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DNA copy number and mRNA expression are widely used data
types in cancer studies, which combined provide more insight than
separately. Whereas in existing literature the form of the relationship
between these two types of markers is fixed a-priori, in this paper we
model their association. We employ piecewise linear regression splines
(PLRS), which combine good interpretation with sufficient flexibility
to identify any plausible type of relationship. The specification of the
model leads to estimation and model selection in a constrained, non-
standard setting. We provide methodology for testing the effect of
DNA on mRNA and choosing the appropriate model. Furthermore,
we present a novel approach to obtain reliable confidence bands for
constrained PLRS, which incorporates model uncertainty. The pro-
cedures are applied to colorectal and breast cancer data. Common
assumptions are found to be potentially misleading for biologically
relevant genes. More flexible models may bring more insight in the
interaction between the two markers.

1. Introduction. The genetic material of the human cancer cells of-
ten exhibits abnormalities, of which DNA copy number aberrations are a
prime example. These aberrations comprise gains and losses of chromosome
pieces that are highly variable in size. Thereby, all or parts of a chromosome
may have more or less than the two copies received from the parents. Ab-
normal DNA copy numbers (different from two) may alter expression levels
of mRNA transcripts (encoding for functional proteins) that map to the
aberration’s genomic location. Apart from being concordant (copy number
tends to correlate positively with expression level), the form of this associ-
ation is not established and may even vary per gene. In this paper we use
high-throughput data available for tissue-specific samples from unrelated
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patients to study the relationship between copy number (DNA) and gene
expression (mRNA). We employ a wide class of interpretable models to re-
flect the biological mechanism operating between these two molecular levels
and identify relevant markers that may serve as therapeutic targets.

DNA copy number aberrations are often measured by array comparative
genomic hybridization (aCGH) (Pinkel and Albertson, 2005). This measur-
ing device is similar to expression microarrays, which measure expression
levels of thousands of genes simultaneously but interrogate DNA rather than
RNA. Thereby, both profiling experiments produce a continuous value for
every element/probe on the array: a log2-value of optical fluorescence inten-
sity. As experiments appear similar, types of information differ and so are
their subsequent treatment. To understand the specific nature of these data
we include a description of their processing.

Normalization of mRNA expression profiles (Quackenbush, 2002) consists
in removing experimental artifacts (such as array differences, means, scales)
and yields, for every gene on each array, a continuous value (normalized log2-
value) which represents the amount of the gene’s transcript present in the
sample. Preprocessing of copy number/aCGH profiles aims to characterize
the genomic instability of each tumor sample and show deleted/duplicated
pieces of chromosomes. Three successive steps (illustrated in Figure 1) are
typically executed to recover the aberration states of all probes (van de Wiel
et al., 2010). Through these steps, the size, genomic position and type of copy
number aberrations are determined for all samples. First preprocessing step,
the normalization of log2-values removes technical or biological artifacts
(such as tumor sample contamination, GC content) and makes the data
comparable across samples. Next segmentation partitions the genome of each
sample into segments of constant log2-values. These segments are considered
a smoothed (and thus de-noised) version of their normalized counterparts.
Segmentation is motivated by the biological breakpoint process on the DNA
that may cause differential copy number between neighbouring locations.
Finally calling assigns an aberration state to each segment. Probabilistic
calling, usually based on mixture models, results in a probability distribution
over a set of ordered possible types of genomic aberrations (which we will
refer to as states), typically comprising “loss” (< 2 copies), “normal” (=
2 copies), “gain” (3-4 copies) and “amplification” (> 4 copies). A state
is attributed to each probe using a classification rule on the membership
probabilities. Non-probabilistic calling directly assigns states to segmented
values, e.g. by using a threshold. Note that larger segmented values almost
always correspond to larger or equal called copy number (see Figure 1).
All in all, the three steps of the preprocessing procedure provide distinct,
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but strongly related, data sets: 1) the normalized, 2) segmented and 3)
called aCGH data. While most down-stream analyses use either segmented
or called data, we use them jointly.
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Fig 1. Plot of a copy number/aCGH profile from the breast cancer data set (Neve et al.,
2006) showing the different preprocessing steps. Probes on the array are genomically or-
dered on the x-axis (only the chromosome number is displayed). Black dots and orange
segments indicate the normalized and segmented log2-values (right y-axis), respectively.
Bars represent “loss” (red) and “gain” (green and reversed) membership probabilities (left
y-axis). Amplifications are indicated by tick marks on the top axis.

Current methodology for integrative genomic studies assumes rather than
explores the mathematical form of the relationship between copy number
and expression level. The relationship is said to be either linear or step-
wise (see examples in Figure 2). A linear relationship is often assumed in
combination with segmented aCGH data. For instance, the strength of the
DNA-mRNA association is measured by a (modified) correlation coefficient
(Salari, Tibshirani and Pollack, 2010; Schäfer et al., 2009; Lee, Kong and
Park, 2008; Lipson et al., 2004). Alternatively, a linear regression approach
is entertained (Asimit, Andrulis and Bull, 2011; Menezes et al., 2009; Gu,
Choi and Ghosh, 2008). Recently published multivariate methods (Jörnsten
et al., 2011; Peng et al., 2010; Soneson et al., 2010; van Wieringen, Berkhof
and van de Wiel, 2010) also assume linearity. A piecewise DNA-mRNA re-
lationship is considered when using the called aCGH data for integrative
analysis. van Wieringen and van de Wiel (2009) and Bicciato et al. (2009)
have proposed stepwise methods.
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(b) C20orf24
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Fig 2. Illustration of the association between DNA and mRNA for three genes in the breast
cancer data set (Neve et al., 2006) used in this study. Segmented copy number is on x-axis
while gene expression is on y-axis. Symbols indicate the different states, namely loss (5),
normal (©) and gain (4). The dashed and “continuous” lines give the fitted linear and
stepwise model, respectively.

