u)Yt(s)) (3.1)

and define the covariance operator C : L2(U)→ L2(U) by Cz =
∫
U c(·, s)z(s) ds.

Let {λk} be the non-negative decreasing sequence of eigenvalues of the covariance op-
erator and {vk(·) : k > 1} a given set of corresponding orthonormal eigenfunctions, i.e.

∫
c(u, s)vl(s) ds = λlvl(u), l = 1, 2, . . . , u ∈ U . (3.2)
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Yt(·) can be expressed in terms of the eigenfunctions

Yt(u) =
∞∑
l=1

ηt,lvl(u), (3.3)

where

ηt,l =

∫
Yt(u)vl(u) du t = 1, . . . , n, l = 1, 2, . . . (3.4)

are uncorrelated with mean 0 and variance λl. More details can for example be found
in either Bosq [10] or Horváth and Kokoszka [26].

A natural estimator in a general non-parametric setting is the empirical version of the
covariance function (analogously to standard PCA)

ĉn(u, s) =
1

n

n∑
t=1

(Xt(u)− X̄n(u))(Xt(s)− X̄n(s)), (3.5)

where X̄n(u) = 1
n

∑n
t=1Xt(u).

Usually one converts the continuous functional eigenanalysis problem to an approxi-
mately equivalent matrix eigenanalysis task. The simplest solution is a discretization of
the observed function on a fine grid. Many data sets in applications are already obtained
in this way as in the example of fMRI data used in this paper. For a discussion of this as
well as more advanced options we refer to Ramsey and Silverman [45]. In such examples
of very high-dimensional data, a PCA based on the empirical covariance matrix is com-
putationally infeasible due to the even higher-dimensionality of the covariance matrix.
The following computational trick can be applied but also shows the limitations of the
approach as the number of non-zero eigenvalues of the estimated covariance matrix is
limited by the sample size, with the associated problems for small sample sizes.

Assume that after discretization the data are given by Xt := (Xt(1), . . . , Xt(M))T ,
t = 1, . . . , n. In fMRI, M here would be the total number of voxels. The eigenanalysis
problem corresponding to the estimated covariance kernel in (3.5) is to find the eigenval-
ues of the M ×M -matrix ZZT , where Z = (X1 − X̄n, . . . , Xn − X̄n) is a M × n-matrix.
One can check that ZZT has rank(Z) 6 min(M,n) non-zero eigenvalues which coincide
with the rank(Z) 6 min(M,n) non-zero eigenvalues of the n × n- matrix ZTZ. This
is equivalent in fMRI to saying that there is a relation between the covariance matrix
of space (a huge M ×M matrix) and that of the time dimension (n × n matrix). Fur-
thermore the eigenvectors vk of ZZT can be obtained from the eigenvectors v′k of ZTZ
by

vk =
Zv′k
‖Zv′k‖

, k = 1, . . . , rank(Z).

For more details we refer to Härdle and Simar [24, Ch 8.4]. This indicates that temporal
eigenvectors and spatial eigenvectors are intrinsically linked due to the way the data
is discretely collected with no physical meaning whatsoever. Without presmoothing of
the observed data, it can easily happen that M � n (as is the case of fMRI where the
number of voxels usually far exceeds the number of time points). This implies that a
maximum of n different components can be found. Consequently, even though there are
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hundreds of thousands of voxels recorded, only a few hundred components are actually
identifiable, if the analysis proceeds in this generic way. In the case where M � n, it
is computationally much faster to calculate the eigenvectors of ZTZ and then use the
above transformation to obtain the eigenvectors of ZZT . This computational idea has
been used for magnetic resonance imaging data (anatomical imaging rather than fMRI)
in an i.i.d. setting in Zipunnikov et al. [52].

3.2 Separable covariance structures

The above discussion suggests that in many settings a loss of precision is unavoidable
when the nonparametric covariance estimator (3.5) is used with such high dimensional
data. Therefore, in this section we assume a separable data structure which reduces the
number of unknown parameters and can significantly improve computational speed as
well as accuracy at least in situations where the data structure is correctly specified. The
use of separable functions for brain imaging is well known, either for smoothing (Worsley
et al. [51]) or signal processing using techniques such as separable wavelets (Ruttimann
et al. [47]), both of which indirectly imply separable covariances.

As well as having been previously suggested for multivariate covariances for images (see
Dryden et al. [17] for an example and related references), separable covariance struc-
tures have obtained significant attention in the context of spatio-temporal statistics,
where they have been used to separate the purely temporal covariance from the purely
spatial covariance (see Fuentes [21] and Mitchell et al. [39]). While in our setup a
temporal dependency is also present we use the separability approach only on the multi-
dimensional spatial structure mainly for computational reasons to get a better and more
stable approximation of the eigenfunctions in situations where the temporal sample is
only moderately sized and the spatial structure is very high dimensional.

For clarity of explanation, two dimensional data sets will be discussed here, although
identical arguments apply for any finite number of dimensions. Indeed, the fMRI data
set we consider is three dimensional so that a three-dimensional version of the procedure
below is used.

To this end consider the set U1×U2, which is a product of two compact sets. Heuristically,
these can be thought of as the two directions in a planar image. Let Xt(u1, u2), u1 ∈
U1, u2 ∈ U2, t = 1, . . . , n, and under H0,

Xt(u1, u2) = Yt(u1, u2) + µ(u1, u2), (3.6)

where the mean function µ(·, ·) as well as the functional stationary time series {Yt(·, ·) :
1 6 t 6 n} are elements of L2(U1 × U2), EYt(u1, u2) = 0.

The restricted covariance kernel of Y1(·, ·) is assumed to fulfill

c((u1, u2), (s1, s2)) = c1(u1, s1) c2(u2, s2) (3.7)

where c1(u1, s1) is an element of L2(U1 × U1) and c2(u2, s2) an element of L2(U2 × U2),
with the full covariance function being an element of L2((U1 × U2) × (U1 × U2)). An
important example of random data having such a separable structure is the following:
Assume Y has mean 0 and covariance kernel cY (u1, s1) independent of X, which has
mean 0 and covariance kernel cX(u2, s2), then Z(u1, u2) = Y (u1)X(u2) has covariance
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kernel cY (u1, s1)cX(u2, s2). In this example the data set itself is separable from which
the separability of the covariance as well as sample covariance kernel follows.

The factors c1 and c2 can only be obtained up to a multiplicative constant as

c((u1, u2), (s1, s2)) = (αc1(u1, s1))

(
1

α
c2(u2, s2)

)
, α 6= 0,

but this does not cause a problem for the change-point procedures as will be seen below.

As in the non-parametric case one uses a discretized version of the covariance matrix for
computations, so that this approach significantly reduces the computational complex-
ity. For instance, if the observations consist of 100 data points in each direction (as is
approximately the case in one slice of an fMRI image), the covariance ’matrix’ c is a
10 000× 10 000 matrix while c1 and c2 are of dimension 100× 100 each. The covariance
matrix of a two-dimensional dataset Z can for example be obtained as the covariance
matrix of Z̃ = vec(Z), where vec is the operation that turns matrices into vectors by
’stacking’ the columns. Under the above separability assumption, the covariance matrix
of Z̃ corresponds to c = c1⊗ c2, where ⊗ is the Kronecker product. Obviously the gains
from this procedure will be even more in a 3-D fMRI image, where the corresponding
full covariance will be of the order 105 × 105.

Furthermore, several approaches to estimate c1 and c2 from the data in a multivariate
setting have been discussed in the literature. Van Loan and Pitsianis [49] propose an
algorithm which approximates a possibly non-separable covariance matrix by the closest
(in the Frobenius norm) Kronecker product which has been shown to be useful in spatio-
temporal covariance matrix approximation (Genton [22]). While this is a very appealing
approach especially in view of misspecification, it is computationally not feasible in
a high-dimensional context as it involves the calculation of singular vectors, which is
computationally very expensive. Dutilleul [18] proposes an MLE algorithm to estimate
the factors, but again for high-dimensional data it is computationally too slow. However,
their approach is related in the sense that they propose to start their algorithm with
our estimator below. This amounts to our estimator being asymptotically unbiased but
not efficient (although computationally feasible which is one of our main requirements).
Extended and related algorithms have also been proposed for the estimation of separable
covariance functions in a signal processing context (Werner et al. [50]) but are again
designed for the use in small dimensional problems.

