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Abstract

In the past years, many properties of the critical behavior of the largest connected components
on the high-dimensional torus, such as their sizes and diameter, have been established. The order of
magnitude of these quantities equals the one for percolation on the complete graph or Erdős-Rényi
random graph, raising the question whether the scaling limits or the largest connected components, as
identified by Aldous (1997), are also equal.

In this paper, we investigate the cycle structure of the largest critical components for high-
dimensional percolation on the torus {−br/2c, . . . , dr/2e − 1}d. While percolation clusters naturally
have many short cycles, we show that the long cycles, i.e., cycles that pass through the boundary
of the cube of width r/4 centered around each of their vertices, have length of order rd/3, as on the
critical Erdős-Rényi random graph. On the Erdős-Rényi random graph, cycles play an essential role in
the scaling limit of the large critical clusters, as identified by Addario-Berry, Broutin and Goldschmidt
(2010).

Our proofs crucially rely on various new estimates of probabilities of the existence of open paths in
critical Bernoulli percolation on Zd with constraints on their lengths. We believe these estimates are
interesting in their own right.
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1 Introduction and results

In the past years, the investigation of percolation on various high-dimensional tori has attracted tremen-
dous attention. In [4, 5], the phase transition of the largest connected component was investigated for
percolation on general high-dimensional tori, including the complete graph, the hypercube in high di-
mensions, as well as finite-range percolation in sufficiently high dimensions. The phase transition of
percolation on high-dimensional tori is mean-field, i.e., it shares many features with that on the complete
graph as identified in [8] (see, e.g., [2, 3, 16, 17, 21]).

In [4], the subcritical and critical behavior was investigated under the so-called triangle condition,
a general assumption on the underlying graph that ensures that the model is mean-field. The critical
behavior of the model was identified in terms of the blow-up of the expected cluster size, which identifies
a window of critical values of the edge occupation probabilities. For any parameter value in this critical
window, the largest connected component was shown to be of order V 2/3, as on the complete graph, where
V denotes the number of vertices in the graph. In [5], the triangle condition was proved to hold for the
above-mentioned examples.

The situation of finite-range high-dimensional tori, which in the graph sense converge to the hyper-
cubic lattice, was brought substantially further in [13, 14], where, among others, it was shown that the
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percolation critical value on the infinite lattice lies inside the scaling window. We now know that the
largest connected components are all of order V 2/3, that the maximal connected component |Cmax| satisfies
that |Cmax|V −2/3 and V 2/3/|Cmax| are tight sequences of random variables that are non-concentrated, and
that the diameter of large clusters is of order V 1/3. These results (and more) are also known to hold
on the Erdős-Rényi random graph, see e.g., [2, 22], as well as the monographs [3, 17]. This raises the
question whether the scaling limits agree. We shall expand on this question in Section 1.4 below.

1.1 Percolation in high dimensions

We consider bond percolation on a graph G. For a given parameter p ∈ [0, 1], this is the probability
measure Pp on subgraphs of G defined as follows. We delete edges of G with probability (1 − p) and
otherwise keep them, independently for different edges. The edges of the resulting random subgraph
of G are called open and the deleted edges are called closed. Connected components of this random
subgraph are called open clusters. The graphs we investigate in this paper are (a) the d-dimensional torus
Tdr = {−br/2c, . . . , dr/2e − 1}d; and (b) the hypercubic lattice Zd, where the dimension d is supposed
to be sufficiently large. How large we need to take d depends on the edge structure of G. We consider
two different settings: (a) In the nearest-neighbor model, two vertices are connected by an edge if they
are nearest-neighbors on G. With our choice of G, every vertex has 2d nearest-neighbors. In this setting
we take the dimension d large enough. (b) In the spread-out model with a parameter L, two vertices are
connected by an edge if there is a hypercube of size L in G that contains these vertices. With our choice
of G, every vertex has (2L+ 1)d−1 neighbors. Of course, we are only interested in the case when the size
of the torus is much larger than L. In the spread-out setting with large enough L, we take the dimension
d > 6.

To justify our choice of dimension, we recall a number of well-known results about percolation on Zd.
For bond percolation on Zd with d > 1, there exists a critical probability pc ∈ (0, 1) such that, for p < pc,
all open clusters are almost surely finite and, for p > pc, there is almost surely an infinite open cluster. At
p = pc, it is widely believed that there is almost surely no infinite open cluster. This fact has been shown
for d = 2 by Kesten [18] and for sufficiently large d by Hara and Slade [12]. Here, by sufficiently large
d, we mean d > 18 for the nearest-neighbor model and d > 6 for the spread-out model with sufficiently
large L. Showing this for all d > 1 remains a challenging open problem.

The main assumption that we use in the paper concerns an estimate on the probability that, at
criticality, two vertices x and y are in the same open cluster of bond percolation on Zd, which we denote
by x↔ y. We assume that there exist constants D1 and D2 such that, for all x and y in Zd,

D1(1 + |x− y|)2−d ≤ Ppc(x↔ y) ≤ D2(1 + |x− y|)2−d. (1.1)

These bounds have been established using so-called lace-expansion techniques, for the nearest-neighbor
model with large enough d by Hara [10], and for the spread-out model with d > 6 by Hara, van der
Hofstad and Slade [11]. In fact, these papers give asymptotic formulas for such probabilities, but for our
purposes, the bounds (1.1) suffice.

It is believed that the estimates (1.1) hold for the nearest-neighbor model with d > 6, however the
proof of this fact is beyond the current methods. It has been proved by Chayes and Chayes [7] (assuming
the existence of critical exponents) that the bounds (1.1) are violated for d < 6. The dimension d = dc = 6
is usually referred to as the upper critical dimension.

A simple computation using the upper bound in (1.1) shows that

∇(pc) =
∑
x,y

Ppc(0↔ x)Ppc(x↔ y)Ppc(y ↔ 0) <∞. (1.2)

The bound in (1.2) is called the triangle condition, and is believed to be true for d > 6. The triangle
condition implies that the sub- and critical phases of percolation on Zd behave similarly to the ones
on a tree, for example, many critical exponents on Zd are equal to those on the tree. Intuitively, the
geometry of large critical clusters trivializes, since the space is so vast that far away clusters are close
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to being independent. In recent years, a related condition has been proved to hold on the torus, which
implies that the critical behavior of large connected components on the high-dimensional torus is similar
to that on the complete graph. Sometimes this is called random graph asymptotics for percolation on the
high-dimensional torus.

In this paper, we study the cycle structure of bond percolation on the d-dimensional torus in the
above two settings. Despite the fact that, for any p ∈ (0, 1), the vertices in open cycles occupy a positive
fraction of the torus, which is not the case for the critical and subcritical Erdős-Rényi random graph
(see [21]), most of such vertices belong only to short cycles, such as open squares of four bonds. Short
cycles vanish in the scaling limit of large critical clusters, and are thus irrelevant to the scaling limit.
Therefore, we focus on the existence of open long cycles, where we say that a cycle is long when it passes
through the boundary of the cube of width r/4 centered around each of its vertices. Special cases of long
cycles are non-contractible cycles, which are cycles that cannot, when considered as continuous curves,
be contracted to a point, and thus wind around the torus at least once.

Our main results show that the mean number of vertices in open long cycles grows like V 1/3, and that
such cycles (when they exist) contain order of V 1/3 vertices. Moreover, we show that the probability of
the existence of at least one open long cycle in a large cluster is bounded away from 0 and 1, uniformly in
the volume of the graph. As we discuss in more details below, this situation is analogous to the situation
on the complete graph, as investigated in [1, 2, 21]. We also refer the reader to [21, pages 722-723] for the
discussion of more refined results about the structure of connected components of the critical Erdős-Rényi
random graph.

For simplicity of presentation, we restrict ourselves hereafter to the nearest-neighbor model. The results
of this paper still hold for the spread-out model on the d-dimensional torus with d > 6.

The remainder of this section is organized as follows. In Section 1.2, we describe our main results,
in Section 1.3, we describe some results on critical percolation on Zd and the torus that are used in the
proofs of our main results and are interesting in their own right, and in Section 1.4, we discuss the results
and their relation to the work on the Erdős-Rényi random graph.

1.2 Main results

We start by introducing some notation. For a ∈ R, we write |a| for the absolute value of a, and, for a site
x = (x1, . . . , xd) ∈ Zd, we write |x| for max(|x1|, . . . , |xd|), and |x|1 for

∑d
i=1 |xi|. For s > 0 and x ∈ Zd,

let Qs(x) = {y ∈ Zd : |y− x| ≤ s} and ∂Qs(x) = {y ∈ Zd : |y− x| = bsc}. We write Qs for Qs(0) and ∂Qs
for ∂Qs(0).

For a positive integer r, we consider the torus (Tdr ,Edr) with Tdr = {−br/2c, . . . , dr/2e − 1}d and the
edge set Edr =

{
{x, y} ∈ Tdr × Tdr :

∑d
i=1 |(xi − yi)(mod r)| = 1

}
. We often abuse notation and write

Tdr for (Tdr ,Edr). The vertex 0 = (0, . . . , 0) is called the origin. We denote the number of vertices in the
torus or volume by V = rd. For p ∈ [0, 1], we consider the probability space (ΩT,p,FT,p,PT,p), where

ΩT,p = {0, 1}Edr , FT,p is the σ-field generated by the cylinders of ΩT,p, and PT,p is a product measure
on (ΩT,p,FT,p), PT,p =

∏
e∈Edr µe, where µe is given by µe(ωe = 1) = 1 − µe(ωe = 0) = p, for vectors

(ωe)e∈Edr ∈ ΩT,p. We write ET,p for the expectation with respect to PT,p.

We further consider the hypercubic lattice (Zd,Ed), where the edge set is given by Ed =
{
{x, y} ∈

Zd × Zd : |x − y|1 = 1
}

. Again, we often abuse notation and write Zd for (Zd,Ed). For p ∈ [0, 1], we

consider a probability space (ΩZ,p,FZ,p,PZ,p), where ΩZ,p = {0, 1}Ed , FZ,p is the σ-field generated by the
finite-dimensional cylinders of ΩZ,p, and PZ,p is the product measure on (ΩZ,p,FZ,p), PZ,p =

∏
e∈Ed µe,

where µe is given by µe(ωe = 1) = 1− µe(ωe = 0) = p, for vectors (ωe)e∈Ed ∈ ΩZ,p.
In both settings, we say that an edge e is open or occupied if ωe = 1, and e is closed or vacant if ωe = 0.

The event that two sets of sites K1,K2 ⊂ Tdr are connected by an open path is denoted by {K1 ↔
K2 in Tdr}, and the event that K1 and K2 are connected by an open path of length (number of edges) at

most k is denoted by {K1
≤k←→ K2 in Tdr}. We write CT(x) for the set of y ∈ Tdr such that x↔ y in Tdr .
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Similarly, the event that two sets of sites K1,K2 ⊂ Zd are connected by an open path is denoted by
{K1 ↔ K2 in Zd}, and the event that K1 and K2 are connected by an open path of length at most k is

denoted by {K1
≤k←→ K2 in Zd}. We write CZ(x) for the set of y ∈ Zd such that x↔ y in Zd.