In this paper we develop model selection for piecewise linear regression
splines (PLRS) to decipher how DNA copy number abnormalities alter the
mRNA gene expression level. In addition, we propose a statistical test that
accounts for model uncertainty in the PLRS context to detect those genes
that drive important shifts. The PLRS framework encompasses the linear
and stepwise relationships, but provides flexibility, while maintaining good
interpretability. In particular, it accommodates differential DNA-mRNA re-
lationships across states. This is biologically plausible, because the cell has
various post-transcriptional mechanisms to undo the effects of DNA aber-
rations. For a given gene, the efficacy of such mechanisms is likely to differ
between gains and losses. E.g. a gain can directly be compensated by regu-
latory mechanisms that cause mRNA degradation, such as methylation. On
the other hand, a complete loss of both DNA copies (which is more rare
than partial loss) cannot be compensated at all.

Segmented and called data are incorporated into the analysis, and biolog-
ically motivated constraints are imposed on the model parameters. As this
makes model selection and inference nonstandard, we provide methodology
for testing the effect of DNA on mRNA within the context of PLRS and for
selecting the appropriate model. We also present a novel and computation-
ally inexpensive method for obtaining uniform confidence bands. We apply
the proposed methodology to colorectal and breast cancer data sets, where
we identify many genes exhibiting non-standard behavior.
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2. Methods. We model the association between DNA copy number and
mRNA expression by piecewise linear regression splines (PLRS), with bio-
logically motivated constraints on the coefficients. In this section we address
model selection and describe a modified Akaike criterion in this context. Fur-
ther we present a method for determining uniform confidence bands, along
with a statistical test for the effect of copy number on mRNA expression.

2.1. Model. Consider gene expression and aCGH profiling of n indepen-
dent tumor samples where for a given gene {yi, xi, si}ni=1 are available, with
yi being the normalized mRNA expression (log2 scale), xi the segmented
copy number (log2 scale) and si the copy number state (“loss”, “normal”,
“gain” and “amplification”, coded by -1, 0, 1 and 2) value of the ith obser-
vation, respectively. Then, the ”full” model with S states (or parts) takes
the form:

(1) yi = fα(xi; θ) + εi = θ0 + θ1xi +
S−1∑
j=1

1∑
d=0

θj,d (xi − αj)d+ + εi.

Here θ = {θ0, θ1, θ1,0, . . . , θS−1,0, θ1,1, . . . , θS−1,1} is a vector of 2 × S un-
known parameters, the εi are independent random variables each normally
distributed with mean 0 and variance σ2, and {αj} are S − 1 known knots.
The quantity (a)d+ represents the positive part max(a, 0) of a raised to the
power d. The number of aberration states S varies across genes. In this study
no more than four different aberration states are considered (S ≤ 4). Below,
for the purpose of discussing model (1) we consider the general case S = 4.

Knots {αj} are obtained using data from the calling preprocessing step.
Depending on the type of calling, two possibilities present themselves. First,
consider non-probabilistic calling which renders states {si}ni=1. Then, αj
is taken to be the midpoint of the interval between segmented values xi
belonging to consecutive states (method I). This makes the (natural) sup-
position that the calling values respect the ordering of the segmented val-
ues xi, and should be reasonably precise if the between-state intervals are
small, which is typical (see Figure 2). Second, consider probabilistic call-
ing, which renders membership (or call) probabilities: (pi,−1, pi,0, pi,1, pi,2).
These reflect the plausibility of the segmented value xi to belong to the
states si ∈ {−1, 0, 1, 2} (van de Wiel et al. (2007)). Then for j ∈ {1, 2, 3},
we estimate αj (method II) by

(2) α̂j = arg max
α∈R

n∑
i=1

pi,j(i,α), j(i, α) =

{
j − 2 if xi ≤ α
j − 1 if xi > α

.
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For instance, α2 is the knot between states 0 and 1. To determine its position
we select for each sample its plausibility pi,0 of belonging to state 0 (when
xi ≤ α2) or pi,1 of belonging to state 1 (when xi > α2), and add over all sam-
ples. We select α2 to maximize the sum. The maximum may not be unique
but described by a small interval; in such a case, we use the corresponding
midpoint. This method may be preferable as it accounts for the uncertainty
of the calling states. The two methods taken here use data as provided by
available calling algorithms. Proposed models for this preprocessing step
typically depend on data from all samples, which stabilizes the estimation
of αj . Futhermore knots are to be interpreted as boundaries between the
(ordered) states {−1, 0, 1, 2}, which gives us strong a priori knowledge as
to their placing (see Figure 2). Together, these two arguments support our
approach to consider knots in model (1) as being known. In Section 3 of
Supplementary Material (SM), a simulation shows that standard deviations
of α̂j are indeed very small.

Model (1) contains seven basis functions besides the intercept θ0 and
hence is quite flexible. Our approach is to select appropriate basis functions
(27 = 128 possible models) and estimate the parameters. The basis functions
of degree zero x 7→ (x − α)0+ model discontinuities, and hence allow for a
different effect of copy number on expression for each state.