The covariance kernels

c1(u1, s1) =

∫
U2
c((u1, z), (s1, z))dz (3.8)

and equivalently c2(u2, s2) also need to be estimated from the discretely observed data.
Here we adopt an approach based on the empirical covariance,

ĉ1(u1, s1) =

∫
U2
ĉ((u1, z), (s1, z))dz (3.9)

where ĉ((u1, u2), (s1, s2)) is the multidimensional analogue of (3.5). For discretely sam-
pled data (as in fMRI), the integral is approximated by the following sum

1

n

n∑
t=1

1

|U2|
∑
z∈U2

(Xt(u1, z)− X̄n(u1, z))(Xt(s1, z)− X̄n(s1, z)), (3.10)

10



3 Projections for Functional Data

Table 3.1: Steps to compute separable eigenfunctions

1 For each of k dimensions calculate the univariate directional covariance func-
tion with replicates across both time and the other dimensions. Note that the
unidentifiable constants do not matter so can be set to any arbitrary value,
e.g, in two dimensions, the first directional covariance function is
c1(u1, s1) = 1

n

∑n
t=1

1
|U2|
∑

z∈U2(Xt(u1, z)− X̄n(u1, z))(Xt(s1, z)− X̄n(s1, z)).

2 For each directional covariance i, i = 1, . . . , k, obtain eigenfunctions v̂i,j and

λ̂i,j .

3 Order the λ̂i,j and for each i, select select the top di, e.g. di = k
√
d, eigenfunc-

tions.
4 Take the tensor product of the selected eigenfunctions to obtain the eigenbasis,

{v̂1,j1 ⊗ . . .⊗ v̂1,jk , jl = 1, . . . , dl, l = 1, . . . , k} .

where U2 in (3.10) is the set of discrete observations of the function in the second
direction (and where in the 3-D fMRI data, |U1| = 64, |U2| = 64, and |U3| = 33 yielding
a combined |U| ≈ 135, 000). This approximation amounts to estimating covariances
in one direction while keeping the other directions fixed, and then averaging over the
results. A completely analogous definition for ĉ2(u2, s2) can be used. The individual
functions are only identified up to a multiplicative constant, but the eigenfunctions are
identifiable up to their sign. For details we refer to Section 5.3.1, while Table 3.1 gives an
outline of the overall procedure. This approach not only inherently provides more data
to estimate each set of directional components compared with the standard approach,
but also allows more than the maximum n components identifiable in the generic non-
separable procedure to be estimated as non-zero.

In real data, separability can be a somewhat difficult assumption to verify empirically.
However, even if separability is not a valid assumption, the above procedure still provides
a completely valid projection. The estimated basis functions will just no longer coincide
with the eigenfunctions. However, none of the subsequent methodology for the change-
point model which will be developed in Section 4 is limited to principal components, so
the procedure remains useful even in the case of non-separable data.

3.3 Separable principal component analysis of the Connectome data

In Figure 3.1, a resting state fMRI data set is shown after a separable dimension reduction
to 64 (= 4 × 4 × 4) dimensions was conducted, using separable projections and finding
the covariance functions using (3.9) from the previous section. Recall that the original
dimensions are 64 × 64 × 33 and therefore more than 2000 times as high. Indeed,
the traditional way of choosing the number of components uses some threshold for the
amount of variance to be explained. For the above subject (and similarly for the other
subjects) 64 components explain less than 1% of the variation, which would seem to be of
little use in a dimension reduction context. However, by performing a careful statistical
analysis of the relationship between the type of change-points to be detected and the
choice of the projection, it will be seen that in many instances, even such a small number
of components will be enough.
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4 Change-Point Testing and Estimation

Figure 3.1: Subject 69518: A 64 component functional PCA decomposition of the brain
from this subject (the number of observed spatial locations is well in excess
of 100,000, and thus this represents a massive dimension reduction). As will
be seen later, when testing for change-points, there was no evidence of an
epidemic change for this subject. This is noticeable in the figure, in that
no individual graph contains sustained deviations in one direction from the
mean above those which might be expected from examining 64 realisations
of stationarity.

4 Change-Point Testing and Estimation

4.1 Models for fMRI change-points

Activations in brain imaging are typically modelled as changes from baseline for a short
period followed by a return to baseline (see for example Worsley et al [51]) showing that
level shifts or change-point models describe well the kind of deviation from stationarity
that can be expected. However, in resting state scans, it is not known when or even if
any changes occur across time and thus change-point methods become more applicable
than traditional experimental regression response type models. In addition, epidemic
changes as the simplest model for multiple changes are a good first approximation to
the deviation from stationarity that can be expected.

The epidemic model is given by

Xt(u) = Yt(u) + µ(u) + ∆(u)1{ϑ1n<t6ϑ2n}, (4.1)

where µ(u) is the underlying activation pattern for a particular subject, and as such does
not need to be registered to a standard space for the model to be evaluated. Yt(u) is the

12



4 Change-Point Testing and Estimation

stationary statistical deviation from this underlying pattern (it is the stationary covari-
ance structure of these deviations which are of most interest in connectivity studies).
Here, ∆(u) is the simplified deviation from stationarity (a mean change that persists for
a given amount of the scan, for a fraction ϑ1 to ϑ2 of the scan, as given by the 1 indicator
function). Similarly, in a separable situation, the definition of the model is completely
analogous, for example in two dimensions,

Xt(u1, u2) = Yt(u1, u2) + µ(u1, u2) + ∆(u1, u2)1{ϑ1n<t6ϑ2n}.

The epidemic model compares to the AMOC-Model, which is given by

Xt(u) = Yt(u) + µ(u) + ∆(u)1{ϑn<t6n}. (4.2)

where once the change has occurred it persists for the rest of the scanning session. We
believe that in fMRI studies, epidemic models are more realistic, but analogous versions
of all the results of the paper are equally valid for AMOC models.

We are interested in testing the null hypothesis of no change in the mean

H0 : EXt(·) = µ(·), t = 1, . . . , n,

versus the epidemic change alternative

H1 : EXt(·) = µ(·), t = 1, . . . , bϑ1nc, bϑ2nc+ 1, . . . , n, but

EXt(·) = µ(·) + ∆(·) 6= µ(·), t = bϑ1nc+ 1, . . . , bϑ2nc, 0 < ϑ1 < ϑ2 < 1.

The null hypothesis corresponds to the cases where ϑ1 = ϑ2 = 1.

The setting for independent (functional) observations with AMOC was investigated by
Berkes et al. [8] as well as Aue et al. [4] and for specific weak dependent processes
by Hörmann and Kokoszka [25]. We will also allow for dependency (in time) of the
functional observations and focus on the model with an epidemic change, where after a
certain time the mean changes back. For this model some theoretical results relating to
the detection and estimation of changes are given in Aston and Kirch [1]. The required
mathematical setup for the problem is given in Section S.1 of the supplementary material.

4.2 Projections under the null and alternative hypotheses

In classical statistical situations, dimension reduction using principal components is use-
ful because it maximises the variance explained by the projection. In the change-point
situation, principal components are also especially suitable but for completely different
reasons. Heuristically speaking, standard variance estimators (such as the sample vari-
ance) increase in the presence of level shifts. Similarly, the variance estimate for linear
combinations of components in the multivariate situation based on empirical covariances
will increase if a change is present in the linear combination. Thus, under the alterna-
tive, the principal components of the estimated covariance matrix will likely contain a
change (indicating that assumption (5.6), given later, is fulfilled).

The subject in Figure 4.1 seems to exhibit strong deviations from stationarity – in fact
the p-value associated with this subject is below 0.001 based on the bootstrap test given

13
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Figure 4.1: Subject 01018: Dimension reduction along with possible epidemic changes
indicated (thick black line). Using the tests described, this subject was found
to have deviations from stationarity, p < 0.001, even when corrected for
multiple comparisons using FDR. This is most clearly seen in that several of
the individual graphs have large possible sustained deviations in one direction
from the mean.

in Section 7. It should be stressed that the change detection is a global hypothesis test
combined over all components considered. In this way, while taking more components
will help increase the chance that the change is present in one, it will come at the
cost of the size of the change needed in finite samples for an omnibus test of this type.
However, the subject shown in the figure did cause a rejection of the null hypothesis
of no change both in the 64 and 125 subspace size omnibus tests. While the pictures
in Figure 4.1 indicate that an epidemic change is indeed a good first approximation for
the non-stationarities occurring for this particular subject, more deviation (maybe more
change-points) do seem to be present. In Figure 4.2, a second subject is shown with a
much smaller deviation from stationarity (most of the components seem to have little
to no possible mean change present), which is significant but does not survive the false
discovery rate (FDR) correction (see Section 4.3).

14
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Figure 4.2: Subject 48501: Dimension reduction along with possible epidemic changes
indicated (thick black line). Using the tests described, this subject was found
to have deviations from stationarity, p < 0.05, but not evidence of deviations
when using FDR multiple comparisons correction. In this case some individ-
ual graphs seem to show more evidence of mean change than in Figure 3.1
but less coherence in terms of time than some in Figure 4.1.