Finally, for x, y ∈ Tdr , we write τT,p(x, y) = PT,p(x ↔ y in Tdr), and τT,p(x) = τT,p(0, x), while, for
x, y ∈ Zd, τZ,p(x, y) = PZ,p(x↔ y in Zd) and τZ,p(x) = τZ,p(0, x).

We call a nearest-neighbor path π = (x(1), . . . , x(m)) in Tdr a cycle if it is edge-disjoint and x(1) =
x(m), i.e., π is an (edge-)self-avoiding polygon. We say that a cycle π is long if for each 1 ≤ n ≤ m, the
cycle π has a vertex in ∂Qr/4(x(n)). Finally, we denote by LCk the event that the origin is in an open
long cycle of length at most k.

For two functions g and h from a set X to R, we write g(z) � h(z) to indicate that g(z)/h(z) is bounded
away from 0 and ∞, uniformly in z ∈ X . All the constants (Ci) in the proofs are strictly positive and
finite and depend only on the dimension, unless the dependence on other parameters is explicitly stated.
Their exact values may be different from section to section.

We first give bounds on the probability that a vertex of the torus is in an open long cycle.

Theorem 1.1 (Expected number of vertices in long cycles). Assume (1.1). For x ∈ Tdr ,

PT,pc(x is in an open long cycle) � V −2/3. (1.3)

Consequently,
ET,pc

[
#{x : x is in an open long cycle}

]
� V 1/3. (1.4)

In the next theorem we show that, with high probability, large open clusters of the torus may only
contain long cycles of length of order V 1/3.

Theorem 1.2 (Long cycles have length of order V 1/3). Assume (1.1). There exists C <∞ such that for
any positive ε and δ, and integer r ≥ 1,

PT,pc

(
∃x : |CT(x)| > δV 2/3, CT(x) contains a long cycle of length ≤ εV 1/3

)
≤ Cε

δ
, (1.5)

and
PT,pc

(
∃ a long cycle of length ≥ ε−1V 1/3

)
≤ Cε. (1.6)

We next study the number of long cycles. We start by defining what this is. For a subgraph G of the
torus, we define YG as the smallest k for which there exist edges e1, . . . , ek in G such that G \ {e1, . . . , ek}
does not contain any long cycles. For δ > 0, we define

Yδ =
∑
C
YCI(|C| > δV 2/3),

where the sum is over all open clusters C of the torus. We prove the following theorems:

Theorem 1.3. Assume (1.1). There exists C <∞ such that for all δ > 0 and integer r ≥ 1,

ET,pc [Yδ] ≤ C/δ.

In particular, the random variables Yδ are tight.

Theorem 1.4 (Non-trivial existence of long cycles). Assume (1.1).
(a) There exists c > 0 such that for all integers r ≥ 1,

PT,pc

(
∃ a long cycle of length > cV 1/3

)
> c.

(b) For any δ > 0 there exists c > 0 such that for all integers r ≥ 1,

PT,pc(Yδ = 0) > c.

In other words, with positive probability uniformly in r, there are no long cycles in clusters of size > δV 2/3.
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1.3 Related results on critical percolation

In this section, we state a few results about critical Bernoulli percolation on Zd and Tdr that are interesting
in their own right, for the ease of future reference.

Theorem 1.5 (Connections inside balls). Assume (1.1). There exists C <∞ such that
(a) for all n ≥ 1, ∑

x∈∂Qn

PZ,pc(0↔ x in Qn) ≤ C,

(b) for all ε > 0,

lim sup
n→∞

∑
x∈∂Qn

PZ,pc(0
≤εn2

←→ x in Qn) ≤ C
√
ε. (1.7)

Theorem 1.6 (Short connections). Assume (1.1). There exists C < ∞ such that for any z ∈ Zd and
positive integers r and k,

∑
x∈Zd, x r∼z, |x|≥br/4c

PZ,pc

(
0
≤k←→ x in Zd

)
≤

{
Ck
rd

if k ≥ r2,
Cr2−d · e−

r

C
√
k if k ≤ r2,

(1.8)

and for k ≥ r2,∑
w
r∼z, |w|≥3r/4

∑
u,v

PZ,pc

(
0
≤k←→ u in Zd

)
PZ,pc

(
u
≤k←→ v in Zd

)
PZ,pc

(
v
≤k←→ w in Zd

)
≤ Ck3

rd
. (1.9)

We note that in the special case where r = 1, (1.8) implies the result of [20, Theorem 1.2(i)] that∑
x∈Zd

PZ,pc

(
0
≤k←→ x in Zd

)
≤ Ck. (1.10)

Theorem 1.7 (Torus two-point function). There exists C <∞ such that for all x ∈ Tdr ,

τT,pc(x) ≤ τZ,pc(x) + CV −2/3, (1.11)

and for all positive integers n < r/2,

sup
x∈Tdr

PT,pc (0↔ x by a path which visits ∂Qn) ≤ Cn2−d + CV −2/3. (1.12)

1.4 Discussion

In this section, we compare our results to those for the Erdős-Rényi random graph (ERRG), as proved,
for example, by Aldous in [2], and formulate some open problems.

Cycle structure on the Erdős-Rényi random graph. We refer to [2] for the extensive literature
on the cycle structure of the ERRG. The ERRG is obtained by removing each edge of the complete graph
Kn independently with probability p. On the critical ERRG, there is no distinction between long and
short cycles, and the number of cycles of a cluster equals the tree excess of the cluster, i.e., the minimal
number of edges one needs to remove from the cluster in order for it to be a tree.

On the ERRG, within the critical window p = (1 + λn−1/3)/n for some λ ∈ R, the number of cycles
of large clusters converges in distribution to a Poisson random variable with a random parameter. This
random parameter can be described as the area of the cluster exploration process. Since this parameter is a
bounded random variable, in particular, each large cluster has a tree excess that converges in distribution,
and the probability that the ith largest cluster does not contain any cycle is strictly positive for any i ≥ 1
fixed.
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Since there is just a finite number of clusters of size at least δn2/3, this immediately implies that the
probability that there are no connected components of size at least δn2/3 containing cycles is strictly
positive. Further, all cycles have macroscopic length. Indeed, the largest connected components in the
ERRG have diameter of the order n1/3, and the length of cycles (when they exist) is also of the same
order of magnitude. Cycles play a crucial role in describing the scaling limit of the largest critical clusters
on the ERRG, as identified in [1]. Indeed, clusters locally look like trees, with cycles creating shortcuts
between the different branches of the tree. Since cycles have a macroscopic length, these shortcuts are also
macroscopic and thus the scaling limit of large critical clusters on the ERRG within the critical window
is not a tree.

We conclude that the main features of the scaling limit of the critical ERRG are (a) the largest critical
clusters being of size O(n2/3), with a non-concentrated limit; (b) the largest critical clusters being close
to trees with at most a finite number of macroscopic cycles; (c) a non-trivial probability that there exists
large clusters having cycles.

Cycle structure on high-dimensional tori. We next investigate percolation on high-dimensional
tori. In this case, of the above features (a-c) of the scaling limit of the critical ERRG, the feature (a)
has been investigated in [4, 5, 13, 14], we focus on features (b) and (c) here. While our results clearly
are not as strong as on the ERRG, they do establish the non-triviality of the probability of existence of
cycles in large clusters as well as bounds on their length. Based on our results, we see that a natural
split exists between cycles containing O(V 1/3) vertices that are truly macroscopic, and short cycles that
basically remain within a cube without leaving its boundary. The former are essential in describing the
scaling limit, the latter vanish in the scaling limit. There is no middle ground.

Our results provide yet another argument why the scaling limit of critical percolation on high-
dimensional tori should be related to that for the critical ERRG. More precisely, the scaling limit of
large critical clusters on the ERRG within the critical window is, or is not, a tree, each with positive
probability. We see the same for large critical clusters on the high-dimensional torus, where with high
probability, there are no long cycles containing o(V 1/3) vertices in large cluster. Thus, all long cycles are
macroscopic, and will thus change the scaling limit of large critical clusters, in a similar way as they do
on the ERRG.

Open probems. We complete this section by formulating a few open problems. The first extension
deals with the values of p within the so-called scaling window. The results in [13, 14], in conjunction
with those in [4, 5], show that when p = pc(1 + ε), where V 1/3|ε| remains uniformly bounded, the largest
clusters obey similar scaling as for p = pc. An open problem is to show that Theorems 1.1–1.4 remain valid
throughout the scaling window. Another extension is to more general high-dimensional tori, for example,
to percolation on the hypercube as studied in [6, 15]. An open problem is to prove that Theorems 1.1–1.4
also hold on the hypercube, where a cycle is defined to be long when the number of edges in it is at least
the random walk mixing time n log n. The random walk mixing time plays a crucial role in [15] to identify
the supercitical behavior of percolation on the hypercube.

Organization of this paper. This paper is organized as follows. In Section 2, we collect some pre-
liminary results that we use in the proof. In Section 3, we prove Theorem 1.1. In Section 4, we prove
Theorem 1.2. In Section 5, we prove Theorems 1.3 and 1.4. In Section 6, we prove Theorem 1.5, in
Section 7 we prove Theorem 1.6, and in Section 8 we prove Theorem 1.7.

2 Preliminary results

In this section we collect some results that we use in the proofs.
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2.1 Coupling clusters on the torus and the lattice

We say that two vertices x and y in Zd are r-equivalent and write x
r∼ y, if y = x+rz for some z ∈ Zd. We

say that two edges e1 = {x1, y1} and e2 = {x2, y2} in Ed are r-equivalent (e1
r∼ e2) if x1

r∼ x2 and y1
r∼ y2,

or if x1
r∼ y2 and y1

r∼ x2. In the proof of Theorem 1.1, we need an extension of [13, Proposition 2.1]:

Proposition 2.1 (Coupling of clusters on torus and lattice). Consider bond percolation on Zd and on Tdr
with parameter p ∈ [0, 1]. There exists a coupling PZ,T,p of PZ,p and PT,p on the joint space of percolation
on Zd and Tdr such that the following properties are satisfied PZ,T,p-almost surely for all k:

(a) for all x ∈ Tdr ,
{0 ≤k←→ x in Tdr} ⊆

⋃
y∈Zd,y r∼x

{0 ≤k←→ y in Zd},

(b) for x
r∼ y, the event

{0 ≤k←→ y in Zd} \ {0 ≤k←→ x in Tdr}
implies that there exist distinct r-equivalent vertices v1 and v2 in Zd and a vertex z ∈ Zd such that
the following disjoint connections take place in Zd:

{0 ≤k←→ z} ◦ {z ≤k←→ v1} ◦ {z
≤k←→ v2} ◦ {v1

≤k←→ y}.