This framework is a natural fundament to test meaningful hypothesis.
For example, the hypothesis that for a given state there is an effect of copy
number on mRNA can be expressed in terms of a linear function of the
parameters being zero (

∑
j θj,1 = 0); a difference between the effects of two

adjacent states corresponds to knot deletion. The submodel consisting of
piecewise constant functions (without the functions x 7→ x and x 7→ (x−α)1+)
allows testing the difference in expression between states based on discrete
genomic information.

To increase biological plausibility, aid interpretation and increase the sta-
bility of estimation we impose a set of linear constraints on the parameters.
As it is generally believed that direct causal effects of DNA on mRNA should
be positive, we constrain all slopes to be non-negative. More exactly, we
constrain the slope corresponding to the “normal” state to be non-negative
(θ1 + θ1,1 ≥ 0), while others are forced to be at least equal to the latter
(implied by θ1,1 ≤ 0 for losses, θ2,1 ≥ 0 for gains and θ2,1 + θ3,1 ≥ 0 for am-
plifications). For the same reason we constrain jumps θj,0 from state to state
to be non-negative. Note that the restrictions adopted here force the slope
of the “normal” state to be small or null and make the natural assumption
that a normal copy number is not expected to affect (at least severely) gene
expression.
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The maximum likelihood estimator of the unknown vector of coefficients
θ solves the following convex optimization problem:

(3) minimize
θ

(y −Xθ)T (y −Xθ) subject to Cθ ≥ 0.

This can be solved by quadratic programming (Boyd and Vandenberghe,
2004). The vector y = {y1, . . . , yn} denotes the expression signature of a
given gene and X the associated matrix of covariates designed according to
(1). The full row-rank matrix C expresses the constraints that are imposed
on the parameters. For the 4-state full model we define C as the matrix in:

(4)



0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0





θ0
θ1
θ1,0
θ1,1
θ2,0
θ2,1
θ3,0
θ3,1


≥ 0.

2.2. Model selection. Given R competing statistical models, with log-
likelihoods Lr(θr) based on a kr × 1 parameter vector θr and with corre-
sponding maximum likelihood estimators (MLE) θ̂r, the Akaike information
criterion (AIC) selects as best the model that minimizes

(5) AICr = −Lr(θ̂r) + kr.

This information criterion consists of two parts: the negative maximized log-
likelihood, which measures the lack of model fit, and a penalty for model
complexity. Although AIC has found wide application, it is less suitable for
models that include parameter constraints, as in our situation. It can be
adapted as follows.

The original motivation for the criterion (Akaike, 1973) is to choose the
model that minimizes the Kullback-Leibler (KL) divergence to the true dis-
tribution of the data. Indeed, the criterion AICr is (under some conditions)
an asymptotically unbiased estimator of this KL divergence. The likelihood
at a given parameter is an unbiased estimate of the KL divergence at this
parameter, but evaluating it at the maximum likelihood estimator intro-
duces a bias caused by “using the data twice”, which is compensated by
the penalty kr (Bozdogan, 1987). In the constrained case (i.e., subject to
Cθ ≥ 0) we can follow the same motivation, but must account for a differ-
ent behaviour of the maximum likelihood estimator and the resulting bias.
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8 LEDAY ET AL.

Intuitively, the penalty adjusts for an expected increase in the maximized
log-likelihood when variables are added to the model, which is less likely un-
der constraints. The likelihood of violation of the constraints must be taken
into account.

Hughes and King (2003) adapted the AIC criterion using the asymptotic
distribution of the Wald test statistic. In the constrained situation this statis-
tic is not distributed as a chi-squared random variable anymore, but as a
probability weighted mixture of chi-squared random variables (see Chernoff
(1954); Gouriéroux, Holly and Monfort (1982); Kodde and Palm (1986), or
van der Vaart (1998, Theorem 16.7)). It is of the form (partially inequality
constrained Wald statistic):

(6)

pr∑
h=0

w(pr, h)χ2(kr − pr + h),

where pr is the number of inequality constraints and w(pr, h) are weights
(with

∑
hw(pr, h) = 1), which can be interpreted as the probabilities under

the null hypothesis that the constrained maximum likelihood estimator θ̃r
satisfies h out of pr constraints.

Hughes and King (2003) propose to use the one-sided AIC (OSAIC) which
is an asymptotically unbiased estimator of the KL divergence in the presence
of one-sided information:

(7) OSAICr = −Lr(θ̃r) +

pr∑
h=0

w(pr, h)(kr − pr + h).

Calculating the weights is a combinatorial problem, which aims to determine
the probability that the vector θ̃r lies in any face of dimension h (Kûdo, 1963;
Shapiro, 1988; Grömping, 2010). This can be computationally intensive as
the number of variables, kr, increases (Grömping, 2010). However, in this
study the largest model has eight free parameters (because S ≤ 4). There-
fore, the model selection procedure is still very fast (a couple of seconds).

2.3. Testing. To evaluate the effect of DNA copy number on expression,
we test the hypothesis H0 : Cθ = 0 against the alternative H1 : Cθ 6=
0,Cθ ≥ 0, i.e. we test that all inequality constraints are satisfied as equali-
ties against the possibility that at least one of them is strict. From (4) we
observe that all parameters except the intercept θ0 are subject to inequality
constraints, and that the null hypothesis reduces the model to the intercept.

We employ the likelihood ratio statistic LR = 2(L1−L0), where L0 and L1
are the maximized log-likelihood under the null and alternative hypotheses,
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PLRS FOR COPY NUMBER-GENE EXPRESSION ASSOCIATION 9

respectively. The test rejects the null hypothesis for large values of:

(8) min
Cθ≥0

(y −Xθ)T (y −Xθ)− min
Cθ=0

(y −Xθ)T (y −Xθ).