4.3 Test statistic and estimator of change-point locations

For a d dimensional subspace projection, Aston and Kirch [1] propose to use the following
standard change-point statistics for an epidemic change on the projected data η̂t =
(η̂t,1, . . . , η̂t,d)

T :

T (A)
n =

1

n3

∑
16k1<k26n

Sn (k1/n, k2/n)T Σ̂
−1

Sn (k1/n, k2/n) ,

T (B)
n = max

16k1<k26n

1

n
Sn (k1/n, k2/n)T Σ̂

−1
Sn (k1/n, k2/n) , (4.3)

where Σ̂ is a consistent estimator for the long-run covariance matrix (as defined in (5.4))
and

Sn(x, y) =
∑

nx<j6ny

(
η̂j −

1

n

n∑
t=1

η̂t

)
.
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(a) Component 23 time series (b) Component 23: Epidemic change removed

Figure 4.3: Subject 01018: For this subject there is evidence of deviations from station-
arity, p < 0.001. This figure shows a candidate component time series before
and after correction using the estimated change-point location.

For the small sample performance of the test the choice of estimator Σ̂ is crucial, which
is why this issue is discussed in detail in Section 6.1.

The main aim of the test statistics above is to determine regions where the mean differs
significantly from the overall mean of the complete time series. If these differences are
larger than a threshold then a change-point is deemed to have occurred. The limit
distributions of the statistics will be found in Section 5.2. If the value is above the
threshold, then in the same way as with many CUSUM type change-point tests, good
estimators are usually obtained for the change-point locations by taking the points where
the statistics achieve their maximum. Thus, as an estimator for the change-points, we
propose

(ϑ̂1, ϑ̂2) = arg max
(
STn (x, y)Σ̂

−1
n Sn(x, y) : 0 6 x < y 6 1

)
, (4.4)

where Sn(x, y) is as above and (x1, y1) = arg max(Z(x, y) : 0 6 x < y 6 1) iff x1 =
min(0 6 x < 1 : Z(x, y) = max06s<t61 Z(s, t) for some y) and y1 = max(y > x1 :
Z(x1, y) = max06s<t61 Z(s, t)).

Figures 4.3 - 4.5 show three component time series selected for their different properties.
The component in Figure 4.3 can be seen to be a candidate series for a change to
have occurred with the resulting change corrected series visually appearing much more
stationary (although it is likely there are other non-stationarities present as well). This
series, from Subject 01018 in the Connectome data set, was found to have evidence of
non-stationarities when the sample version of the statistic (given in Section 6.2) was
tested on both a 64 and 125 component projection.

When testing Subject 48501 from the Connectome data, from whom the components
can be seen in Figure 4.2, an epidemic change seems to be quite a good model for several
components, but only a small part of the time series deviates from stationarity. For
example, component 7 in Figure 4.4 shows a less pronounced but still plausible epidemic
change compared with component 23 of Subject 01018 in Figure 4.3. However, as can
be seen in another component (Figure 4.5) from Subject 48501, some of the components
seem to be stationary without any change present.
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(a) Component 7 time series (b) Component 7: Epidemic change removed

Figure 4.4: Subject 48501: For this subject there is evidence of deviations from sta-
tionarity, p < 0.05, but it is no longer rejected when using FDR multiple
comparisons correction. This figure shows a candidate component time se-
ries before and after correction using the estimated change-point location.

(a) Component 56 time series (b) Component 56: Epidemic change removed

Figure 4.5: Subject 48501: As mentioned above, for this subject there is evidence of weak
deviations from stationarity, p < 0.05, but not rejected when using FDR
multiple comparisons correction. This figure shows one of the components
from the subject that has little evidence of any kind of non-stationarity
present. While the black line results from the estimator from the maximum
of the change-point statistic, it is not a viable candidate series to contain
non-stationarities.
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Given that nearly 200 subjects were tested, a multiple comparion correction was imple-
mented using the independent FDR method by Benjamini and Hochberg [7]. The use of
an independent FDR is based on the fact that the comparisons are being taken across
subjects who can be assumed to be independent of each other. Subject 01018 (Figure
4.1) survived the FDR correction and evidence was still found of non-stationarities being
present. Subject 48501, whose projections are seen in Figure 4.2, also rejected the null
hypothesis but only at about a 3% level, hence not surviving the FDR correction.

Finally in Figure 3.1, the subject shown has components which do not indicate level
shifts and in fact the null hypothesis is not rejected for this subject, either with or
without FDR correction.

4.4 Questions associated with the application of the above procedures to
fMRI data

While the discussion above provides a procedure for obtaining test statistics for func-
tional data in very high dimensional settings such as fMRI, it naturally leads to a number
of questions, which the remainder of the paper seeks to address. These questions and
the sections where they are addressed are:

1. Could the projected data exhibit a different type of alternative than the one we
are looking for in the full functional time series. In particular, if there is an
epidemic change in the fMRI data, will there still be an epidemic change in any
non-stationary component derived from the projection? (See Section 5.1).

2. Is there a limit distribution available for these test statistics under the null hypoth-
esis such that critical values can be obtained so that deviations from stationarity
can be determined for fMRI? What happens to the statistics under the alternative
hypothesis, i.e. when there are non-stationary portions in the brain activity? (See
Section 5.2).

3. How is the power of the test (possibility of detecting changes) related to the pro-
jection that is taken? This is critical if only a small number of components can
feasibly be taken, as in the case of fMRI, where computational considerations will
dominate. (See Section 5.3.2).

4. Can this all be done when there are only relatively small samples of functional
data available (an fMRI time series is typically only a few hundred time points
with hundreds of thousands of spatial locations)? (See Section 6.2)

5. Most fMRI studies have multiple subjects, can information about change-points
be generalised to the population? (See Section 8).

5 Some Statistical Properties of the Test Statistics

5.1 Projections under stationarity and level shifts

The entire brain covariance structure in an fMRI data set, as represented by the covari-
ance kernel c(u, s), is not known and needs to be estimated. However, even if c(u, s)
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were known, using estimators would often be preferable due to the nice property that
the estimated covariance can be influenced by the change in such a way that the change
becomes detectable in a lower dimensional projection (cf. Corollary 5.1). Thus even if
we knew how the brain varied in a stationary condition, it would be preferable to use
estimators unless we knew exactly in which lower dimensional projections the changes
will have occurred (or if, as in a region based analysis, we are only interested in the
stationarity of the projection rather than the full data). Thus we need to examine the
behaviour of projections under the alternative.

Under an epidemic change alternative (t = 1, . . . , n, l = 1, . . . , d)

η̂t,l := 〈Xt, v̂l〉 =

∫
Xt(u)v̂l(u) du = 〈Yt, v̂l〉+ 1{ϑ1n<t6ϑ2n}〈∆, v̂l〉 (5.1)

In particular, η̂t = (η̂t,1, . . . , η̂t,d)
T is a d-dimensional time series exhibiting the same type

of level shifts, i.e. an epidemic change in this case, as the functional sequence {Xt(·) :
1 6 t 6 n} if the change is not orthogonal to the subspace spanned by v̂1(·), . . . , v̂d(·).

From (5.1) it is obvious that the choice of estimation procedure for basis functions has a
substantial influence under the alternative on the size of 〈∆, v̂l〉, hence the visibility and
detectability of the change. In other words the behavior of this estimation procedure
under alternatives is crucial for the power of the test. As a contrast the estimation
procedure has only a very mild influence on the behavior under the null hypothesis.

Under the null hypothesis, we require the estimated orthonormal system (ON-System)
{v̂l(·), l = 1, . . . , d} (assuming d distinct eigenvalues) to stabilise in the following sense
for technical reasons:∫

(v̂l(u)− slvl(u))2 du = OP (n−1), (5.2)

where sl = sgn
(∫
vl(u)v̂l(u) du

)
and {vl(·), l = 1, . . . , d} is some orthonormal system. In

particular, {v̂l(·), l = 1, . . . , d} is a consistent estimator of {vl(·), l = 1, . . . , d} up to the
sign. In addition, if the basis is fixed, as in a wavelet based or region based analysis,
this proposition is fulfilled by definition.

It cannot, in general, be expected that the same limit of the estimated eigenfunctions
will occur under both the null and alternative hypothesis. However, having different
limits can actually be favourable when detecting changes as will be seen in Corollary
5.1. Thus, under the alternative we require that∫

(v̂l(u)− slwl(u))2 du = oP (1), (5.3)

where {wl(·), l = 1, . . . , d} is an orthonormal system, {v̂l(·), l = 1, . . . , d} the same
estimators as before and sl = sgn

(∫
wl(u)v̂l(u) du

)
, i.e. the estimators converge to some

contaminated ON-system. Note that wl usually depends on the alternative. Indeed,
most statistical procedures, including PCA, will still have stable behaviour even in the
presence of non-stationarities.