[13, Proposition 2.1] is Proposition 2.1 for k =∞.

Proof. Let ϕ be the map from Edr to subsets of Ed defined by

ϕ({x, y}) =
{
{x′, y′} ∈ Ed : x′

r∼ x, y′ r∼ y
}

for all {x, y} ∈ Edr .

The sets (ϕ(e))e∈Edr form the equivalence classes of the equivalence relation e
r∼ f , where e

r∼ f denotes

that the endpoitns are r-equivalent. Note that for each e ∈ Edr , ϕ(e) 6= ∅, and the sets (ϕ(e))e∈Edr form a

partition of Ed. Let Φ be the map from {0, 1}Edr to {0, 1}Ed defined by

Φ(ω)f = ωe for all ω ∈ {0, 1}Edr , e ∈ Edr , f ∈ ϕ(e).

Informally, we prove the proposition by defining for each percolation configuration on Tdr a certain “un-
wrapping” of the set of edges with an end-vertex in CT(0) onto Ed, and then revealing the status of the
remaining edges of Ed by sampling from an independent percolation configuration on Zd. We achieve this
by constructing an exploration of the edges of CT(0) for each percolation configuration on Tdr .

Let ω ∈ {0, 1}Edr . For n ≥ 0, we will define the following sets of edges in Edr recursively in n:

AT(n) (active edges), OT(n) (occupied edges), VT(n) (vacant edges), and
ET(n) = OT(n) ∪ VT(n) (explored edges);

and the following sets of edges in Ed:

AZ(n) (active edges), OZ(n) (occupied edges), VZ(n) (vacant edges),
GZ(n) (ghost edges), and EZ(n) = OZ(n) ∪ VZ(n) ∪GZ(n) (explored edges).

We refer to this recursive procedure as the exploration.

We initiate the exploration by taking AZ(0) to be the set of all edges that are neighbors of the origin
in Zd, EZ(0) = ET(0) = ∅, and AT(0) = {e ∈ Edr : ϕ(e) ∩ AZ(0) 6= ∅}. Note that AT(0) is the set of all
edges in Edr that are neighbors of the origin in Tdr .

Let n ≥ 0. We assume that the exploration is defined up to step n and now define it at step (n+ 1).
If AZ(n) = ∅, then we stop the exploration and write T = n− 1. Otherwise, we take an edge e ∈ AZ(n)
which is closest to the origin in terms of the graph distance in OZ(n) (with ties broken in an arbitrary
deterministic fashion). We define GZ(n+ 1) = GZ(n)∪ {f : f 6= e, f

r∼ e}. To make the other updates, we
consider two cases:
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(a) if Φ(ω)e = 1, then we define OZ(n + 1) = OZ(n) ∪ {e}, VZ(n + 1) = VZ(n), and AZ(n + 1) =
AZ(n) ∪ {f : f ∼ e} \ EZ(n+ 1), where e ∼ f means that e and f share an end-vertex;

(b) if Φ(ω)e = 0, then we define OZ(n + 1) = OZ(n), VZ(n + 1) = VZ(n) ∪ {e}, and AZ(n + 1) =
AZ(n) \ EZ(n+ 1).

Finally, for S ∈ {A,O, V,E}, we define ST(n+ 1) = {e ∈ Edr : ϕ(e) ∩ SZ(n+ 1) 6= ∅}.
Note that in the exploration the status of each edge f ∈ Edr (i.e., the value of ωf ) is checked at most

once. Indeed, once an edge e ∈ ϕ(f) is selected, all the remaining edges in its equivalence class ϕ(f)
are immediately declared ghost, and therefore, cannot become active anymore. In particular, for each
S ∈ {A,O, V,E}, if SZ(n+ 1) \ SZ(n) 6= ∅, then ST(n+ 1) \ ST(n) 6= ∅.

Also note that the exploration eventually stops, since T is at most the number of edges in Edr . Moreover,
the set OT(T ) coincides with the set of open edges of CT(0) in ω, and the set VT(T ) is the set of closed
edges of Edr in ω sharing an end-vertex with CT(0). In other words, the exploration stops as soon as all
the edges with an end-vertex in CT(0) are explored.

To complete the construction of the coupling, we define, for each ω ∈ {0, 1}Edr and ω ∈ {0, 1}Ed , the

configuration ω̃ ∈ {0, 1}Ed such that for all e ∈ Ed,

ω̃e =

{
Φ(ω)e if e ∈ OZ(T ) ∪ VZ(T ),
ωe otherwise.

Note that for any p ∈ [0, 1], if (ω, ω) is sampled from PT,p ⊗ PZ,p, then ω̃ gives a sample from PZ,p.
Therefore, (ω, ω̃) gives us a coupling of PT,p and PZ,p. It remains to check that this coupling satisfies the
properties defined in the statement of the proposition.

Property (a) is immediate from the construction. It remains to prove property (b). Take x ∈ Tdr ,
y ∈ Zd, with x

r∼ y, and an integer k ≥ 0. Let ω ∈ {0, 1}Edr and ω ∈ {0, 1}Ed be such that

ω̃ ∈ {0 ≤k←→ y in Zd} and ω /∈ {0 ≤k←→ x in Tdr}.

We need to show that there exist distinct r-equivalent vertices v1 and v2 in Zd and a vertex z ∈ Zd such
that

ω̃ ∈ {0 ≤k←→ z} ◦ {z ≤k←→ v1} ◦ {z
≤k←→ v2} ◦ {v1

≤k←→ y}.

We fix a shortest open path π from 0 to y in Zd in ω̃. By assumption, the length k′ of π is at most k.

Since ω /∈ {0 ≤k←→ x in Tdr}, there exists an edge e on this path such that e ∈ GZ(T ). Let e be the first
edge on π from GZ(T ) (counting from 0 to y). We denote by (e1, . . . , em−1) all the edges on the part of
π from 0 to e, and by (em+1, . . . , ek′) all the edges on the part of π from e to y. Since π is chosen to be a
shortest open path from 0 to y, there exists n such that e1, . . . , em−1 ∈ OZ(n) and em+1, . . . , ek′ /∈ OZ(n).
Indeed, otherwise by the definition of the exploration, there would exist an open path from 0 to y which
is strictly shorter than π.

By construction, there exists an edge f ∈ Zd such that f 6= e, f
r∼ e, and the origin is connected to

one of the end vertices of f by an open path π′ inside OZ(n). In particular, the length of π′ is at most k.
We denote this vertex by v2, and let v1 be the end-vertex of e which is r-equivalent to v2. Let π1 be the
part of π from 0 to v1, and π2 be the part of π from v1 to y.

Note that π1 and π2 are edge-disjoint by definition. Moreover, since the edges of π′ are all in OZ(n),
and the edges of π2 are not in OZ(n), we deduce that π′ and π2 are also edge-disjoint. We have thus
shown that

ω̃ ∈
⋃

v1 6=v2, v1
r∼v2

{0 ≤k←→ v1 in Zd, 0
≤k←→ v2 in Zd} ◦ {v1

≤k←→ y in Zd}.

We finish the proof by observing that if 0 is connected to v1 and v2 by open paths in Zd of length at most
k, then there exists z ∈ Zd such that the following edge-disjoint open paths (each of length at most k)
exist in Zd: from 0 to z, from z to v1, and from z to v2.
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From now on, we only consider the probability measure PZ,T,p defined in Proposition 2.1 and

in the remainder of the paper, we write Pp for PZ,T,p.

In particular, Pp(E) = PZ,p(E) for E ∈ FZ,p, and Pp(E) = PT,p(E) for E ∈ FT,p (see Section 2.1 for
notation), and we always assume without mentioning the coupling from Proposition 2.1 when we consider
events from FZ,p and FT,p simultaneously.

2.2 Previous results

In the next theorem, we summarize a number of results on high-dimensional percolation on Zd that we
will often use in the proofs in this paper.

We start by introducing balls in the intrinsic distance. For x ∈ Zd and k ≥ 0, we write BZ,k(x) =

{y : x
≤k←→ y in Zd} to denote all vertices at graph distance at most k from x in CZ(x). Similarly, for x ∈ Tdr

and k ≥ 0, we write BT,k(x) = {y : x
≤k←→ y in Tdr} to denote all vertices at graph distance at most k from

x in CT(x). Further, we let ∂BZ,k(x) = BZ,k(x) \BZ,k−1(x) and ∂BT,k(x) = BT,k(x) \BT,k−1(x) denote the
vertices at graph distance precisely equal to k from x. Let G be a subgraph of Zd or Tdr , respectively.
We define BG

Z,k(x), ∂BG
Z,k(x), BG

T,k(x) and ∂BG
T,k(x) in the same way as BZ,k(x), ∂BZ,k(x), BT,k(x) and

∂BT,k(x), except that we are now only allowed to use edges from G.

Theorem 2.1 (Critical behavior of high-dimensional percolation). Assume (1.1). There exist c > 0 and
C <∞ such that:

(i) For all x ∈ Tdr , y ∈ Zd, and positive integer k,

sup
G

Ppc
(
∂BG

Z,k(y) 6= ∅
)
≤ C/k, sup

G
Ppc
(
∂BG

T,k(x) 6= ∅
)
≤ C/k. (2.1)

(ii) For all positive integers n,

cn−2 ≤ Ppc
(

0↔ ∂Qn in Zd
)
≤ Cn−2, (2.2)

(iii)

cn2 ≤
∑
x∈Qn

τZ,pc(x) ≤ Cn2, (2.3)

and for any given z ∈ Zd and a positive integer r with r ≤ n,

cn2

rd
≤

∑
x∈Qn,x

r∼z,|x|≥r/8

τZ,pc(x) ≤ Cn2

rd
. (2.4)

(iv) For any z ∈ Zd, ∑
x,y∈Zd

τZ,pc(0, x)τZ,pc(x, y)τZ,pc(y, z) ≤ C|z|6−d. (2.5)

Proof. The first statement is [20, Theorem 1.2(ii)], and its adaptation to the torus in [14, Verification of
Theorem 4.1(b)]. Statement (ii) is [19, Theorem 1]. Statements (iii) and (iv) easily follow from (1.1).

The next theorem gives an upper bound on ET,pc |C(0)|, which is used often in the proofs:

Theorem 2.2 (Expected critical cluster size on torus). There exists C <∞ such that for all r ≥ 1,

ET,pc |C(0)| ≤ CV 1/3. (2.6)

Proof. The statement follows from [13, (1.6)] and [5, Theorem 1.6(iii)]. (Alternatively, it follows from
(1.11) and (2.3).)
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3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 subject to Theorems 1.5–1.7. We give the proof of the upper bound
in Proposition 3.1 and the proof of the lower bound in Proposition 3.2. The results of these propositions
are more general than the result of Theorem 1.1, and also give bounds on the probability that the origin
is in a long cycle with small length. In particular, the upper bound on the probability of such an event
will be used in the proof of Theorem 1.2 to show that large open clusters do not contain long cycles with
few edges.