This can be shown (Robertson, Wright and Dykstra, 1988) to be equivalent
to rejecting for large values of

(9) χ2 = (θ̃ − θ̃=)TΣ−1X (θ̃ − θ̃=),

where θ̃ and θ̃= are the maximum likelihood estimators under the inequality
and the equality constraints, respectively, and ΣX = σ2(XTX)−1 is the
covariance matrix of the unconstrained least squares estimator. For known
error variance σ2 the chi-bar-squared statistic χ2 may be employed with
null distribution approximated by a weighted mixture of χ2 distributions
(Chernoff, 1954; Gouriéroux, Holly and Monfort, 1982). As σ2 is typically
unknown, we use instead the so-called E-bar-squared statistic (Robertson,
Wright and Dykstra, 1988; Shapiro, 1988; Grömping, 2010; Silvapulle and
Sen, 2004)

(10) E
2

=
(θ̃ − θ̃=)TΩ−1X (θ̃ − θ̃=)

(θ̃ − θ̃=)TΩ−1X (θ̃ − θ̃=) + (y −Xθ̂)T (y −Xθ̂)
.

Here ΩX = XTX. The null distribution of this statistic is a weighted mixture
of Beta distributions of the form

(11)

p∑
h=0

w(p, h)B(h/2, (n− p)/2),

where p is the number of parameters, and B(a, b) refers to a beta distribution
with shape parameters a and b. The mixing weights are the same as in (6)
(applied to the full model); unknown parameters are estimated by their
MLEs.

Further details on these test statistics can be found in Shapiro (1988);
Robertson, Wright and Dykstra (1988); Silvapulle and Sen (2004).

2.4. Confidence bands. Confidence bands (CBs) for the (spline) function
x 7→ fα(x; θ) in Equation (1) should take both the model selection proce-
dure (see Buckland, Burnham and Augustin (1997)) and the constraints into
account.

Initially we implemented a bootstrap procedure (Grömping, 2010), ac-
counting for model uncertainty along the lines of Burnham and Anderson
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10 LEDAY ET AL.

(2002), who propose the construction of so-called unconditional confidence
intervals where only the selected model is considered for each bootstrap sam-
ple. Unfortunately, simulated coverage probabilities were below (and some-
times far below, e.g. 0.6 instead of 0.95) the nominal level, probably due
to the presence of the inequality constraints in our model (Andrews, 2000).
We therefore developed an “exact” alternative based on the E-bar-squared
statistic (10), using semidefinite programming to achieve computational effi-
ciency. A simulation study reported in Section 3.2 shows that this approach
yields accurate uniform CBs.

2.4.1. Problem formulation. We start by the construction of a joint con-
fidence region for all parameters θ in the full model, including the intercept
θ0, by inverting the likelihood ratio test described previously. Analogously
to Equation (10), define

E
2
(θ) =

(θ̃ − θ)TΩ−1X (θ̃ − θ)
(θ̃ − θ)TΩ−1X (θ̃ − θ) + (y −Xθ̂)T (y −Xθ̂)

.

Then a (1− α)% confidence region R for θ is

(12) R = {θ : E
2
(θ) ≤ Q1−α,Cθ ≥ 0},

where Q1−α denotes the (1 − α)-quantile of the beta mixture distribution
in (11). Here we increment the first parameter of the Beta distributions to
(h+1)/2, because presently we include the intercept as a parameter, whereas
before it was free under the null hypothesis. Interval estimation based on
inversion of a likelihood ratio statistic is known to possess good properties
(Meeker and Escobar, 1995; Arnold and Shavelle, 1998; Brown, Cai and
DasGupta, 2003).

Given the confidence region R we compute a confidence band by deter-
mining for each x the minimum and maximum values fα(x; θ) = xT θ. This
means determining:

inf
θ∈R

xT θ and sup
θ∈R

xT θ.

Thus a simple linear function must be minimized (or maximized) subject
to linear and ellipsoidal inequality constraints. In the following section, we
show that this (convex) problem can be solved efficiently by semidefinite
programming.
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2.4.2. Semidefinite programming. A semidefinite program (Vandenberghe
and Boyd, 1996) is concerned with the minimization of a linear objective
function under the constraint that a linear combination of symmetric ma-
trices is positive semidefinite:

(13) minimize
y∈Rm

bT y subject to F (y) = F0 +

m∑
i=1

yiFi � 0.

The vector b ∈ Rm and the symmetric (n×n) matrices F0, . . . , Fm are fixed,
and the expression F (y) � 0 means that the matrix F (y) is positive semidef-
inite (that is, zTF (y)z ≥ 0, ∀z ∈ Rn). Because a linear matrix inequality
constraint F (y) � 0 is convex, the program can be solved efficiently using
interior-point methods (Vandenberghe and Boyd, 1996).

We may express the optimization problem of the previous section as a
semidefinite program, based on two equivalences, given by Vandenberghe
and Boyd (1996) and provided in Appendix B. For convenience, we replace

the ellipsoidal constraint E
2
(θ) ≤ Q1−α by (Mθ −Mθ̃)T (Mθ −Mθ̃) ≤ λ,

where λ = (y −Xθ̂)T (y −Xθ̂)Q1−α/(1−Q1−α) and Ω−1X = MTM . Given
this, the semidefinite program is

(14) minimize
θ

xT θ subject to F (θ) = F0 +

p∑
i=1

θiFi � 0,

where

F0 =

(
0 0

0 F
(2)
0

)
, Fi =

(
F

(1)
i 0

0 F
(2)
i

)
, i = 1, · · · , p,

with the submatrices defined as:

F
(1)
i = diag(ci), F

(2)
0 =

(
I −Mθ̃

(−Mθ̃)T λ

)
and F

(2)
i =

(
0 mi

mT
i 0

)
.