None of the above properties require the basis to be the principal component basis.
However, as will be seen in Section 5.3, PCA does indeed fulfil the properties (5.2) and
(5.3) given above.
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5.2 Asymptotic evaluation

Under (5.2) and the time series assumptions given in Section S.1.2, and where in (4.3),
the long run covariance is defined to be

Σ =
∑
k∈Z

Γ(k), Γ(h) = Eηtη
T
t+h, (5.4)

for h > 0, and Γ(h) = Γ(−h)T for h < 0, Aston and Kirch [1] prove the following
asymptotics under H0:

T (A)
n

L−→
∑
16l6d

∫ ∫
06x<y61

(Bl(x)−Bl(y))2 dx dy,

T (B)
n

L−→ sup
06x<y61

∑
16l6d

(Bl(x)−Bl(y))2, (5.5)

where Bl(·), l = 1, . . . , d, are independent standard Brownian bridges.

In order to obtain asymptotic power one for the above tests, the estimation procedure
additionally needs to stabilise under alternatives, as in (5.3). The change can only be
detected if it is not orthogonal to the contaminated ON-System, i.e. for some k = 1, . . . , d
it holds∫

∆(u)wk(u) du 6= 0. (5.6)

Then, Aston and Kirch [1] show that under the epidemic change alternative

T (A)
n

P−→∞, T (B)
n

P−→∞,

if Σ̂
P−→ ΣA for some symmetric positive-definite matrix ΣA. This shows that the power

of the test is mostly affected by the estimation procedure to obtain the orthonormal basis
for the projection.

Aston and Kirch [1] prove that the change-point estimator related to the above test
as given in (4.4) is consistent under the assumptions in Section S.1.1 and even get the
following rate given slightly stronger assumptions:

(ϑ̂1, ϑ̂2)− (ϑ1, ϑ2) = OP (n−1/2). (5.7)

5.3 Specifics for principal component analysis

When using PCA, the basis is defined from the data via the empirical covariance function.
Thus the properties of the empirical estimator of the covariance are important. In order
to get (5.2), we require that the estimated covariance kernel ĉn(u, s) is a consistent
estimator for the covariance kernel c(u, s) of {Y1(·)} with convergence rate

√
n under

H0, i.e.∫ ∫
(ĉn(u, s)− c(u, s))2 du ds = OP (n−1). (5.8)
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Aston and Kirch [1] show that strong mixing and other weak dependent sequences fulfill
this assumption. This condition implies that (5.2) holds for standard PCA, with vl(u)
being the associated principal components (Aston and Kirch [1]). The equivalent result
for separable PCA will be discussed in the next section.

Under the alternative H1, we assume that there exists a covariance kernel k(u, s), such
that ∫ ∫

(ĉn(u, s)− k(u, s))2 du ds
P−→ 0. (5.9)

which similarly implies that (5.3) holds, with wl(u) being the associated principal com-
ponents (Aston and Kirch [1]).

In case of independent functional observations and for an AMOC change alternative
Berkes et al. [8] proved (5.8) as well as (5.9) for the estimator for the covariance given
in (5.10). Their proof can be extended to the dependent AMOC situation (cf. Hörmann
and Kokoszka [25]) as well as the dependent epidemic change situation (cf. Aston and
Kirch [1]). For the latter the contaminated covariance kernel is given by

k(u, s) = c(u, s) + θ(1− θ)∆(u) ∆(s), θ = ϑ2 − ϑ1 > 0. (5.10)

In particular, this shows that there will be a systematic error if the covariance structure
is estimated with level shifts present. For fMRI resting state studies where estimating
connectivity is the major aim, this amounts to detecting false correlations which are not
related to the true connectivity, as measures of connectivity will be derived from k in
any subsequent correlation analysis rather than the true c covariance.

The above discussion shows that the contaminated covariance kernel k(u, s) as well as
the contaminated eigenvalues γl will usually depend on the type and shape of the change.
Interestingly, for k as in (5.10), this is a feature rather than a problem, which leads to
the desirable property that a large enough change can influence k in such a way that it
automatically is not orthogonal to the chosen subspace if the eigenfunctions belonging
to the largest eigenvalues of ĉn are used (cf. Corollary 5.1 as well as Theorem S.2.2 in
the supplementary material).

5.3.1 Separable Projections

If the covariance kernel is indeed separable, use of a separable estimator leads to a
correct estimation of the non-contaminated eigenspace under H0 and to the estimation
of a well-defined contaminated eigenspace under H1. However, even in the misspecified
case, i.e. when the covariance kernel has no separable structure, one estimates the basis
functions of a well-defined subspace under both H0 as well as H1 but with a different
interpretation (cf. Theorem S.2.1 in the electronic supplementary material).

The eigenvalues λl resp. -functions vl corresponding to a separable c are the products
of the eigenvalues λ1,i, λ2,j resp. -functions v1,i, v2,j of c1 and c2, since by (3.2)∫

U1

∫
U2
c ((u1, u2), (s1, s2)) v1,i(s1)v2,j(s2) ds1 ds2

=

∫
U1
c1(u1, s1)v1,i(s1) ds1

∫
U2
c2(u2, s2)v2,j(s2) ds2

= λ1,i λ2,j v1,i(u1) v2,j(u2). (5.11)

21



5 Some Statistical Properties of the Test Statistics

We propose to use the subspace spanned by the first d1 principal components of c1 in
the first dimension and the first d2 principal components of c2 in the second dimension.
In a balanced situation it makes sense to choose d1 = d2 but sometimes there are
fewer observations in one direction after discretization in which case d1 6= d2 may be
preferable. This balanced choice of basis selection is preferable to choosing a basis of the
eigenfunctions belonging to the largest d joint eigenvalues as only then the eigenfunction
will be guaranteed to include a large enough separable change (cf. Remark S.2.1 in the
electronic supplementary material).

The empirical covariance kernel ĉn ((u1, u2), (s1, s2)) as in (3.5) is used to estimate c1
and c2 as in (3.9). In case of separability of c it holds

ĉj(uj , sj)
P−→ tr c

tr cj
cj(uj , sj), j = 1, 2,

where tr c(x, y) =
∫
c(x, x) dx and tr c =

∑
i>1 λi > 0, if c 6= 0, where λi are the

eigenvalues of the covariance operator Cv =
∫
U1×U2 c(·, y)v(y) dy (cf. Theorem 4.1 in

Gohberg et al. [23]) and analogously tr cj > 0. For the purpose of estimating the d
largest principal components this additional constant does not make a difference since
the eigenfunctions are the same and the eigenvalues are only multiplied by a positive
constant, thus not changing the order.

Correspondingly, define

v̂(r,l)(u1, u2) = v̂1,r(u1)v̂2,l(u2), r = 1, . . . , d1, l = 1, . . . , d2, (5.12)

where v̂i,r is the rth principal component of ĉi as in (3.8).

To understand the behavior of this estimator under H0 for a possibly non-separable c,
let

c̃1(u1, s1) =

∫
U2
c((u1, z), (s1, z))dz, c̃2(u2, s2) =

∫
U1
c((z, u2), (z, s2))dz,

c̃ ((u1, u2), (s1, s2)) = c̃1(u1, s1) c̃2(u2, s2). (5.13)

If the covariance kernel c is separable i.e. fulfills (3.7) then c̃j = trc
trcj

cj , j = 1, 2 and

c̃ = trc c, i.e. the space spanned by v̂(r,l)(u, s), r = 1, . . . , d1, l = 1, . . . , d2 is indeed the
space spanned by the eigenfunctions of the covariance kernel.

It has been discussed in Section 5.3 that (5.8) holds for a wide range of processes, where
the covariance kernel c need not be separable. If the eigenvalues of c̃ are identifiable in
the sense that λ̃i,1 > λ̃i,2 > . . . > λ̃i,di+1 ≥ λ̃i,di+2 ≥ . . ., i = 1, 2, then, v̂(r,l)(u1, u2) and
v(r,l)(u1, u2) = ṽ1,r(u1)ṽ2,l(u2), r = 1, . . . , d1, l = 1, . . . , d2, fulfill (5.2), where ṽi,r is the
rth principal component of c̃i (for details we refer to Theorem S.2.1 in the electronic
supplementary material). In particular, if c is separable this proves the corresponding
consistency result.

Assume that (5.9) holds with a contaminated covariance kernel k ((u1, u2), (s1, s2)) under
the alternative, as is the case with many weak dependent processes (as discussed in Sec-
tion 5.3). Define k̃1, k̃2, k̃ based on the contaminated covariance kernel k((u1, u2), (s1, s2))
analogously to c̃1, c̃2, c̃ above. Then, an analogous assertion to the one of the preceding
paragraph holds if one replaces all covariance kernels correspondingly (for details we
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refer to Theorem S.2.1 in the electronic supplementary material). As a result a sub-
space of the eigenspace w̃l of k̃ is used for the change-point procedure (with w̃i,l being

the associated eigenfunctions of k̃i). Thus all changes that are not orthogonal to this
(contaminated) subspace are detectable (cf. (5.6) and following lines).