Recall that LCk denotes the event that the origin is in an open long cycle of length at most k. We
prove the following bounds:

Proposition 3.1 (Upper bound on long cycles). Assume (1.1). There exists C <∞ such that

Ppc(0 is in an open long cycle) ≤ CV −2/3,

and
Ppc(LCk) ≤ Ck/V.

Proof. We begin by proving the second statement of the proposition. Let k ≥ 1. By the definition of a
long cycle, if LCk occurs, then there exists x ∈ ∂Qr/4 such that the following connections occur disjointly:

{0↔ x in Qr/4} ◦ {0
≤k←→ x in Tdr}.

By the BK inequality,

Ppc(LCk) ≤
∑

x∈∂Qr/4

Ppc
(
0↔ x in Qr/4

)
Ppc
(

0
≤k←→ x in Tdr

)
.

By property (a) of Proposition 2.1 and (1.8), we obtain that for any x ∈ ∂Qr/4,

Ppc
(

0
≤k←→ x in Tdr

)
≤

∑
y∈Zd,y r∼x

Ppc
(

0
≤k←→ y in Zd

)
≤ C1k/V.

Combining the above inequalities and using Theorem 1.5(a), we arrive at the second statement of the
proposition.

We proceed with the proof of the first statement. As in the proof of the second statement,

Ppc(0 is in an open long cycle) ≤
∑

x∈∂Qr/4

Ppc
(
0↔ x in Qr/4

)
Ppc
(

0↔ x in Tdr
)
.

By (1.11) in Theorem 1.7 and (1.1), for any x ∈ ∂Qr/4,

Ppc
(

0↔ x in Tdr
)
≤ C2r

2−d + C2V
−2/3 ≤ 2C2V

−2/3,

where the last inequality holds for d > 6. Putting the bounds together and using Theorem 1.5(a), we
obtain the first statement of the proposition.

Proposition 3.2 (Lower-bound on long cycles). Assume (1.1). There exist constants c, ε > 0 and K <∞
such that

Ppc(0 is in an open long cycle) ≥ cV −2/3,

and for any k ∈ [Kr2, εV 1/3],
Ppc(LCk) ≥ ck/V.
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Proof. The first statement immediately follows from the second one for k = εV 1/3. We now prove the
second statement. Let R be a large positive integer. Let K be a large positive number, and ε a small
positive number. The precise choice of these numbers will be made later in the proof. Let k be an integer
with k ∈ [Kr2, εV 1/3].

First of all, note that it suffices to prove the result for r > 16R. Indeed, once we fix R, the result
for r ∈ [1, 16R] will follow by adjusting the constant c. Therefore, throughout the proof we assume that
r > 16R. The proof consists of several steps.
Step 1. For any x ∈ Zd, let u(x) be the vertex in Zd with coordinates (x1, . . . , xd−1, xd+R). In particular,
u(x) ∈ ∂QR(x). For x ∈ Zd, consider the event

Ax = Ax(k,R) = {0 ≤k←→ u(x)}.

Let
N(A) =

∣∣∣{x ∈ Zd : x
r∼ 0, x 6= 0, Ax occurs}

∣∣∣ .
We use the second moment method to show that

Ppc(N(A) 6= 0) ≥ ck/V,

for some constant c that may depend on K, but not on r, k or R.
We first show that there exists a constant C3 = C3(K) such that

EpcN(A) ≥ C3k/V. (3.1)

We write
EpcN(A) ≥

∑
x
r∼0, r/16≤|x|≤

√
k/K

Ppc(0
≤k←→ u(x)). (3.2)

Similarly to the proof of [20, Theorem 1.3(i)], one can show that if K = K(d) is chosen large enough,
then for any r/16 ≤ |x| ≤

√
k/K,

Ppc(0
≤k←→ u(x)) ≥ 1

2
Ppc(0↔ u(x)). (3.3)

Inequality (3.1) now follows from (3.2), (3.3), the assumptions r > 16R and k ≥ Kr2, and the lower
bound in (2.4), where C3 = C3(K) = c3/K for some c3 > 0 independent of all other parameters. From
this moment onwards, the large integer K remains unchanged.

Next, we bound the second moment of N(A). Let
∑′ be the sum over all distinct x, y ∈ Zd such that

x, y 6= 0 and x, y
r∼ 0. We obtain

EpcN(A)2 ≤ EpcN(A) +
∑′

Ppc
(

0
≤k←→ u(x), 0

≤k←→ u(y)
)
.

Note that if 0
≤k←→ u(x) and 0

≤k←→ u(y), then there exists z ∈ Zd such that the following open paths

occur disjointly: 0
≤k←→ z, z

≤k←→ u(x) and z
≤k←→ u(y). Therefore, the BK inequality implies

EpcN(A)2 ≤ EpcN(A) +
∑′∑

z∈Zd
Ppc
(

0
≤k←→ z

)
Ppc
(
z
≤k←→ u(x)

)
Ppc
(
z
≤k←→ u(y)

)
.

Let
∑′′ be the sum over all pairwise distinct x, y, z ∈ Zd such that x

r∼ y
r∼ z. By translation invariance

and the fact that u(x)− z = u(x− z), we have

EpcN(A)2 ≤ EpcN(A) +
∑′′

Ppc
(

0
≤k←→ z

)
Ppc
(

0
≤k←→ u(x)

)
Ppc
(

0
≤k←→ u(y)

)
.
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Since x, y and z are distinct and r-equivalent, at least two of them are at distance at least r/2 from the
origin. Therefore, the above sum is at most

EpcN(A) +
∑

x
r∼y r∼z; |x|,|y|≥r/2

[
Ppc
(

0
≤k←→ z

)
Ppc
(

0
≤k←→ u(x)

)
Ppc
(

0
≤k←→ u(y)

)
+2 Ppc

(
0
≤k←→ x

)
Ppc
(

0
≤k←→ u(y)

)
Ppc
(

0
≤k←→ u(z)

)]
.

Remember that we assume that r > 16R. In particular, |u(x)| ≥ r/4 when |x| ≥ r/2. Applying (1.8)
consequently to the sums over x, y, and then (1.10) to the sum over z, and then using the assumption
k ≤ εV 1/3, we obtain that there exists ε0 = ε0(d) > 0 such that for any ε < ε0,

EpcN(A)2 ≤ EpcN(A) + C4k ·
(
k

V

)2

≤ EpcN(A) + C4ε
2V −1/3 · k

V
≤ 2EpcN(A). (3.4)

A second moment estimate, using (3.1) and (3.4), yields

Ppc(N(A) 6= 0) ≥ (EpcN(A))2

EpcN(A)2
≥ C3k

2V
. (3.5)

Step 2. Consider the event

E = E(r, k,R) = {0 ≤k←→ u(0) in Tdr by an open path which visits ∂Qr/2}.

We show that for small enough ε and large enough R,

Ppc(E) ≥ 1

2
Ppc(N(A) 6= 0).

Since Ppc(E) ≥ Ppc(N(A) 6= 0)− Ppc({N(A) 6= 0} \ E), we should show that

Ppc({N(A) 6= 0} \ E) ≤ 1

2
Ppc(N(A) 6= 0), (3.6)

when ε is chosen small enough and R large enough.
If N(A) 6= 0 and E does not occur, then according to Proposition 2.1, there exist x ∈ Zd with x

r∼ 0
and x 6= 0, a vertex z ∈ Zd, and distinct vertices v1 and v2 in Zd with v1

r∼ v2 such that the following
disjoint connections take place in Zd:

{0 ≤k←→ z} ◦ {z ≤k←→ v1} ◦ {z
≤k←→ v2} ◦ {v1

≤k←→ u(x)}.

By the BK inequality, the probability of the event {N(A) 6= 0} \ E is bounded from above by∑
x
r∼0,x 6=0

∑
v1
r∼v2,v1 6=v2

∑
z

Ppc
(

0
≤k←→ z

)
Ppc
(
z
≤k←→ v1

)
Ppc
(
z
≤k←→ v2

)
Ppc
(
v1

≤k←→ u(x)
)
. (3.7)

Note that, since v1 and v2 are distinct and r-equivalent, either |v1 − z| ≥ r/2 or |v2 − z| ≥ r/2. Assume
first that |v2 − z| ≥ r/2. It follows from (1.8) that for any v1 and z fixed,∑

v2∈Zd, v2
r∼v1, |v2−z|≥r/2

Ppc
(
z
≤k←→ v2

)
≤ C5k/V,

where C5 does not depend on k, v1 or z. On the other hand, by (1.9) and using the fact that k ≤ εV 1/3,∑
x
r∼0,x 6=0

∑
v1,z

Ppc
(

0
≤k←→ z

)
Ppc
(
z
≤k←→ v1

)
Ppc
(
v1

≤k←→ u(x)
)
≤ C6k

3

V
≤ C6ε

3. (3.8)
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Therefore, for v2 and z with |v2 − z| ≥ r/2, the sum (3.7) is, uniformly in R, bounded from above by

C5C6ε
3k/V.

Next, consider the sum (3.7) in the case |v1 − z| ≥ r/2. By translation invariance, the sum (3.7) equals∑
x
r∼0, x 6=0

∑
v1
r∼v2, v1 6=v2

∑
z

Ppc
(

0
≤k←→ z

)
Ppc
(
z
≤k←→ v1

)
Ppc
(
z
≤k←→ v2

)
Ppc
(
v2

≤k←→ u(x) + (v2 − v1)
)
.

By the definition of u(x), the translation of u(x) by (v2 − v1) equals u(x+ (v2 − v1)). Since v1
r∼ v2, the

translation of x (r-equivalent to 0) by (v2− v1) is still r-equivalent to 0. However, note that it is possible
that x+ (v2 − v1) = 0. These observations imply that the above sum is bounded from above by∑

x
r∼0

∑
v1
r∼v2,v1 6=v2

∑
z

Ppc
(

0
≤k←→ z

)
Ppc
(
z
≤k←→ v1

)
Ppc
(
z
≤k←→ v2

)
Ppc
(
v2

≤k←→ u(x)
)
.

Since we only consider the above sum in the case z and v1 satisfy |v1− z| ≥ r/2, we obtain as before that
for any given z and v2, ∑

v1∈Zd, v1
r∼v2, |v1−z|≥r/2

Ppc
(
z
≤k←→ v1

)
≤ C5k/V.

It remains to bound the sum∑
z,v2

∑
x
r∼0

Ppc
(

0
≤k←→ z

)
Ppc
(
z
≤k←→ v2

)
Ppc
(
v2

≤k←→ u(x)
)
.