Here mi and ci denote the ith column vector of the matrices M and C (the
matrix of linear restrictions expressed in (3)), respectively.

The optimization procedure needs to be repeated twice in order to deter-
mine the lower and upper bound on xT θ. Even though this must next be
repeated for every new instance x to obtain a confidence band, the over-
all procedure is fast. For instance, for 100 new instances computation on a
2.66GHz Intel quad-core took less than 12s (without parallel computing).
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3. Simulation. We conducted simulation experiments to: 1) determine
the accuracy of estimates as provided by PLRS (Section 3.1); 2) examine the
coverage probabilities of the method proposed in Section 2.4 (Section 3.2);
and 3) evaluate the performance of the PLRS screening test in detecting
associations of various functional forms (Section 3.3).

3.1. Point estimation. The simulation study examined the accuracy of
the estimates obtained by fitting piecewise splines or a simple linear model.
For simplicity, we consider a two-state model (normal and gain) and the
knot was fixed to 0.5. Data were generated according to:

• model 1: y = 1 + a2(x− 0.5)1+, a2 ∈ {0, 0.5, 1, 2, 5}
• model 2: y = 1 + 0.5x+ (a2 − 0.5)(x− 0.5)1+, a2 ∈ {0, 0.5, 1, 2, 5}

The first state (normal) has no or little effect on expression. The linear
function is contained in both models, and is found for a2 = 0 and a2 = 0.5,
respectively. We generated errors from a normal distribution N (0, σ2) where
σ ∈ {0.1, 0.25, 0.5, 0.75, 1}. This resulted in 25 cases for each of the two
models (5 values of a2 times 5 values of σ). The sample size was set to 80,
and the 80 values of x were generated from a uniform distribution U(0, 1).

We were interested in comparing the precision of the estimates of the slope
a2 when fitting a linear or a piecewise linear model (the latter with a single
knot placed at 0.5; 4 parameters). For each of the 25 cases we repeated the
simulation experiment 1000 times, and computed the estimator of the slope
for both models. Table 1 reports the empirical squared bias and variance over
the 1000 repetitions. For clarity only the results for σ = 0.25 and σ = 0.75
are displayed. Complementary results can be found in Section 2 of SM.

Not surprisingly the piecewise model can capture the relationship well in
all cases: the squared bias is small, and the variance never unduly large.
On the other hand, the estimate of the slope given by the linear model is
strongly biased for larger values of the slope a2. As expected, the variance
of the PLRS estimate is usually somewhat larger than that of the linear
model estimate. However, this difference is much less prominent than for the
squared bias. When the data generating process is linear, i.e. when a2 = 0
in model 1 and a2 = 0.5 in model 2, the difference between the estimates
from the linear and PLRS models is smaller than in the other cases.

The study suggests that, when estimating or testing the effect of DNA
copy number on mRNA expression, there is potentially more to loose than
to gain (due to misspecification versus overspecification of the model) by
applying the linear instead of the piecewise linear spline model.
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Table 1
Squared bias and variance (in parentheses) of the slope estimates of the linear and

piecewise spline models as a function of the true slope a2, noise σ and model. In bold:
setting for which the true model is linear.

Model a2
σ = 0.25 σ = 0.75

linear piecewise linear piecewise

1

0 0.002 (0.004) 0.007 (0.012) 0.015 (0.033) 0.047 (0.090)
0.5 0.070 (0.011) 0.002 (0.039) 0.050 (0.060) 0.000 (0.193)
1 0.282 (0.011) 0.004 (0.045) 0.270 (0.081) 0.008 (0.271)
2 1.114 (0.011) 0.003 (0.045) 1.124 (0.094) 0.027 (0.339)
5 6.962 (0.011) 0.003 (0.042) 6.908 (0.103) 0.022 (0.393)

2

0 0.060 (0.008) 0.063 (0.009) 0.075 (0.053) 0.124 (0.097)
0.5 0.000 (0.009) 0.005 (0.019) 0.000 (0.066) 0.030 (0.146)
1 0.058 (0.008) 0.000 (0.036) 0.055 (0.070) 0.006 (0.180)
2 0.545 (0.008) 0.000 (0.041) 0.521 (0.075) 0.000 (0.289)
5 4.782 (0.008) 0.000 (0.046) 4.857 (0.073) 0.004 (0.320)

3.2. Uniform CBs. To study the coverage probabilities of the method
proposed in Section 2.4 we simulated data according to the model y =
1 + (x−0.5)0+ + (x−0.5)1+, with x-values drawn from a uniform distribution
U(0, 1). Gaussian errors of standard deviation σ ∈ {0.5, 1}, and three sample
sizes n ∈ {20, 40, 80}. For a given data set we computed the confidence
band on a grid of 10 equidistant values, for two different significance levels
α ∈ {0.05, 0.1}, and checked whether the 10 corresponding values of the
function in the display fall simultaneously into the estimated confidence
band. (For computational reasons the simulation was limited to 10 values; we
believe that using the continuous range would not have altered the findings.)
Table 2 shows the empirical coverage probabilities over 10,000 data sets for
each situation.