Intuitively, c̃1, c̃2, c̃ and analogously k̃1, k̃2, k̃ can be thought of as separable approxima-
tions to the covariance obtained by first integrating along all directions except the one
of interest and then taking the product of these integrated covariances to obtain the full
covariance (this has similarities to obtaining a joint distribution by taking the product
of the marginals). In the case of a true separable covariance, the approximation is exact,
but even in the case of a truly non-separable covariance, the resulting eigenbasis from
the separable approximation is still a completely valid basis to perform change-point
detection.

5.3.2 Power using separable principal component analysis

In Section 5.2, we have seen that changes are detected if
∫
U1

∫
U2 ∆(u1, u2)w̃1,r(u1)w̃2,l(u2)du1du2 6=

0 for some 1 6 r 6 d1, 1 6 l 6 d2. If the eigenfunctions are estimated using (5.12), then
most changes detectable by ṽ(r, l) will also be detectable by the contaminated system
w̃(r, l). In addition most large enough changes become detectable using the separa-
ble estimation procedure from Section 5.3.1. For details we refer to Theorem S.2.2
in the electronic supplementary material. Corollary 5.1 shows one important example
of changes having this nice property namely separable changes, for which ∆(u1, u2) =
∆1(u1)∆2(u2).

Corollary 5.1. Assume that the change is separable, i.e. ∆(u1, u2) = ∆1(u1)∆2(u2).
In addition, assume

∫
U1

∫
U2 ∆2(u1, u2) du1 du2 6= 0.

a) Let ṽj,r be the rth principal component of c̃j and w̃j,r be the rth principal component

of k̃j and let analogously to (5.10)

k ((u1, u2), (s1, s2)) = c((u1, u2), (s1, s2)) + θ(1− θ)∆(u1, u2)∆(s1, s2).

Then, any change that is not orthogonal to the non-contaminated subspace is de-
tectable:∫

U1

∫
U2

∆1(u1)∆2(u2)ṽ1,r(u1)ṽ2,l(u2) du1 du2 6= 0, for some 1 6 r 6 d1, 1 6 l 6 d2

=⇒
∫
U1

∫
U2

∆1(u1)∆2(u2)w̃1,r(u1)w̃2,l(u2) du1 du2 6= 0, for some 1 6 r 6 d1, 1 6 l 6 d2.

b) Let ∆D(u1, u2) = D∆(u1, u2). Let w̃j,1,D, be the normalized first principal compo-

nents of k̃j,D obtained analogously to (5.13) with

kD ((u1, u2), (s1, s2)) = c((u1, u2), (s1, s2)) + θ(1− θ)∆D(u1, u2)∆D(s1, s2).

Then, there exists D0 > 0 such that∫
U1

∫
U2

∆D(u1, u2)w̃1,1,D(u1)w̃2,1,D(u2) du1 du2 6= 0
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6 Practical Aspects of Small Sample Testing

for all |D| > D0. This shows that any large enough change is detectable. In this case
it even holds as D →∞∥∥∥∥±w̃j,1,D(·)− ∆j(·)

‖∆j(·)‖

∥∥∥∥→ 0

The corollary does not require that the true underlying covariance structure is separable
for the statement still to be true. In the simpler situation of a general covariance struc-
ture and standard non-parametric covariance estimators an analogous assertion has been
proven by Aston and Kirch [1]. Theorem S.2.2 explains the situation for the separable
estimation procedure for a general change. In this case, only a weaker result can be
obtained.

Furthermore for practical purposes it is advisable to include all eigenfunctions obtained
by combinations of a fixed number of eigenfunctions in each dimension as in (5.12) instead
of choosing the ones belonging to the largest d eigenvalues. Otherwise, the assertion of
Corollary 5.1 b) can no longer be guaranteed. But this assertion shows that any large
enough separable change has a tendency to switch the eigenfunctions in such a way that
it becomes detectable, which is a very desirable result. For more details on this, we refer
to Remark S.2.1 in the electronic supplementary material.

It is clear that the choice of d1 and d2 plays an important role in terms of whether a
change is detected or not. In PCA frequently the number of components is chosen in such
a way that 80% of the variability are explained. However, Corollary 5.1 b) suggests that
a small number of components is often sufficient and may even increase the power. This
has inherent practical applications for fMRI. If 80% variation needed to be accounted
for, then a very large number of components (in excess of 50,000) would be needed, yet
the procedure still detects change-points even with very few components. While this is
somewhat unexpected and counter-intuitive, it is suggested by the results of this section.

6 Practical Aspects of Small Sample Testing

6.1 Estimation of the temporal covariance matrix

In the case where one deals with independent data and an estimation procedure that –
under the null hypothesis – captures the true eigenfunctions of the covariance matrix,
the long-run covariance matrix (5.4) is diagonal. In this case only the variance of the
scores need to be estimated, which can be found using the estimated eigenvalues.

On the other hand, if the data are dependent such as in fMRI time series or one uses
the separable estimation procedure on a non-separable covariance structure (such as
if the separability assumption is not satisfied in applications), estimation of the long-
run covariance matrix Σ as in (5.4) is critical for the change-point procedure to yield
reasonable results. However, this is a very difficult task especially if the dimension of the
projection subspace is large and the time series short – both of which are true for fMRI.
Additional estimation errors arise from the fact that possible change-points should be
removed prior to the estimation of the covariance matrix, otherwise systematic errors
arise. While this works approximately in the fMRI example, there is still the problem
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6 Practical Aspects of Small Sample Testing

that the epidemic change alternative is only a very crude approximation to the true
deviations from stationarity that can occur.

Most estimators for the long-run covariance matrix are based on

Σ̂ =
∑
|h|6bn

wq(h/bn)Γ̂(h),

for some appropriate weight function wq and bandwidth bn where Γ̂(·) is an estimator
for the autocovariance matrix of the (uncontaminated) projected data vector. Hörmann
and Kokoszka [25] prove consistency of this estimator for weakly dependent data. Poli-
tis [44] proposed to use different bandwidths for each entry of the matrix in addition to
an automatic bandwidth selection procedure for the class of flat-top weight functions,
where some additional modifications guarantee the estimate to be symmetric and posi-
tive definite. We follow his approach but adapt the estimator in such a way that it takes
possible change-points into account thus improving the power of the test. For details in
the univariate situation we refer to Hušková and Kirch [29].

However, in our analysis of the Connectome data set the use of such an estimator (which
is already one of the best choices in general) is rather problematic because the statistic
is weighted with the inverse of this estimated long-run covariance matrix. While the
estimator is eventually positive-definite, for small samples as in our data example (225
time points) and a high dimensional covariance matrix (64×64 after dimension reduction
in our example) the estimation errors add up and result in as many as thirty percent of
the (by definition positive) eigenvalues being estimated as negative. Using appropriate
cutting techniques (confer Politis [44]), one can solve this problem in principle, but the
cutting point will essentially determine whether the null hypothesis is rejected or not
so that no reliable statistical inference is possible (the cut point essentially determines
the value of the smallest eigenvalue but this becomes the most influential one when the
inverse is taken in the test statistic (4.3)). Even using a conservative cut-off point the
null hypothesis of stationarity was rejected for all subjects in our data example with
such tiny p-values as to seriously question the validity of the results. More details on
the above difficulties and possible solutions can be found in Section S.3 of the electronic
supplementary material.

Therefore, we decided to use a slightly different change-point statistic which only cor-
rects for the long-run variance and not possible dependencies between components. The
limit distribution of this modified test statistic has still the same shape as in (5.5) but
the Brownian bridges are no longer independent but rather exhibit the long-run corre-
lation structure of the projected data. Furthermore, the results on the estimators (4.4)
given in (5.7) remain true. This estimator leads to stable and reasonable results but
since the statistic is no longer asymptotically distribution-free, we need to introduce
bootstrap methods in the next section. Bootstrap methods are usually unappealing in
fMRI due to the large data structures which need to be handled, but in our methodology,
the bootstrap will take place on the projected components, yielding a computationally
demanding yet still feasible approach. However, should there be no dependence between
components, or the temporal dependence be identical for every component, as for ex-
ample often assumed in methods based on wavelets (see Aston et al. [2] and Morris et
al. [40]), then the limit distribution of the test statistic below becomes asymptotically
pivotal and asymptotic critical values can be used (with the form of the long run variance
changing with the particular assumptions on the time series properties), and making the
procedure very fast (on the order of a few minutes) for an fMRI data set.
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6 Practical Aspects of Small Sample Testing

To elaborate, we use the test statistics below where Σ̂ in T
(A)
n resp. T

(B)
n in (4.3) are

replaced by Σ̃,

T̃ (A)
n =

1

n3

∑
16k1<k26n

Sn (k1/n, k2/n)T Σ̃
−1

Sn (k1/n, k2/n) ,

T̃ (B)
n = max

16k1<k26n

1

n
Sn (k1/n, k2/n)T Σ̃

−1
Sn (k1/n, k2/n) , (6.1)

where

Σ̃(i, j) = (γ̂i1{i=j})i,j=1,...,d, (6.2)

γ̂i as in equation (6.4) below, is an estimator for the diagonal matrix of long-run vari-
ances:

V = (γi1{i=j})i,j=1,...,d, γi =
∑
l∈Z

E η1,iη1+l,i.