There are two cases depending on whether x 6= 0 or x = 0. The case x 6= 0 can be considered similarly to
(3.8), so the above sum is bounded from above by C6ε

3 in this case.
It remains to consider the case x = 0. In this case |u(x)| = R, and we simply bound the above sum

by ∑
z,v2

Ppc (0↔ z)Ppc (z ↔ v2)Ppc (v2 ↔ u(0)) ,

which is bounded from above by C7R
6−d by (2.5), where C7 is independent of R. Therefore, for v1 and

z with |v1 − z| ≥ r/2, the sum (3.7) is bounded from above by

C5(2C6ε
3 + C7R

6−d)k/V.

Now recalling (3.5), we take R large and ε small so that (3.6) holds. We obtain from (3.5) and (3.6) that

Ppc(E) ≥ C3k/(4V ).

Step 3. We now show that there exists C8 = C8(R) > 0 such that

Ppc(LCk+Rd) ≥ C8Ppc(E).

This follows from a local modification argument as follows. Note that if E occurs, there exist z and z′ on
∂QR such that z is connected to z′ by a path in Tdr \QR of length at most k which visits ∂Qr/2. We can
therefore modify the configuration of bonds inside QR to make sure that {0↔ z in QR}◦{0↔ z′ in QR},
which implies that the origin is in a long cycle of length at most k + Rd. Since there are only finitely
many edges in QR, the above inequality follows.

We can now complete the proof of Proposition 3.2. We pick K = K(d) so that (3.1) holds for all
r > 16R. We then pick ε = ε(d) and R = R(d) to satisfy (3.4) and (3.6). It follows from Steps 2 and 3
of the proof that for all r > 16R and k ∈ [Kr2 +Rd, εV 1/3],

Ppc(LCk) ≥ C8
C3(k −Rd)

4V
≥ C9k/V.

Finally, we adjust the constant C9 so that the result remained valid for r ≤ 16R.
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4 Proof of Theorem 1.2

Proof of (1.5). Let ε > 0 and δ > 0. Let M be the number of vertices x ∈ Tdr such that |CT(x)| ≥ δV 2/3

and CT(x) contains a long cycle of length at most εV 1/3. We need to show that there exists C <∞ such
that

PT,pc (M 6= 0) ≤ Cε/δ.

By the definition of M and the Markov inequality,

PT,pc (M 6= 0) = PT,pc

(
M ≥ δV 2/3

)
≤ ET,pc [M ]

δV 2/3
.

By translation invariance,

ET,pc [M ] ≤ V · PT,pc

(
CT(0) contains a long cycle of length at most εV 1/3

)
.

Note that if CT(0) contains a long cycle of length at most εV 1/3, then there exists z ∈ CT(0) such that the
following events occur disjointly:

{0↔ z in Tdr} ◦ LCεV 1/3 .

Therefore, application of the BK inequality gives that

PT,pc

(
CT(0) contains a long cycle of length at most εV 1/3

)
≤ ET,pc |CT(0)| · PT,pc(LCεV 1/3).

Using (2.6) and Proposition 3.1, and putting all the bounds together gives (1.5).

Proof of (1.6). This is a simple consequence of Theorem 1.1. Indeed, if there exists a long cycle of length
at least ε−1V 1/3, then the number of vertices in long cycles is at least (2dε)−1V 1/3. Denote the number
of vertices in long cycles by M . Then, by the Markov inequality and Theorem 1.1,

Ppc
(
∃ a long cycle of length ≥ ε−1V 1/3

)
≤ Ppc(M ≥ (2dε)−1V 1/3) ≤ 2dεV −1/3Epc [M ]

= 2dεV 2/3Ppc (0 is in a long cycle) ≤ C1ε.

5 Proof of Theorems 1.3 and 1.4

5.1 Proof of Theorem 1.3

Let I be the set of z ∈ CT(0) such that {0↔ z}◦{z is in a long cycle}. Theorem 1.3 follows from Lemma
5.1:

Lemma 5.1 (Bound on the number of long cycles).

YCT(0) ≤ 2d |I|.

Moreover, when (1.1) holds, there exists a finite constant C such that

Epc |I| ≤ CV −1/3.

Before we prove Lemma 5.1, we show how to use it to complete the proof of Theorem 1.3:

Epc [Yδ] =
∑
x

Epc
[

1

CT(x)
YCT(x)I(|CT(x)| > δV 2/3)

]
≤ (δV 2/3)−1V Epc

[
YCT(0)

]
≤ C1/δ,

as required. In the remaining part of this section, we prove Lemma 5.1.
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Proof of Lemma 5.1. Let E be the set of edges of the torus adjacent to at least one of the vertices from
I. We will show that YCT(0) ≤ |E|.

Let G = CT(0), and let G̃ = G \ E denote the subgraph of G obtained by removing every edge of G
that is in E . Note that every vertex from I is an isolated vertex in G̃. We claim that the graph G̃ does
not contain long cycles. Indeed, assume that there is a long cycle π in G̃. Since G̃ is a subgraph of G, π is
a long cycle in G. In particular, there exists z ∈ π such that 0 is connected to z in G by a path that does
not use any edges from π. Therefore, z ∈ I and z is not an isolated vertex in G̃. This is a contradiction.

We have just shown that by removing every edge adjacent to a vertex in I, we obtain a subgraph of
CT(0) without long cycles. This implies that YCT(0) ≤ |E| ≤ 2d|I|.

Further, by the BK inequality, (2.6) and Theorem 1.1,

Epc |I| ≤ Epc |CT(0)| Ppc(0 is in a long cycle) ≤ C2V
−1/3.

5.2 Proof of Theorem 1.4(a): existence of long cycles

We need to show that there exists c > 0 such that

Ppc
(

there exists a long cycle of length > cV 1/3
)
> c.

Take ε > 0. The precise value of ε will be determined later. Define

M = |{x : x is in a long cycle of length > εV 1/3}|.

Then, clearly,

PT,pc

(
∃ a long cycle of length > εV 1/3

)
= PT,pc(M 6= 0). (5.1)

By the second moment method, we can bound

PT,pc(M 6= 0) ≥ (ET,pcM)2

ET,pcM
2
.

We first show that ET,pcM ≥ C3V
1/3, and then that ET,pcM

2 ≤ C4V
2/3. By translation invariance,

ET,pcM = V PT,pc(0 in a long cycle of length > εV 1/3).

Recall the definition of LCk. We write

PT,pc(0 in a long cycle of length > εV 1/3) ≥ PT,pc(0 in a long cycle)− PT,pc(LCεV 1/3).

It follows from Theorem 1.1 that

PT,pc(0 in a long cycle) > C5V
−2/3,

and from Proposition 3.1 that
PT,pc(LCεV 1/3) < C6εV

−2/3. (5.2)

By taking ε small enough, we deduce that

PT,pc(0 in a long cycle of length > εV 1/3) ≥ 1

2
PT,pc(0 in a long cycle),

and the desired lower bound on ET,pcM follows.

It remains to prove that ET,pcM
2 ≤ C4V

2/3. Since

ET,pcM
2 =

∑
x,y

PT,pc

(
x, y in long cycles of length > εV 1/3

)
,
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it suffices to show that ∑
x,y

PT,pc (x, y in long cycles) ≤ C4V
2/3.

We split the above sum, depending on whether the events {x in long cycle} and {y in long cycle} occur
disjointly or not. The contribution where these events do occur disjointly can be bounded, using the BK
inequality and Theorem 1.1, by C7V

2/3, so that

ET,pcM
2 ≤ C7V

2/3 +
∑
x,y

PT,pc (x, y in overlapping long cycles) , (5.3)

where the event {x, y in overlapping long cycles} indicates that all pairs of long cycles, one of which
contains x and the other y, share at least one edge.

Lemma 5.2 (Contribution of overlapping cycles). Assume (1.1). There exists C <∞ such that∑
x,y

PT,pc (x, y in overlapping long cycles) ≤ CV 2/3. (5.4)

Proof. For a pair of vertices x, y ∈ Tdr and s ≥ 0, we denote by ∆s(x, y) the event that x is connected to
y by a path in Tdr which visits ∂Qs(x).

Note that if x and y are in overlapping long cycles, then there exist u, v such that

(a) u and v both are part of the long cycle that contains x as well as the one that contains y,

(b) the connections x↔ u, u↔ v, x↔ v, y ↔ u, y ↔ v all occur disjointly,

(c) at least one of the events ∆r/12(x, u), ∆r/12(u, v), or ∆r/12(v, x) occur.

Therefore, using symmetry and the BK inequality, we can upper bound the sum in (5.4) by

4
∑
x,y,u,v

PT,pc(∆r/12(x, u))τT,pc(x, v)τT,pc(u, v)τT,pc(y, u)τT,pc(y, v)

+
∑
x,y,u,v

τT,pc(x, u)τT,pc(x, v)PT,pc(∆r/12(u, v))τT,pc(y, u)τT,pc(y, v). (5.5)

By (1.12), we can bound PT,pc(∆r/12(x, u)) ≤ C8V
−2/3. Let

∇T,p = sup
x,y

∑
u,v

τT,p(x, u)τT,p(u, v)τT,p(v, y). (5.6)

It follows from [5, Theorem 1.6(iii)] and [13, (1.6)] that ∇T,pc < C9. Therefore, we can bound the first
sum in (5.5) by

C8V
−2/3

∑
x,y,u,v

τT,pc(x, v)τT,pc(u, v)τT,pc(y, u)τT,pc(y, v) ≤ C8V
−2/3V∇T,pcET,pc |CT(0)|

(2.6)

≤ C10V
2/3, (5.7)

and the second sum in (5.5) by

C8V
−2/3

∑
x,y,u,v

τT,pc(x, u)τT,pc(x, v)τT,pc(y, u)τT,pc(y, v)

≤ C8V
−2/3V sup

v

∑
x,y,u,v

τT,pc(0, u)τT,pc(u, y)τT,pc(y, v)
∑
v

τT,pc(v)

= C8V
−2/3V∇T,pcET,pc |C(0)|

(2.6)

≤ C10V
2/3.

These estimates complete the proof.
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We continue with the proof of Theorem 1.4(a). It follows from (5.3) and Lemma 5.2 that ET,pcM
2 ≤

C4V
2/3. By the second moment method, we obtain

PT,pc

(
∃ a long cycle of length > εV 1/3

)
= PT,pc(M 6= 0) ≥ (ET,pcM)2

ET,pcM
2
≥ C2

3

C4
> 0.

This completes the proof of the fact that a long cycle of length > εV 1/3 exists with positive probability.

5.3 Proof of Theorem 1.4(b): non-existence of long cycles

In this section we prove that, for any positive δ, with positive probability uniformly in r, the clusters of
size > δV 2/3 do not contain any long cycles. In other words, recalling the definition of Yδ in Section 5.1,
we will prove the following proposition:

Proposition 5.1 (Non-existence of long cycles). For any positive δ there exists c > 0 such that, for all
r ≥ 1,

PT,pc(Yδ = 0) > c.