The simulated coverage probabilities are close to their corresponding nom-
inal values. Even though the coverage procedure is motivated by asymptotic
approximations, this is true even when the sample size is small, in agreement
with previous literature on likelihood-based interval estimation.

Table 2
Simulated coverage probability for different sample sizes, noise levels and significance

levels.

σ = 0.5 σ = 1
α = 0.05 α = 0.1 α = 0.05 α = 0.1

n = 20 0.953 0.898 0.968 0.922
n = 40 0.952 0.883 0.967 0.926
n = 80 0.939 0.863 0.960 0.915
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3.3. PLRS screening test. We evaluated the performance of the PLRS
testing procedure in detecting associations of various functional shapes.
PLRS was compared to the LM test (see Section 4.2), Spearman’s corre-
lation test and the test proposed by van Wieringen and van de Wiel (2009).
SM Figures 2 to 11 show partial ROC curves (sensitivity versus type I error
α, where α ≤ 0.2) and partial AUC. Details are provided in SM Section 4.
Here, we summarize the results.

The PLRS test yielded good performance in detecting various types of
associations. It achieved the highest AUC in 68 out of the 90 simulation
cases (against 23 for LM). When the true effect is linear PLRS performed
reasonably well. In other cases, it always produced a high, if not the high-
est, AUC. In particular, PLRS presented a clear advantage over others in
detecting partial effects on gene expression, i.e. when only one abnormal
state (among others) affects expression. In all, results suggest that PLRS
accommodates well both continuous and discrete genomic information and,
unlike others, is able to detect various types of association.

4. Application. The proposed framework was applied to two data sets.
The first data set (Carvalho et al. (2009); available at ncbi.nlm.nih.gov/geo;
accession number GSE8067), consists of copy number and gene expression
values for 57 samples of colorectal cancer tissue. These were generated with
BAC/PAC and Human Release 2.0 oligonucleotide arrays, respectively. Nor-
malization is as in Carvalho et al. (2009). aCGH data were segmented with
the CBS algorithm of Olshen et al. (2004) and discretized with CGHcall
(van de Wiel et al., 2007). Matching of mRNA and aCGH features was
based on minimizing the distance between the midpoints of the genomic lo-
cations of the array elements. The final data set comprises 25,869 matched
features. The second data set (Neve et al. (2006); available from Bioconduc-
tor) consists of copy number number and expression data for 50 samples (cell
lines) of breast cancer, profiled with OncoBAC and Affymetrix HG-U133A
arrays. Preprocessing of mRNA expression is described in Neve et al. (2006).
aCGH data were segmented and called as above. The resulting data set con-
tains 19,224 matched features. For the colorectal and breast cancer data sets,
knots of the PLRS model were estimated using method I and II, respectively.

We first present some global results on model selection, and next consider
testing the association between DNA and mRNA. Finally some relevant
relationships are illustrated.

4.1. Model selection with the OSAIC procedure. Table 3 reports the num-
ber of genes for which our procedure (column OSAIC) selects a certain type
of model, for both data sets. Clearly both the piecewise linear model and
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the piecewise level model are selected a large number of times. Different
procedures such as AIC and BIC, BICr = −2 · Lr(θ̃r) + log(n) · kr, which
put bigger penalities on larger models (too large given the constraints), still
often prefer piecewise splines. This gives strong evidence on the inadequacy
of both the simple linear and piecewise constant models for many genes.
In Section 1 of SM, an overlap comparison of the three procedures shows
differences induced by the different penalty functions.

Table 3
The number of times a model is selected by type of model, by three model selection

procedures, for the two data sets

Carvalho et al. (2009) Neve et al. (2006)
Type of model OSAIC AIC BIC OSAIC AIC BIC

Intercept 14720 18083 21700 5081 6968 9379
Simple linear 4916 3674 2043 5262 6689 6345

Piecewise level 2667 1977 992 2761 2477 1608
Piecewise linear 3566 2135 1134 6120 3090 1892

4.2. Testing the effect of DNA on mRNA. The hypothesis that DNA
copy number has no effect on mRNA expression corresponds to model (1)
with only the intercept parameter θ0 nonzero. We tested this as the null
model both versus the full model (1) (test “PLRS”) and versus the linear
submodel (test “LM”), with the purpose to compare these two screening
models in their effectiveness to detect an association. A third possibility
would be to test the null model versus the model selected by the OSAIC
procedure. However, because this would naively suggest that the form of the
relationship is known a priori, we did not pursue this option. For the PLRS
test a minimum number of five observations (the default being three) per
state was imposed.

Table 4 gives the number of associations with a q-value below 0.1 (based
on the Benjamini and Hochberg (1995) FDR). The LM test is seen to de-
tect slightly more associations as being significant than the PLRS test. This
may be a consequence of the fact that the linear model involves fewer pa-
rameters. However, closer inspection shows that the sets of detected genes
are not nested, and the PLRS test is able to detect biologically meaningful
genes that are not detected by the LM test. To illustrate, three DNA-mRNA
relationships are plotted in Figure 3. The first corresponds to an association
detected as significant with the LM test, but not with the PLRS test. Re-
ciprocally, the last two associations (genes PDE3B and CLIP1) are detected
with the PLRS test but not with the LM test. The figure shows that the
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PLRS test is able to detect relationships for which an effect is present for
only a few samples (but at least five). Identifying the last two genes may be
more important than the first, as they are more interesting potential targets
for studying individual effects.