To obtain such an estimator for the long-run variances, let

(m̂1,l, m̂2,l) = arg max
k1,k2

∣∣∣∣∣∣
k2∑
t=k1

η̂t,l −
k2 − k1
n

n∑
t=1

η̂t,l

∣∣∣∣∣∣


be the estimated change-points that are estimated separately in each component and let

êl(j) = η̂j,l − ¯̂ηm̂1,l,m̂2,l
1{m̂1,l<j6m̂2,l} − ¯̂η

◦
m̂1,l,m̂2,l

1{j6m̂1,l or m̂2,l<j}, (6.3)

¯̂ηm̂1,l,m̂2,l
=

1

m̂2,l − m̂1,l

m̂2,l∑
j=m̂1,l+1

η̂j,l,

¯̂η
◦
m̂1,l,m̂2,l

=
1

n− m̂2,l + m̂1,l

∑
16j6m̂1,l,m̂2,l<j6n

η̂j,l,

be the estimated uncontaminated data. Then, we obtain an estimator of the uncontam-
inated autocovariances in each dimension as

γ̂l(h) =
1

n

n−h∑
j=1

êl(j)êl(j + h), h > 0, γ̂(h) = γ̂(−h), h < 0.

Finally, we obtain the estimator for the long-run variance in the lth component by

γ̂2l = max

γ̂l(0) + 2

Bl∑
k=1

w(k/Bl)γ̂l(k),
1

n(n− 1)

n∑
j=1

êl(j)
2

 . (6.4)

with the following flat-top kernel

w(x) =


1, |x| 6 1/2,

2(1− |x|), 1/2 < |x| < 1,

0, |x| > 1,
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6 Practical Aspects of Small Sample Testing

and the bandwidth Bl = 2b̂l, where b̂l is the smallest positive integer such that∣∣∣γ̂l(̂bl + j)/γ̂l(0)
∣∣∣ < 1.4

√
log10 n/n, for j = 1, . . . , 3.

The rightmost part of (6.4) in the parenthesis is chosen to ensure positivity and scale in-
variance of the estimator. Under appropriate regularity conditions on η̃t,l =

∫
Yt(u)vl(u) du

this estimator is consistent under the null hypothesis and converges to
∑

j>1 cov(η̃0,l, η̃j,l)
under alternatives. For a thorough proof for the simpler one-dimensional problem cf.
Hušková and Kirch [29].

6.2 Resampling procedures for the testing problem

Using resampling methods to obtain critical values often leads to improvements in the
size and power of the tests in small samples. In case of a non-pivotal limit distribution

as for example when using the statistics T̃
(A/B)
n as in (6.1) asymptotic critical values

differ from one time series to another so that resampling methods are the only way to
obtain them. This in effect means that for fMRI data, the critical values are subject
specific, as we are not assuming that the time series dependencies between scans are the
same for all subjects, but in fact we allow them to vary not only just in a parameter but
structurally as well. For applications of the bootstrap to univariate change-point tests
for dependent data we refer to Kirch [32] and Kirch and Politis [33].

In order to keep the procedure simple, we propose to use the following studentized
circular block bootstrap (to allow for the time series error structure) taking a possible
change-point separately in each component into account:
Let K be such that n = KL, K,L→∞, K/L→ 0.

(1) Let êl(j) be as in (6.3).

(2) Draw U(1), . . . , U(L) i.i.d., independent of {X(·)}, such that P (U(1) = t) = 1/n,
t = 0, . . . , n− 1.

(3) Let e∗l (Kj + k) := êl(U(j) + k), l = 1, . . . , d, where êl(j) = êl(j − n) if j > n.

(4) Calculate

T (1)
n :=

1

n3

∑
16k1<k26n

S∗n (k1/n, k2/n)T Σ̃
∗ −1

S∗n (k1/n, k2/n) ,

S∗n(x, y) = (S∗n(1), . . . , S∗n(d))T , S∗n(l) =
∑

nx<j6ny

(e∗l (j)− ē∗n(l)) , ē∗n(l) =
1

n

n∑
t=1

e∗l (t),

Σ̃
∗
(i, i) =

1

n

L−1∑
l=1

(
K∑
k=1

(e∗i (Kl + k)− ē∗n(i))

)2

, Σ̃
∗
(i, j) = 0 for i 6= j.

in case one wants to use statistic T̃
(A)
n and analogous versions for different statistics.

Mark that the variance estimators used for the bootstrap are the block sample
variances hence give the true variances of the conditional bootstrap distribution.

(5) Repeat steps (2)-(4) M times (e.g. M = 1000).
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7 Testing for Epidemic Changes in Scans within the Connectome Data Set

(6) c∗(α) is obtained as the upper α-quantile of T
(1)
n , . . . , T

(M)
n .

(7) Reject if Tn > c∗(α), where Tn is the statistic of interest, i.e. T̃
(A)
n in the above

example, where one uses the estimator Σ̃ as given in (6.2).

A similar bootstrap has been applied by Kirch and Hušková [28, 29] in the univariate sit-
uation to obtain confidence intervals for the change-point. A proof for the validity of the
univariate bootstrap (not taking possible changes into account) in the non-studentized
case can be found in Kirch [31] under appropriate moment assumptions, extensions to
the studentized case are immediate from (4.4) in Kirch and Hušková [29]. Extensions to
the multivariate situation can be obtained along the same lines using Wolds Theorem.
An additional problem in the situation in this paper is that η̃t,l is not observed but
needs to be estimated. Since only moment conditions of η̃t,l are required for the proofs,
extensions to η̂t,l are straightforward.

The choice of the block-length K is difficult – as a rule of thumb we propose to use n1/3,
because a block length of this order asymptotically minimises the mean squared error
of the corresponding bootstrap variance estimate for the sample mean (Lahiri [36, p39,
Th. 5.4]), which is closely related to our situation.

7 Testing for Epidemic Changes in Scans within the
Connectome Data Set

As discussed in Section 6.1 obtaining a good estimate of the full long-run covariance
matrix is highly problematic and all estimators discussed in the electronic supplemen-
tary material (Section S.3) yield a poor performance when testing for changes in the

Connectome data set. Therefore, we use the test statistics T̃
(A/B)
n as in (6.1) and the

bootstrap critical values as described in Section 6.2 in the analysis of the data set.

Figure 7.1 shows four typical examples of bootstrap distributions with and without
changes detected. While differences due to the different underlying correlation structures
are clearly visible, no difference is apparent between scans which contain a detected
change and those which do not. Figure 7.2 shows the distribution of the 5% bootstrap
critical values from 197 scans, once more indicating that the critical values show some
deviation between scans due to different underlying correlation structures hence different
limit distributions, but do not differ between those with or without changes detected.

After the preprocessing of the data described in Section 2, a separable functional princi-
pal component decomposition was found, based on the three orthogonal directions within
the image acquisition. Eigen-decompositions of the empirical covariance functions were
used to generate the full 3-dimensional functional basis. The eigenvalues associated
with the decompositions did not decrease particularly fast. Indeed the first 1000 eigen-
values only explained approximately 5% of the variation. In many applications, this
is unappealing as it means that the data cannot be sparsely represented. However, in
change-point detection, a flat eigenstructure in the uncontaminated covariance can actu-
ally (and somewhat counter-intuitively) enhance detectability and is therefore actually
an advantageous property. By Corollary 5.1 change-points, if present, will tend to be
found in eigenfunctions with larger relative eigenvalues, and hence only a small number
of components need to be checked especially when the components are flat. Thus, the
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7 Testing for Epidemic Changes in Scans within the Connectome Data Set

(a) Bootstrap distribution for two series with change detected

(b) Bootstrap distribution for two series with no change detected

Figure 7.1: Bootstrap distributions for four randomly chosen scans, two with changes
detected, two with no changes detected, when using 125 components and

the sum-statistic T̃
(A)
n . The distributions vary due to the differing temporal

correlation structures for different individuals.