Proof. For x ∈ Tdr , run the following exploration of the edges of CT(x) started from x. Enumerate the
edges of Tdr . (In the algorithm we describe now, if there are several edges to choose from, we always
pick the edge with the smallest number.) The first stage of the algorithm is the standard depth-first
exploration. At this stage, after n steps, the algorithm produces

• the set of explored vertices Xn (which will be a subset of the vertices of CT(x)),

• the set of explored edges En (these will be the explored edges, the occupancy of which we will
check),

• the set of open explored edges Tn and the open cluster induced by these edges, also denoted by Tn
(which will be part of the depth-first spanning tree of CT(x)), and

• the set of unexplored edges Un (the algorithm will not check the occupancy of these edges).

Further, let Wn = En ∪ Un.
Take x ∈ Tdr . Let X0 = T0 = {x}, W0 = ∅. Let n ≥ 0. Assume that Xn, En, Tn and Un are defined.

If there is no edge {a, b} with a ∈ Xn and {a, b} /∈ Wn, then we stop the algorithm and write Ax = An
for all A ∈ {X,E, T, U,W}. Otherwise, pick the vertex a ∈ Xn which is the farthest from x in Tn for
which there exists b ∈ Tdr such that {a, b} /∈ Wn. Such a vertex, if it exists, is always unique, since we
explore depth-first. (We prove this statement in Lemma 5.3(a) at the end of the section.)

Let e = {a, b} be the smallest such edge. We distinguish two cases:

1. If b /∈ Xn, then we define En+1 = En ∪ {e}, Un+1 = Un, and check the occupancy of e.

(a) If e is open, then we define Xn+1 = Xn ∪ {b} and Tn+1 = Tn ∪ {e}.
(b) If e is closed, then we define Xn+1 = Xn and Tn+1 = Tn.

2. If b ∈ Xn (in this case we call e a surplus edge), then we define Xn+1 = Xn, Tn+1 = Tn, En+1 = En,
and Un+1 = Un ∪ {e}, and do not check the occupancy of e.

Since the number of edges of Tdr is finite, this stage of the algorithm will terminate at some step N <∞.
We then write Ax = AN for all A ∈ {X,E, T, U,W}. In particular, Xx is the vertex set of CT(x), Tx is
the “depth-first” spanning tree of CT(x) with root at x, and Wx is the set of edges with at least one end
vertex in CT(x). The occupancy of edges in Ex is known. In particular, the graph induced by sets of open
edges in Ex is Tx. The occupancy of edges in Ux has not been checked. The sets Ex and Ux are disjoint.
Also note that, given the set of unexplored edges Ux, the edges in Ux are open independently of each
other. An example of an edge {a, b} ∈ Ux is given in Figure 1 below.
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x

b a

Figure 1: Example of an edge {a, b} ∈ Ux.

We proceed by describing the second stage of the algorithm. The aim of this second stage is to select
those surplus edges {a, b} that (i) close a long cycle; and (ii) are such that x←→ b is completely disjoint
from the long cycle that is created by the addition of the edge {a, b}; and (iii) there are no long cycles
precisely when all these selected edges are closed.

After n steps, the algorithm produces

• the set of open explored edges Gn and the open cluster induced by these edges, also denoted by Gn
(which will be a subgraph of CT(x) without long cycles),

• the set of explored edges Fn (which will be a subset of edges of Ux, the occupancy of which we will
check), and

• the set of special edges Zn (the algorithm will not check the occupancy of these edges; each e ∈ Zn
will have the property that in the graph Gn ∪ {e}, e is in a long cycle π, and there exists a path ρ
connecting one of the end-vertices of e to x which is edge disjoint of π).

Note that, according to the first stage of the algorithm, each edge e ∈ Ux can be written as {a, b} such
that the unique path from a to x in the spanning-tree Tx passes through b. (We prove this statement in
Lemma 5.3(b) at the end of the section.)

Denote by Bx the set of end-vertices with this property, that is, a vertex b is in Bx if and only if there
exists a vertex a such that the edge {a, b} is in Ux and the unique path from a to x in the spanning tree
Tx passes through b.

We enumerate the vertices of Bx subject to the following restriction: a vertex b ∈ Bx receives a
smaller number than b′ ∈ Bx if the unique path from b′ to x in the spanning tree Tx passes through b.
This ordering of the vertices in Bx can be better understood by introducing an auxiliary abstract tree Tx

rooted at x with the vertex set {x} ∪Bx and the following set of oriented (away from the root) edges:
For b, b′ ∈ Bx, there is an edge from b to b′ in Tx, if the unique path from b′ to x in the depth-first
spanning tree Tx passes through b, and the unique path between b and b′ in Tx does not contain any
other vertices from Bx. With this definition, we can alternatively say that a vertex b ∈ Bx has a smaller
number than b′ ∈ Bx if there is an oriented path from b to b′ in Tx. In other words, we enumerate the
vertices of Bx according to their distance to x in the abstract tree Tx. An example of a collection of
cycles and the corresponding tree Tx is given in Figure 2 below.

The second stage of the algorithm goes as follows. Let G0 = Tx, F0 = ∅, Z0 = ∅ and B0 = Bx.
Assume that, for n ≥ 0, the sets Gn, Fn, Zn and Bn are defined. If Bn = ∅, then we stop the algorithm
and define Gx = Gn, Fx = Fn and Zx = Zn.

Otherwise, pick a vertex b ∈ Bn with the biggest number. We distinguish two cases:

1. If there are at least two vertices a and a′ such that the edges {a, b} and {a′, b} are in Ux \ (Fn∪Zn),
then define Bn+1 = Bn and we select the admissible edge with the smallest number. (This is the
same numbering of the edges of the torus as in the first stage of the algorithm.)

2. If the vertex a such that the edge {a, b} is in Ux\(Fn∪Zn) is unique, then we define Bn+1 = Bn\{b}
and select this edge.

Assume that the edge e = {a, b} is selected.
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Figure 2: Example of a collection of cycles and the corresponding tree Tx.

1. If the graph Gn ∪{e} does not contain a long cycle, then we define Fn+1 = Fn ∪{e} and Zn+1 = Zn
and check the occupancy of e.

(a) If e is open, then define Gn+1 = Gn ∪ {e}.
(b) If e is closed, then define Gn+1 = Gn.

2. If the graph Gn ∪ {e} does contain a long cycle, then we define Gn+1 = Gn, Fn+1 = Fn and
Zn+1 = Zn ∪ {e} and do not check the occupancy of e. Note that, by the special ordering of the
vertices in Bx, every long cycle of the graph Gn ∪ {e} passes through e and it is edge disjoint with
the unique path from b to x in the tree Tx.

Since the number of edges of Tdr is finite, this stage of the algorithm will terminate at some step N ′ <∞.
We then write Ax = AN ′ for all A ∈ {G,F,Z}. The sets Fx and Zx are disjoint, and their union is Ux.
The occupancy of edges in Fx is known. In particular, the graph induced by set of open edges in Ex ∪Fx
is Gx. The occupancy of edges in Zx has not been checked. In particular, given the set Zx, the edges
in Zx are open independently of each other. By the definition of Zx, any edge e ∈ Zx is in a long cycle
in the graph Gx ∪ {e}, and every long cycle of the graph Gx ∪ {e} passes through e. Moreover, by the
special ordering of the vertices in Bx, any edge e ∈ Zx can be written as {a, b} so that the unique path
from b to x in the spanning tree Tx is edge disjoint from some long cycle of the graph Gx ∪ {e} (but not
necessarily from all long cycles of the graph Gx ∪ {e}).

We run the above defined exploration algorithm for all the open clusters of the torus. We pick a vertex
x1 uniformly on the torus and determine the depth-first spanning tree of the cluster of x1 with root at
x1, Tx1 , the set of explored edges Ex1 ∪ Fx1 , and the set of special edges Zx1 . We then pick a vertex x2
uniformly from the remaining vertices and determine the depth-first spanning tree of CT(x2), Tx2 , the set
of explored edged Ex2 ∪ Fx2 , and the set of special edges Zx2 . We then proceed similarly by selecting
x3, . . . , xM and determining Txi , Exi ∪ Fxi and Zxi . Here M = M(ω) is the number of open clusters in
the realization ω.

Given the sets of explored edges Exi ∪ Fxi , the number of long cycles is defined by the status of the
special edges Zxi . In particular, if all the edges in Zxi are closed, then CT(xi) does not contain long cycles.
Note that given the set of explored edges Exi ∪ Fxi , the event that all the edges in Zxi are closed has
probability

(1− pc)|Zxi |.
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Also, the size of a cluster is determined by the number of vertices in a spanning tree. Therefore, (remember
that M is the number of open clusters in the torus)

Ppc (Yδ = 0) = Epc
[
(1− pc)

∑M
i=1 |Zxi |I(|C(xi)|>δV

2/3)
]
≥ (1− pc)Epc [

∑M
i=1 |Zxi |I(|C(xi)|>δV

2/3)]. (5.8)

The last step follows from Jensen’s inequality.
Let C(1), . . . , C(M) be all the clusters of the torus sorted from the largest (in the number of vertices) to

the smallest with ties broken in an arbitrary way. We will show that

Epc

[
M∑
i=1

|Zxi |I(|CT(xi)| > δV 2/3)

]
= Epc

 M∑
i=1

∑
x∈C(i)

1

|C(i)|
|Zx|I(|C(i)| > δV 2/3)

 . (5.9)

Fix a percolation realization on the torus. Remember the way we select the vertices x1, . . . , xM : select x1
uniformly on the torus, select x2 uniformly on Tdr \ CT(x1), select x3 uniformly on Tdr \ (CT(x1) ∪ CT(x2)),
and so on. Given a percolation realization on the torus, we can select the vertices x1, . . . , xM in two steps:
first select a permutation σ of {1, . . . ,M} (the distribution of σ is irrelevant to us), and then select xi
uniformly from C(σ(i)). Note that the sum

∑M
i=1 |Zxi |I(|CT(xi)| > δV 2/3) does not depend on σ, i.e., on

the order in which we select clusters, and only depends on which points in clusters we select as xi’s. This
implies (5.9).

Note that

Epc

 M∑
i=1

∑
x∈C(i)

1

|C(i)|
|Zx|I(|C(i)| > δV 2/3)

 ≤ 1

δV 2/3
Epc

 M∑
i=1

∑
x∈C(i)

|Zx|

 =
1

δV 2/3

∑
x∈Tdr

Epc [|Zx|].

Therefore, it follows from (5.8) and (5.9) that

Ppc (Yδ = 0) ≥ (1− pc)δ
−1V 1/3Epc [|Z0|].

Proposition 5.1 follows once we show that

Epc [|Z0|] ≤ C11V
−1/3. (5.10)

Recall that I is the set of z ∈ CT(0) such that {0 ↔ z} ◦ {z is in a long cycle}, and let E be the set of
edges with at least one end-vertex in I. By the properties of Z0, if e ∈ Z0 is open, then e ∈ E . Therefore,

Epc [|Z0|] =
1

pc

∑
e

Ppc(e ∈ Z0, e is open) ≤ 1

pc
Epc [|E|] ≤

1

pc
2dEpc [|I|].