The first gene in Figure 3 also illustrates that the testing procedures
may differ considerably in q-values, even though the estimated regression
function found by the two models is the same. This is partly explained by
the difference in complexity between the alternative models. However, we
note that q-values for a single gene are not directly comparable, since they
also depend on p-values of other genes. In Appendix A, we provide, for
selected genes, p- and q-values for the different types of test.

Table 4
Number of associations with an estimated false discovery rate below 0.1 for different

model comparisons.

H0 Ha Carvalho et al. (2009) Neve et al. (2006)

intercept linear 1726 9783
intercept full 1554 9105
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(c) CLIP1

Fig 3. Association between DNA and mRNA for different genes in the breast cancer data
set (Neve et al., 2006). Segmented copy number is on x-axis while gene expression is
on y-axis. Symbols indicate the different states, namely loss (5), normal (©) and gain
(4). Grey surfaces correspond to 95% uniform CBs. The top left values correspond to
q-values of test LM and PLRS, respectively. The dashed line gives the fitted LM model;
the “continuous” spline is the fitted PLRS model.

4.3. Results for selected genes. In this section we show the estimated
relationships for selected genes. The selection is based on the Cancer Gene
Census list (available at www.sanger.ac.uk/genetics/CGP/Census/) and on
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our observation that some associations are atypical. Also we show results for
genes C20orf24, TCFL5 and TH1L, which were reported in Carvalho et al.
(2009) as important for colorectal cancer progression.

Figures 4 and 5 show nine DNA-mRNA associations for each of the two
data sets. Each plot displays the fit of the linear model and of the PLRS
model chosen by the OSAIC criterion. Uniform 95% confidence bands (that
account for model selection uncertainty) are also plotted. (Some curious
shapes result from the fact that pointwise variation bursts near the bound-
aries and around knots.)

Both figures show a diverse set of forms of associations. Fitted models
with jumps reveal that discrete copy number states can, by themselves,
explain variation in expression. This is even more true when a piecewise
level relationship is identified (as for gene APC and MTUS1 in Figure 4).
More generally, piecewise linear models capture effects that differ for losses,
gains and/or amplifications. Statistically speaking, this has the advantage
of giving more accurate estimates of slope(s), as is clearly observed for genes
ATMIN, PITPNA and PTEN in Figure 5. Having a better estimator, we may
expect a better test. From a biological point of view, the ability to distinguish
effects between states may help the detection of onco and tumor-suppressor
genes. Moreover, genes for which these effects concern only a few samples
may also be interesting to biologists for studying individual effects.

The simple linear model is observed to be a tight template for modeling.
As a matter of fact, it is potentially misleading when the relationship really
depends on the underlying copy number state. This happens to be the case
for known cancer genes (see FGFR1, PAK1 and PTEN in Figure 5). As a
result, when testing the effect of DNA on mRNA with the LM and PLRS
tests (see Section 4.2), one may obtain a considerable difference between the
p-values, and hence q-values (see Appendix A). For this reason the proposed
framework may improve the detection of (highly) significant associations and
their ranking.

Finally, we dwell on the notion of effect in itself. The notion of “asso-
ciation” is broad, and can be expressed both by an intercept and a slope.
This can imply a clear difference in interpretation with respect to the linear
model. Consider the simple example of gene MTUS1 in Figure 4, where a
piecewise level model is preferable. Here intuition clearly tells us that one is
more interested in assessing the difference in expression level between sam-
ples presenting loss and normal aberrations than an overall trend. There-
fore, a linear model may focus on the wrong quantity of interest, whereas
the PLRS procedure may yield meaningful interpretation.

We concentrated on comparing our results with those of the linear model.

imsart-aoas ver. 2011/05/20 file: LedayEtAl_plrs.tex date: August 8, 2012



18 LEDAY ET AL.

However, it is clear from Figures 4 and 5 that also the other alternative, the
piecewise level model (which allows only horizontal lines per state), is often
not adequate (see TH1L and PITPNA).
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Fig 4. Association between DNA and mRNA for different genes in the colorectal cancer
data set. Segmented copy number is on the x-axis while gene expression is on the y-axis.
States are indicated by different symbols: loss (5), normal (©), gain (4) and amplification
(×). Grey surfaces correspond to 95% uniform CBs. In all cases the piecewise linear model
is preferred to the simple linear one (dashed line). The top left values correspond to the p-
and q-values of the PLRS test.
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(e) ERBB2
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(f) FGFR1
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(g) PAK1
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Fig 5. Association between DNA and mRNA for different genes in the breast cancer data
set. Segmented copy number is on the x-axis while gene expression is on the y-axis. States
are indicated by different symbols: loss (5), normal (©), gain (4) and amplification (×).
Grey surfaces correspond to 95% uniform CBs. In all cases the piecewise linear model is
preferred to the simple linear one (dashed line). The top left values correspond to the p-
and q-values of the PLRS test.

5. Conclusion. We proposed a statistical framework for the integrative
analysis of DNA copy number and mRNA expression, which incorporates
segmented and called aCGH data. By using discrete aCGH data we im-
proved model flexibility and interpretability. The form of the relationship
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is allowed to vary per gene. Model interpretation is ameliorated with bi-
ologically motivated constraints on the parameters. This complicates the
statistical procedures for identifying and inferring the relationship between
the markers, but we provided methods for model selection, interval estima-
tion and testing the strength of the association. We applied the methodology
to two real data sets. Many (reported) genes exhibited interesting behavior.