Figure 7.2: Distribution of bootstrap 5% critical values from 197 scans, where the stack-
ing shows whether the critical value was from scan with detected or no de-

tected change using 125 components and the sum-statistic T̃
(A)
n .
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7 Testing for Epidemic Changes in Scans within the Connectome Data Set

Number of Statistic used Rejections Rejections FDR thresh
Components (No Correction) (FDR Correction)

64 max (T̃
(B)
n ) 88 85 0.025

sum (T̃
(A)
n ) 78 70 0.022

125 max (T̃
(B)
n ) 109 107 0.029

sum (T̃
(A)
n ) 82 76 0.022

Table 7.1: Results of the 64 and 125 component analyses. ’No Correction’ indicates all
rejections at the 5% level were counted, while ’FDR Correction’ indicates
FDR correction was used at a 5% level, with the corresponding threshold
being given.

number of components to examine was set to a small number, namely systems with 64
(=43) and 125 (=53) eigenfunctions were investigated, with each direction having either
its top 4 or 5 eigenfunctions as part of the tensor product. This was a compromise
between having a large number of components, which would reduce the finite sample de-
tectability as well as computational speed (processing time in Matlab for one scan with
1000 bootstrap samples for 125 components was approximately 6-7 hours on a desktop
PC, while processing for the entire 197 scans took approximately 24 hours on a 40 node
cluster), and having a sufficient number of components not to miss possible changes.
Since the original data set was of dimension 64×64×33 systems with 64 and 125 eigen-
functions correspond to an approximate dimension reduction by a factor of 2000 or 1000
respectively. Three examples of the projected data of dimension 64 were discussed in
Section 4.

The test statistics T̃
(A/B)
n in (6.1) were found for all 197 scans for a change-point. Boot-

strap resampling as described in Section 6.2 was used to obtain critical values for each
time series (M=1000). Multiple comparisons were corrected controlling the FDR by the
procedure of Benjamini-Hochberg [7] for independent observations. In this case, unlike
in usual brain imaging applications, the correction is done across subjects, not across
space, as here space is a single functional observation, while different subjects can be
deemed independent.

The test results are summarized in Table 7.1. There was not a large difference whether
64 or 125 components were chosen, particularly for the sum statistic. Indeed, a small
number of subjects became insignificant when 125 components instead of 64 components
were used while others became significant. Therefore, the results look fairly stable re-
gardless of the number of components chosen. If the sum statistic is used, approximately
40% of all subjects in the study were found to have some form of non-stationarity present
which resulted in their being rejected as stationary against an epidemic alternative.

7.1 Comparison of Results to Exponentially Weighted Moving Average
method

An alternative method for determining change-points is that given by Lindquist et al.
[37] where an exponentially weighted moving average (EWMA) scheme is adopted. This
is based on control chart theory and uses control limits to determine periods of switching
between states. The method has been shown to be particularly appropriate in tasks
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7 Testing for Epidemic Changes in Scans within the Connectome Data Set

Figure 7.3: Results for three different noise model assumptions for the EWMA method
as applied to subject 01018 (view of plane 15). The top row shows the signifi-
cance maps for white noise, AR(1) errors and ARMA(1,1) errors respectively,
while the bottom row shows those voxels which would be deemed significant
at a threshold of 3 standard deviations. As can be seen, the results of the
method depend considerably on the noise model chosen.

where activations take place, but where the times of onset and duration are not known.

The methodology has two principle differences from the approach adopted in this paper.
Firstly, it is a voxelwise approach as opposed to a functional approach. This means that
each voxel is tested individually. While this has the obvious advantage of being able
to determine on a voxel by voxel basis if changes occur, it has the disadvantage that
multiple comparisons need to be taken into account, and also the times of changes need
not be similar even among neighbouring voxels, yielding difficulties in interpretation.
The second major distinction is that the approach requires a parametric model for the
error structure, as opposed to the non-parametric approach within the method proposed
in this paper. The choice of error structure is known to affect the detection of change-
points if incorrectly specified, and indeed has been shown to be problematic for fMRI
time series in particular (see for example Nam et al. [41]).

Resting state data is inherently different from activation data and the model for the
noise will be inherently more important in this case, in that, no activation is expected
to take place. As can be seen in Figure 7.3, depending on whether a white noise, AR(1)
or ARMA(1,1) model is chosen, the number of change-points within the image varies
considerably, despite the same threshold being applied. The same analysis using the
methodology proposed in this paper resulted in non-stationarities being detected (see
Figure 4.1). The differences in the EWMA analysis for alternative noise models are
likely due to the difficulty in expressing the noise structure accurately for resting state
data, in comparison to activation-baseline tasks where AR(1) and ARMA(1,1) type noise
structures are known to be fairly good approximations.
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8 Distribution of the Position and Duration of the Epidemic Change

8 Distribution of the Position and Duration of the Epidemic
Change

The discussion in the previous sections has dealt with situations where one functional
time series is observed and for this time series the question arises if and when a change
has occurred. In some situations, such as in psychological experiments or in stress
testing due to the design of the experiment (cf. e.g. Lindquist et al. [37]), one can
be reasonably sure that a certain change will occur. Usually in such situations more
than one time series, namely one time series for each person involved in the experiment,
is observed. Therefore it makes sense to include the change-point in the model and
estimate the density of the change-point. For example one may be interested in knowing
the distribution of the change-point in stress testing to get an idea about the change
and duration distribution.

8.1 Density estimation of the change-point for hierarchical time-series

Before giving technical details, let us summarise the results of this subsection as follows.
Firstly, it is possible to show that even if we use the estimated change-point as derived
earlier instead of the true change-point, the empirical distribution function (EDF) and
the kernel density estimate (KDE) of the joint epidemic change-point location and dura-
tion both remain consistent. In the case of fMRI, this allows us to take the change-points
positions from each subject and combine them to give a population based distribution
of the times of changes that occur in the scanner. By showing that both the EDF and
KDE are valid means that either a histogram based approach or a smooth density ap-
proach can be used as required. As the change-points are functions of time, they can be
combined across subjects without requiring spatial normalisation, because the distribu-
tions are independent of the spatial location of the change. In fact, there may be many
different causes of a non-stationary change in the data, with the question arising as to
whether these might have consistent timings within the scanning period.

In the remainder of the section we give the results for EDFs and KDEs in full statistical
details. Those readers most interested in the results of such estimates for fMRI resting
scan data could proceed to Section 8.2 where the data analysis is detailed.

Let in case of AMOC

Xt,j(u) = Yt,j(u) + µj(u) + ∆j(u)1{t>ϑjn}, 1 6 t 6 n, 1 6 j 6 m,

where the m observed functional time series {Xt,1 : 1 6 t 6 n}, . . . , {Xt,m : 1 6 t 6 n}
are independent, {µj : 1 6 j 6 m}, {∆j : 1 6 j 6 m}, and {ϑj : 1 6 j 6 m} are no
longer fixed deterministic but rather i.i.d. random variables independent of {Yt,j(·) : t >
1}, j = 1, . . . ,m, P (0 < ϑ1 < 1) = 1 and P (∆1 ≡ 0) = 0. For each fixed j, the model is
still as before, and the index j indicates the person to whom the observation belongs.

Furthermore we assume n = n(m)→∞ as m→∞.

Denoting P ∗(·) = P (·|ϑj ,µj ,∆j , j = 1, . . . ,m) the consistency property |ϑ̂−ϑ| = oP (1)
of AMOC estimators (cf. Theorem 2.3 in Aston and Kirch [1]) in the standard setting
as outlined in Section 4.1 translates into:

|ϑj − ϑ̂j | = oP ∗(1) a.s. (8.1)
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if the assumptions are a.s. fulfilled, i.e. the mean changes are a.s. non-orthogonal to the
contaminated projection subspace and the basis is an orthonormal system almost surely.

Theorem 8.1. If (8.1) holds and the distribution function Fϑ of ϑ is continuous, then

F̂
ϑ̂,m

(x) :=
1

m

m∑
j=1

1{ϑ̂j6x}

is a consistent estimator for Fϑ, i.e.

sup
x∈[0,1]

∣∣∣F̂ϑ̂,m(x)− Fϑ(x)
∣∣∣→ 0 a.s.

The following theorem gives a corresponding result for kernel density estimators if a rate
for the estimators of the change-point (analogously to (5.7)) is available.

Theorem 8.2. Let h = h(m)→ 0, hm→∞ as m→∞. Assume

h−1|ϑj − ϑ̂j | = oP ∗(1) a.s., (8.2)

which follows for example from the analogue of (5.7) if h2n→∞. Let K(·) be a bounded
and Lipschitz continuous kernel (K(·) > 0,

∫
K(x) dx = 1), then∫

E
∣∣∣f̂ϑ̂,m(x)− f̂m(x)

∣∣∣2 dx→ 0,

where

f̂
ϑ̂,m

(x) =
1

mh

m∑
i=1

K

(
x− ϑ̂i
h

)
and

f̂m(x) =
1

mh

m∑
i=1

K

(
x− ϑi
h

)
is the standard kernel estimator of the density fϑ of ϑ.