The claim (5.10) now follows from Lemma 5.1. This completes the proof of Proposition 5.1.

In the remainder of this section, we prove some properties of the exploration algorithm defined in the
proof of Proposition 5.1. Remember the notation used in the description of the algorithm.

Lemma 5.3 (Structure depth-first tree). (a) For n ≥ 0, let X̃n be the set of vertices a′ ∈ Xn for which
there exists b′ ∈ Tdr such that the edge {a′, b′} /∈Wn. For each n ≥ 0, there exists a unique vertex a ∈ X̃n

which is the farthest from x in the tree Tn, and all the other vertices from X̃n belong to the unique path
from a to the root x in Tn.
(b) For all e ∈ Ux, there exist a, b ∈ Xx such that e = {a, b} and the unique path from a to x in the tree
Tx passes through b.

Proof. The proof of part (a) is by induction on n. The result is obvious for n = 0, since X̃0 = {x}.
Assume that the result holds for all n′ ≤ n. Pick the unique vertex a ∈ X̃n which is the farthest from
x in Tn. Let {a, b} /∈ Wn. (If there are several choices, then we pick the smallest edge according to
the numbering of the edges of the torus.) If {a, b} satisfies 1(a) of the first stage of the algorithm, then
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b ∈ X̃n+1, and the unique path from b to x in Tn+1 contains X̃n, by the induction assumption. If {a, b}
satisfies 1(b) or 2 of the first stage of the algorithm, then either X̃n+1 = X̃n (if there is more than one
edge {a, b′} /∈ Wn) or X̃n+1 = X̃n \ {a} (if there is the unique edge {a, b′} /∈ Wn). In both cases X̃n+1

satisfies the statement in part (a) of the lemma, by the induction hypothesis. This completes the proof
of (a).
To prove part (b), let e ∈ Ux. There exists n ≥ 0 such that Un+1 \ Un = {e}. By the definition of the
algorithm, there exist a and b such that e = {a, b} and a is the farthest vertex in X̃n from x in Tn. Note
that the edge e satisfies condition 2 of the first stage of the algorithm. In particular, b ∈ Xn and e /∈Wn.
Therefore, b ∈ X̃n. The result in part (b) now follows from part (a) of the lemma.

6 Proof of Theorem 1.5

In this section, we restrict to percolation on Zd. In particular, all the paths are assumed by default to
be in Zd, and we write here {x↔ y} for {x↔ y in Zd} and C(x) for CZ(x). This section is organized as
follows. In Section 6.1, we start with some preparatory lemmas based on the techniques in [19, 20]. We
prove Theorem 1.5(a) in Section 6.2, and Theorem 1.5(b) in Section 6.3.

6.1 Preparatory lemmas

The following lemma produces the factor
√
ε that is present in Theorem 1.5(b):

Lemma 6.1. There exists C <∞ such that for any ε > 0, positive integer n, and x ∈ Zd with |x| ≥ n2,

Ppc
(
0
≤εn2

←→ ∂Qn, 0↔ x
)
≤ C
√
εPpc(0↔ x).

Proof of Lemma 6.1. This proof is a slight modification of the proof of [20, Lemma 2.5]. The event

E = {0 ≤εn2

←→ ∂Qn} is measurable with respect to BI(εn2) = {x ∈ Zd : 0
≤εn2

←→ x}. Therefore, [20,
Lemma 2.5] implies that for any x ∈ Zd with |x| sufficiently large,

Ppc
(

0
≤εn2

←→ ∂Qn, 0↔ x

)
≤ C1

√
εn2Ppc(E)Ppc(0↔ x).

In fact, it follows from the proof of [20, Lemma 2.5] that the above inequality holds for all x ∈ Zd with
|x| ≥ n2. Finally, remember that Ppc(E) ≤ C2n

−2 by (2.2). This completes the proof.

It follows from Lemma 6.1 and (2.3) that∑
x∈Q2n2\Qn2

Ppc
(

0
≤εn2

←→ ∂Qn, 0↔ x

)
≤ C3

√
εn4, (6.1)

which shall be used crucially later on.
We next recall some notation from [19]. Recall the definition of a K-regular vertex from [19, Defini-

tion 4.1]: For A ⊆ Zd, let C(y;A) be the set of vertices z such that y ↔ z in A. For y ∈ ∂Qn and positive
integers s and K, we say that y is s-bad if C(y;Qn) satisfies

Ppc
(
|C(y) ∩Qs(y)| < s4 log7 s | C(y;Qn)

)
≤ 1− exp(− log2 s).

We further say that y ∈ ∂Qn is K-irregular if there exists s ≥ K such that y is s-bad. Otherwise we say
that y is K-regular.

We say that a pair of vertices (x, y) is (n,K, ε)-admissible if the following conditions hold: (a) y ∈ ∂Qn
and x ∈ Q2n2 \Qn2 ; (b) 0

≤εn2

←→ y in Qn and y ↔ x; (c) y is K-regular; and (d) the edge {y, ỹ} is pivotal
for the event 0 ↔ x, where ỹ is the neighbor of y not in Qn (if more than one exist, then we choose the
first in lexicographical order).

We define Y (n,K, ε) as the number of (n,K, ε)-admissible pairs. The random variable Y (n,K, ε) is
very similar to Y (j,K,L) defined in the proof of [19, Lemma 5.1].
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Remark 1. Note that [19, Lemma 5.1] holds for all M ≥ 1 and not just for M ≥ L2/2 as it is stated.
Indeed, [19, Lemma 5.1] follows directly from [19, Lemmas 5.3 and 5.5], both of which hold (and are
stated) for all M ≥ 1.

Lemma 6.2. There exists a positive constant C4 = C4(K) such that for K sufficiently large, any positive
integer n and ε > 0,

EpcY (n,K, ε) ≥ C4(K)n4Epc |{y ∈ ∂Qn : 0
≤εn2

←→ y in Qn, y is K-regular}|.

Proof. A word for word repetition of the proof of [19, Lemma 5.1] (taking into account Remark 1) gives
Lemma 6.2. Indeed, with the notation of [19], the only difference in the proofs arises in the proof (and
the statement) of [19, Lemma 5.3], where instead of the event

E1 = {0↔ y in Qj , y is K − regular and XK−reg
j = M},

we use the event

Ẽ1 = {0 ≤εj
2

←→ y in Qj , y is K − regular and XK−reg
j = M}.

However, the event Ẽ1 still can be determined by observing only the edges of C(0;Qj). Therefore, the

proof of Lemma 5.3 in [19] remains unchanged if we replace the event E1 with the event Ẽ1. The proof of
Lemma 5.5 in [19] also requires only that the event E1 must be determined by observing only the edges
of C(0;Qj), and therefore also holds with E1 replaced with Ẽ1.

Note that for every x ∈ Q2n2 \ Qn2 there exists at most one y ∈ ∂Qn such that the pair of vertices
(x, y) is (n,K, ε)-admissible. Therefore,

EpcY (n,K, ε) =
∑

x∈Q2n2\Qn2

Ppc
(
∃y ∈ ∂Qn : (x, y) is (n,K, ε)-admissible

)
.

If (x, y) is (n,K, ε)-admissible, then {0 ≤εn
2

←→ y in Qn} and {0 ↔ x} both occur. We use this observation
to bound the expected number of (n,K, ε)-admissible pairs from above by∑

x∈Q2n2\Qn2

Ppc
(
∃y ∈ ∂Qn : 0

≤εn2

←→ y in Qn, 0↔ x

)
=

∑
x∈Q2n2\Qn2

Ppc
(

0
≤εn2

←→ ∂Qn, 0↔ x

)
.

We can now combine these bounds with the results of (6.1) and Lemma 6.2 to get

Epc
∣∣∣{y ∈ ∂Qn : 0

≤εn2

←→ y in Qn, y is K-regular}
∣∣∣ ≤ C3

C4(K)

√
ε (6.2)

for all large enough K, positive integers n and for all ε > 0 with the constants C3 from (6.1) (not
depending on K, n and ε) and C4(K) from Lemma 6.2 (not depending on n and ε). We next investigate
the contribution from K-irregular y’s:

Lemma 6.3. For all large enough K and for all ε > 0,

lim sup
n→∞

∑
y∈∂Qn

Ppc
(

0
≤εn2

←→ y in Qn, y is K-irregular

)
≤ 1

2
lim sup
n→∞

∑
y∈∂Qn

Ppc
(

0
≤2εn2

←→ y in Qn

)
.

Proof of Lemma 6.3. Recall the definition of an s-locally bad vertex from [19, Definition 4.3]: Let T locs (y)
be the event that (a) for all z ∈ Qs(y), |C(z;Qs2d(y)) ∩ Qs(y)| < s4 log4 s; and (b) there exist at most
log3 s disjoint open paths starting in Qs(y) and ending at ∂Qs2d(y). For y ∈ ∂Qn and positive integers
s and K, we say that a cluster C in Q

s4d2
(y) ∩ Qn is a “spanning cluster” if (a) C ∩ Qn intersects both
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∂Q
s4d2

(y) and Qs2d(y), or (b) C = C(y). We say that y is s-locally bad if there exist spanning clusters
C1, . . . , Cm in Q

s4d2
(y) ∩Qn such that

Ppc
(
T locs (y) | C1, . . . , Cm

)
≤ 1− exp(− log2 s).

Note that the event that y is s-locally bad is determined by the status of the edges in the box Q
s4d2

(y)∩Qn.
Moreover, it follows from [19, Claim 4.2] that if y is not K-regular, then there exists s ≥ K such that y
is s-locally bad. Therefore, we need to bound from above the probabilities

Ppc
(

0
≤εn2

←→ y in Qn, y is s-locally bad

)
for y ∈ ∂Qn, s ≥ K and large enough n.

Since we are only interested in large n, we may assume that nε > 1. We consider two different cases:
2d(s4d

2
)d < n and 2d(s4d

2
)d ≥ n. We start with the case 2d(s4d

2
)d < n. Note that in this case the ball

Q
s4d2

contains at most εn2 edges. We bound the sum∑
y∈∂Qn

Ppc
(

0
≤εn2

←→ y in Qn, y is s-locally bad

)
from above by ∑

y∈∂Qn

Ppc
(

0
≤εn2

←→ Q
s4d2

(y) in Qn, y is s-locally bad

)
.

Since the events {0 ≤εn
2

←→ Q
s4d

2 (y) in Qn} and {y is s-locally bad} depend on the states of edges in disjoint

subsets of Zd, they are independent. In particular, the above sum equals∑
y∈∂Qn

Ppc
(

0
≤εn2

←→ Q
s4d2

(y) in Qn

)
Ppc (y is s-locally bad) .