A novelty of this work is the combined use of segmented and called aCGH
data. Which of the two data types is more suitable is a matter of debate in
the aCGH community, and may depend on the type of downstream analysis
(van Wieringen, van de Wiel and Ylstra, 2007). Our method provides a
compromise that uses both characteristics of the data.

The form of association between copy number and expression in breast
cancer is also explored in the recent paper Solvang et al. (2011) (which we
received after completion of this paper). This interesting paper distinguishes
(only) between linear and quadratic types of effect, and uses (only) two
types of aberrations, without distinguishing gains from amplifications. The
interpretation of the coefficients in our model seems to be simpler.

The proposed methodology is also applicable to the joint analysis of copy
number and microRNA expression. This class of non-coding RNA was shown
to play an important role in tumor development. Our method may be par-
ticularly suitable for these data, because microRNA transcripts are often
expressed in part of the samples only.

Next generation sequencing data will impose new challenges, which will
be taken up in future work. This type of data provides higher resolution
than microarrays, while reducing biases, in particular at the lower end of
the spectrum. Because expression levels are measured as counts rather than
intensities, the distribution of the response variable cannot be assumed to
be Gaussian, and hence a different noise model is needed.

In short, we provide methodology for statistical inference and model selec-
tion in the framework of constrained PLRS, and showed that this is able to
reveal interesting DNA-mRNA relationships for cancer genes. The method is
implemented in R and available as a package from www.few.vu.nl/˜mavdwiel/software.html.
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APPENDIX A: TESTING

Table 5
P and q-values of the test when under the alternative hypothesis Ha the linear,

OSAIC-selected and the full models are successively considered. The top and bottom parts
correspond respectively to the selected genes from the colorectal and breast data.

Linear OSAIC Full
p q p q p q

APC 2.49e-02 2.04e-01 2.26e-02 6.38e-02 2.49e-02 2.12e-01
ATP11A 7.34e-06 9.79e-04 5.88e-06 2.98e-04 2.08e-05 2.26e-03
C20orf24 1.71e-12 2.21e-08 3.06e-13 1.14e-09 3.68e-13 4.76e-09
JMJD6 5.44e-09 4.85e-06 1.78e-08 4.31e-06 2.99e-08 1.89e-05
MTUS1 6.83e-07 1.77e-04 6.38e-08 1.06e-05 1.72e-07 6.34e-05

RPRD1B 3.18e-06 5.45e-04 5.17e-07 5.02e-05 1.13e-06 2.67e-04
TCFL5 6.49e-06 8.88e-04 1.75e-08 4.31e-06 1.01e-07 4.22e-05
TH1L 1.06e-10 3.25e-07 2.72e-13 1.14e-09 7.14e-13 6.16e-09
TP53 6.54e-03 9.87e-02 9.42e-05 2.25e-03 2.55e-04 1.34e-02

ATMIN 1.12e-09 6.45e-08 1.13e-09 4.56e-08 5.24e-09 2.96e-07
CCND1 1.91e-08 5.71e-07 3.56e-08 6.88e-07 1.62e-07 4.15e-06
CEP350 8.55e-08 1.93e-06 3.07e-10 1.69e-08 5.74e-10 5.33e-08
EIF3H 1.70e-12 4.88e-10 8.22e-15 3.75e-12 1.05e-13 6.74e-11
ERBB2 4.46e-10 3.18e-08 4.34e-10 2.15e-08 2.48e-08 9.64e-07
FGFR1 1.62e-06 2.03e-05 3.99e-10 2.02e-08 8.90e-09 4.34e-07
PAK1 1.15e-10 1.21e-08 <2.2e-16 <2.2e-16 2.66e-15 3.94e-12

PITPNA 1.85e-06 2.25e-05 8.40e-10 3.66e-08 1.62e-08 6.93e-07
PTEN 7.27e-09 2.64e-07 9.10e-15 4.02e-12 9.55e-15 9.66e-12

APPENDIX B: SEMIDEFINITE PROGRAMMING

Here, we provide the two equivalence relationhips from Vandenberghe
and Boyd (1996) that are necessary to express the semidefinite program.
We recall that a linear matrix inequality (LMI) type of constraint includes,
among others, linear and convex quadratic inequalities. These are the two
types of constraints we are interested in. To express them as two LMIs, we
make use of the following equivalences.

A linear inequality constraint Ax + b ≥ 0, where A = [a1 · · · ak] and
x ∈ Rn, is equivalent to the following LMI:

F (x) = F0 +

k∑
i=1

xiFi � 0,

where F0 = diag(b), Fi = diag(ai), i = 1, · · · , k. diag(v) represents the
diagonal matrix with the vector v on its diagonal.
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A convex quadratic constraint (Ax + b)T (Ax + b) − cTx − d ≤ 0, where
A = [a1 · · · ak] and x ∈ Rn, is equivalent to the following LMI:

F (x) = F0 +
k∑
i=1

xiFi � 0,

where

F0 =

(
I b
bT d

)
, Fi =

(
0 ai
aTi ci

)
, i = 1, · · · , k.

Multiple LMIs can be expressed as a single one using block diagonal matrices
(VanAntwerp, 2000).

SUPPLEMENTARY MATERIAL

Online supplement: Complementary results and simulations
(http://lib.stat.cmu.edu/aoas/???/???; .pdf). We present a simulation study
which compares the performance of the PLRS testing procedure in detect-
ing associations of various functional shapes with that of other procedures.
Additionally, we provide an overlap comparison of model selection proce-
dures, complementary results for the simulation on point estimation, and a
description of the simulation on the precision of knots.
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