The theorem shows in particular that under standard assumptions on the kernel and the
density it holds∫

E
∣∣∣f̂ϑ̂,m(x)− fϑ(x)

∣∣∣2 dx→ 0.

Remark 8.1. For the univariate problem one can show

P
(∣∣∣ϑ̂− ϑ∣∣∣ > cn

)
6 C(min(ϑ, 1− ϑ))−2∆−2n−1c−1n ,

where C does not depend on ϑ or µ,∆, cf. e.g. Kokoszka and Leipus [34]. If additionally
E[∆−2 min(ϑ1, 1−ϑ1)−2] <∞, then using the Markov-inequality and similar arguments
as in the proof of the above theorem one can conclude

sup
x

∣∣∣fϑ̂,m(x)− f̂m(x)
∣∣∣→ 0 a.s.,

if e.g. nh3,mh3 →∞. This shows that in this situation under standard assumptions it
holds supx

∣∣f
ϑ̂
(x)− fϑ(x)

∣∣→ 0 a.s.
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8 Distribution of the Position and Duration of the Epidemic Change

Figure 8.1: Estimators for 76 fMRI scans surviving FDR correction based on 125 com-

ponents and the sum statistic T̃
(A)
n .

Left: Joint estimates of position and duration of epidemic change.
Right: Kernel density estimate using a Gaussian kernel and bandwidths
hx = 0.04, hy = 0.05.

If we are interested in estimators for an epidemic change things become slightly more
complicated. The above results carry over immediately to ϑ̂i = ϑ̂1i as an estimator for
the first change-point as well as to τ̂i = ϑ̂2i− ϑ̂1i as an estimator for the duration of the
epidemic change, so the marginal distributions can be estimated this way. This gives
the joint distribution if one assumes that the first change-point ϑ1i and the duration of
the epidemic change τi are independent (as e.g. done by Lindquist et al. [37]). If one
does not want to make this assumption, one can formulate an analogous result using a
two dimensional kernel K(x, y), i.e.

∫
K(x, y)dx dy = 1, that is positive and bounded,

and fulfills the following Lipschitz condition

|K(x1, y1)−K(x2, y2)| 6 C max(|x1 − x2|, |y1 − y2|)

for some C > 0. Then, if mh1h2 → ∞, h1, h2 → 0, one gets an analogous result as in
Theorem 8.2 for

f̂
ϑ̂i,τ̂i,m

(x, y) =
1

mh1h2

m∑
i=1

K

(
x− ϑ̂i
h1

,
y − τ̂i
h2

)
,

f̂m(x, y) =
1

mh1h2

m∑
i=1

K

(
x− ϑi
h1

,
y − τi
h2

)
.

The proof is analogous to the proof of Theorem 8.2.

8.2 Estimation for the Connectome resting state data

The results in the previous section can now be applied for the subjects that survived
the FDR threshold as outlined in Section 7 and the joint distribution of position and
duration of the epidemic change can be derived.

The left panel in Figure 8.1 shows the estimated change and durations for all those
subjects where the null hypothesis of no change was rejected using FDR, while the right
panel shows a kernel smoothed density estimate for the joint distribution of position and

34



9 Conclusions

duration of the epidemic change, using the automatic bandwidth selection procedure of
Botev et al. [11] (yielding bandwidths of hx = 0.04, and hy = 0.05). In this example
change-points usually occur somewhere between 0.25 and 0.5, and last around 0.1-0.3
of the scanning period except for very early changes which often last longer. In fact,
the density seems to be bimodal indicating two clusters dividing subjects into those for
which a change occurs after a relatively short period in the scanner (maybe only now
arriving in the stationary state) in addition to a relatively long duration (possibly until
the end of the scan), and those subjects for which after a short time in the epidemic
state a return to baseline happens. However, for subjects with a relatively late change,
a long duration cannot happen due to the limited time in the scanner. Therefore, the
two modes may be an artefact of the statistical procedure based on the short time span.

The results of the study show that resting state scans in some cases do show evidence of
deviation from stationarity which can be modelled by epidemic mean changes, at least as
a first approximation, indicating that the overall activity is different at different times.
This result has implications for studying correlations within the brain between regions
of interest using multiple subjects, particularly if some subjects show non-stationary
behaviour, while others do not.

9 Conclusions

In this paper, a methodology for the detection and estimation of change-points from mul-
tiple subjects has been outlined, and the associated statistical properties investigated.
It has been shown that change-point analysis is a useful tool in situations where very
high-dimensional data sets are collected across time, especially if the data have a natural
spatial structure. One main result explains the impact of the choice of projection sub-
space estimation on the power of the tests. In particular, any structural breaks present
will likely be found within the first few components when the eigenspectrum is relatively
flat if one uses estimated principal components for the projection. The second main
result shows that consistent estimators for the change-points exist and the associated
distribution of change-point locations and durations can be found.

The main aim of this paper was to find a general framework for the testing and estima-
tion of change-points in resting state fMRI data, in such a way that details such as the
estimation procedure for the projection subspace can be replaced with different statis-
tical techniques while the underlying theoretical results remain valid. Examples include
methodology based on fixed spatial basis choices such as wavelets, or computational
methods such as those by Zipunnikov et al. [52] extended to time series settings. For
these variations, by careful choice of the estimators for the projection subspace, tests as
well as estimators for the location and duration distributions can be obtained from the
theoretic results given in this paper.

For resting state fMRI data, the covariance function c is probably one of the most
important quantities of interest. Indeed the full function would give a complete connec-
tivity map for the brain. However, due to its inherent size, connectivity studies take
approximations or subsets of this function and use these to derive models for the default
network, for example. However, as we have seen in the theoretical analysis, when non-
stationarities are present, we do not observe c but rather the contaminated version k,
i.e. the connectivity map but also elements associated with non-stationarities. As there
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9 Conclusions

is no inherent reason to believe these non-stationarities are anything other than subject
specific, they will induce false correlations not related to the true underlying connectiv-
ity in a standard correlation based analysis to derive connectivity measures. However,
by performing tests such as those we have derived, it is at least now possible to pick
candidate subjects with no evidence of non-stationarities, or alternatively investigate
further the causes of the non-stationarities in those with evidence of such changes, in
case they are intrinsically part of the default network in multiple subjects.

It should be noted that while we have used tests and estimators designed for epidemic
changes in this paper, it is likely that other forms of non-stationarity might be present
in applications such as fMRI, as well as possible multiple epidemic changes. However,
the use of epidemic changes is a good first approximation as it not only mimics the
most likely form of non-stationarity present in fMRI but will also have power against
other alternatives too, including multiple epidemic changes as well as slow transient
changes (where instead of a jump up or jump back, this takes some amount of time). Of
course, the detection will not be optimal in these cases, but detection is still likely for
reasonable sized changes. It is for this reason that we feel that it would be unwise to
draw too many conclusions from the actual maps that could be generated for ∆(u) based
on the epidemic change alternative. However, because of this, neuroscientific conclusions
should really be restricted to those which can be based on the timings of changes, with
further investigation being required, to account for possible effects such as hemodynamic
lag, to draw conclusions concerning any underlying neuronal changes.

While the estimators and tests can be used in many applications, from epidemics to image
based security surveillance, the application that drove all the theoretical developments
was resting state fMRI. As a result, for future statistical analyses of resting state fMRI
data, this study has three main implications:

• Firstly, routine testing for non-stationarities in resting-state scans is now possible,
and relatively computationally inexpensive (compared to the time taken to do
further analyses).

• Secondly, this study indicates that the examined subjects are fairly well split be-
tween those that have evidence of non-stationarities and those who do not, so that
it would be of great interest to compare the connectivity relationships between
these two groups. Many of the most standard connectivity measures are based on
correlation analyses, which can be dramatically affected by the presence of non-
stationarities. Hence, investigation of the phenomena found in this paper warrants
further exploration.

• Thirdly, the distributions derived from the change-point estimators seem to indi-
cate that the location and duration of the non-stationarities has considerable mass
around half way through the scan. This position (in contrast to the test result)
could be a statistical artifact, in that while the test itself reveals the presence
of non-stationarity, the type of non-stationarity might not be epidemic, but the
epidemic change hypothesis could still be powerful against evidence of stationar-
ity. It would thus be of interest to investigate further whether this non-stationary
behaviour is due to the ability or inability to rest within the scanner and is due
to active thought processes interrupting the resting state network, or whether the
resting state signal itself changes after a certain amount of time. This could be
investigated by looking at the spatial distribution of the time series which exhibit
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changes, but requires further statistical development to rigorously allow the ex-
amination of individual spatial maps after the omnibus test for the presence of an
epidemic change.
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Boston, 2003.
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