By [19, Lemma 1.1] and the FKG inequality (see, e.g., [9, Theorem 2.4]), there exist a positive constant
C5 and a finite constant C6 such that for all m and z, z′ ∈ ∂Qm,

Ppc(z ↔ z′ in Qm) ≥ C5 exp
(
−C6 log2m

)
.

We apply this result to “extend” the path 0
≤εn2

←→ Q
s4d2

(y) in Qn to a path 0
≤2εn2

←→ y in Qn:

Ppc
(

0
≤εn2

←→ Q
s4d2

(y) in Qn

)
≤ C7 exp

(
C8 log2 s

)
Ppc
(

0
≤2εn2

←→ y in Qn

)
.

Here we also use the fact that the number of edges in Q
s4d2

(y) is at most εn2, which implies that if two
vertices z and z′ in Q

s4d2
(y) are connected by an open path in Q

s4d2
(y) then the length of this path is at

most εn2.
It follows from [19, Lemma 4.3] that

Ppc (y is s-locally bad) ≤ C9 exp
(
−C10 log4 s

)
.

We now put these bounds together. Let
∑′ be the sum over all s such that s ≥ K and 2d(s4d

2
)d < n.

We obtain that ∑′ ∑
y∈∂Qn

Ppc
(

0
≤εn2

←→ y in Qn, y is s-locally bad

)
is bounded from above by

C11 exp
(
−C12 log4K

) ∑
y∈∂Qn

Ppc(0
≤2εn2

←→ y in Qn),
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where the constants C11 and C12 do not depend on n, ε or K.
We now consider the case 2d(s4d

2
)d ≥ n. Let s0 = (n/2d)1/(4d

3). For s ≥ s0, we simply bound

∞∑
s=s0

∑
y∈∂Qn

Ppc
(

0
≤εn2

←→ y in Qn, y is s-locally bad

)
≤ |∂Qn|

∞∑
s=s0

sup
y∈∂Qn

Ppc (y is s-locally bad) .

We again use [19, Lemma 4.3] to bound the above expression by

|∂Qn|
∞∑
s=s0

C9 exp
(
−C10 log4 s

)
≤ C13 exp

(
−C14 log4 n

)
,

since s0 = (n/2d)1/(4d
3), and where the constants C13 and C14 do not depend on n, K, or ε.

We take K so large that C11 exp
(
−C12 log4K

)
< 1/2. Remember [19, Claim 4.2] which states that

if y is K-irregular, then there exists s ≥ K such that y is s-locally bad. Therefore, for such choice of K,
the sum∑
y∈∂Qn

Ppc
(

0
≤εn2

←→ y in Qn, y is K-irregular

)
≤ 1

2

∑
y∈∂Qn

Ppc
(

0
≤2εn2

←→ y in Qn

)
+ C13 exp

(
−C14 log4 n

)
.

(6.3)
The result of Lemma 6.3 follows.

6.2 Proof of Theorem 1.5(a)

The proof of Theorem 1.5(a) is similar to the proof of Lemma 6.3, but easier. We refer the reader to
Section 6.1 for definitions and notation. Remember the definition of a K-regular vertex from Section 6.1.
Let XK−reg

n be the number of K-regular vertices on the boundary of Qn connected to the origin by an
open path in Qn.

Let Y (n,K,L) be the random variable defined in the proof of [19, Theorem 2]: We say that a pair of
vertices (x, y) are (n,K,L)-admissible if the following conditions hold: (a) y ∈ ∂Qn and x ∈ QL(y); (b)
0↔ y in Qn and y ↔ x; (c) y is K-regular; and (d) the edge {y, ỹ} is pivotal for the event 0↔ x, where
ỹ is the neighbor of y not in Qn (if more than one exist, we choose the first in lexicographical order). We
define Y (n,K,L) as the number of (n,K,L)-admissible pairs.

It follows from [19, Lemma 5.1] and Remark 1 that there exists C15 = C15(K) such that for all large
enough K and for all n and L,

EpcY (n,K,L) ≥ C15(K)L2EpcXK−reg
n . (6.4)

Lemma 6.4. For all large enough K and for all n,

EpcXK−reg
n ≥ 1

3

∑
y∈∂Qn

Ppc(0↔ y in Qn).

Proof. The proof of this lemma is very similar to the proof of Lemma 6.3, but simpler. In the same way
as in the proof of Lemma 6.3 and with the same choice of K, we bound∑

y∈∂Qn

Ppc (0↔ y in Qn, y is not K-regular) ≤ 1

2

∑
y∈∂Qn

Ppc (0↔ y in Qn) + C13 exp
(
−C14 log4K

)
.

We then use the result of [19, Lemma 3.1]: For all positive integers n,∑
y∈∂Qn

Ppc(0↔ y in Qn) ≥ 1.

We increase K if necessary to fulfill the bound C13 exp
(
−C14 log4K

)
< 1/6. The result follows.
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Theorem 1.5(a) follows in a straightforward way from (6.4), Lemma 6.4 and the fact that

EpcY (n,K, n) ≤
∑
x∈Q2n

Ppc(0↔ x) ≤ C16n
2.

The last inequality follows from (2.3).

6.3 Proof of Theorem 1.5(b)

Let

F (ε) = lim sup
n→∞

∑
y∈∂Qn

Ppc
(

0
≤εn2

←→ y in Qn

)
.

Theorem 1.5(a) implies that there exists a finite constant C17 such that F (ε) ≤ C17 for all ε > 0. It
follows from (6.2) and Lemma 6.3 that for all ε > 0,

F (ε) ≤ C3

C4

√
ε+

1

2
F (2ε).

We apply the above inequality k times to get

F (ε) ≤ C18

√
ε+

1

2k
F (2kε) ≤ C18

√
ε+

C17

2k
,

with C18 = C3

√
2/C4(

√
2− 1) and where we use that F (2kε) ≤ C17 by Theorem 1.5(a). This inequality

holds for any fixed k. We complete the proof of Theorem 1.5(b) by taking k such that 2k
√
ε > 1.

7 Proof of Theorem 1.6

Proof of (1.8). Let k and r be positive integers and z ∈ Zd. For brevity, we write r/4 instead of br/4c.
It suffices to prove the result for all large enough k. By Theorem 1.5(b), there exist A and K such that
for any k ≥ K, ∑

y∈∂QA√k

Ppc
(

0
≤k←→ y in QA

√
k

)
≤ 1

2
. (7.1)

Indeed, fix ε > 0 such that the right hand side of (1.7) is strictly smaller than 1/2. Then by (1.7),
inequality (7.1) holds for all large k with A = 1/

√
ε.

From now on we assume that k ≥ K. We first consider the case A
√
k ≤ r/8. We write

∑
x∈Zd, x r∼z, |x|≥r/4

PZ,pc

(
0
≤k←→ x in Zd

)
≤

∞∑
n=0

∑
x
r∼z, r/4+rn≤|x|<r/4+r(n+1)

PZ,pc

(
0
≤k←→ x in Zd

)

≤
∞∑
n=0

C1(n+ 1)d−1 sup
r/4+rn≤|x|<r/4+r(n+1)

PZ,pc

(
0
≤k←→ x in Zd

)
.

Here we use the fact that, uniformly in r, the number of x
r∼ z such that r/4 + rn ≤ |x| < r/4 + r(n+ 1)

is of order (n+ 1)d−1.

Take n ≥ 0 and x ∈ Zd with r/4+rn ≤ |x| < r/4+r(n+1). Let Mn = b r/8+rn
A
√
k
c ≥ 1, since A

√
k ≤ r/8.

Note that the event {0 ≤k←→ x in Zd} implies the existence of x1, . . . , xMn such that for all i ∈
{1, . . . ,Mn}, xi ∈ ∂QA

√
k(xi−1) (where we assume x0 = 0) and the following connections all occur

disjointly:

{xi−1
≤k←→ xi in QA

√
k(xi−1)}, i ∈ {1, . . . ,Mn}, and {xMn ↔ x}.
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By the BK inequality, translation invariance, (7.1), the fact that |xMn − x| ≥ r/8, and (1.1), for any
n ≥ 0,

sup
r/4+rn≤|x|<r/4+r(n+1)

PZ,pc

(
0
≤k←→ x in Zd

)
≤ C2r

2−d
(

1

2

)Mn

.

Putting all the bounds together and using that Mn ≥ n + M0 (since A
√
k ≤ r/8), we have in the case

A
√
k ≤ r/8 that

∑
x∈Zd, x r∼z, |x|≥r/4

PZ,pc

(
0
≤k←→ x in Zd

)
≤ C1C2r

2−d
∞∑
n=0

(n+ 1)d−1
(

1

2

)Mn

≤ C3r
2−d2

− r

8A
√
k .

This finishes the proof of (1.8) in the case A
√
k ≤ r/8.

It remains to consider the case A
√
k > r/8. We write∑

x∈Zd, x r∼z, |x|≥r/4

PZ,pc

(
0
≤k←→ x in Zd

)
≤

∑
x∈Q8A

√
k, x

r∼z, |x|≥r/8

PZ,pc

(
0↔ x in Zd

)

+
∞∑
n=8

∑
x
r∼z, nA

√
k<|x|≤(n+1)A

√
k

PZ,pc

(
0
≤k←→ x in Zd

)
.

Using (2.4), the first sum can be bounded from above by C4k/r
d.

Take n ≥ 8 and x ∈ Zd with nA
√
k < |x| ≤ (n+ 1)A

√
k. Note that the event {0 ≤k←→ x in Zd} implies

the existence of x1, . . . , xn−1 such that for all i ∈ {1, . . . , n − 1}, xi ∈ ∂QA√k(xi−1) (where we assume
x0 = 0) and the following connections all occur disjointly:

{xi−1
≤k←→ xi in QA

√
k(xi−1)}, i ∈ {1, . . . , n− 1}, and {xn−1 ↔ x}.

By the BK inequality,∑
x
r∼z, nA

√
k<|x|≤(n+1)A

√
k

PZ,pc

(
0
≤k←→ x in Zd

)

≤
∑

x1,...,xn−1

n−1∏
i=1

PZ,pc

(
xi−1

≤k←→ xi in QA
√
k(xi−1)

) ∑
x
r∼z, nA

√
k<|x|≤(n+1)A

√
k

PZ,pc

(
xn−1 ↔ x in Zd

)
.

Note that for any choice of x1, . . . , xn−1 as above, we have r/8 < A
√
k ≤ |xn−1−x| ≤ 2nA

√
k. Therefore,

by translation invariance and (2.4), we obtain∑
x
r∼z, nA

√
k<|x|≤(n+1)A

√
k

PZ,pc

(
xn−1 ↔ x in Zd

)
≤

∑
x∈Q2nA

√
k, x

r∼z−xn−1, |x|≥r/8

PZ,pc

(
0↔ x in Zd

)

≤ C5k

rd
.

Putting all the bounds together and using translation invariance and (7.1), we get

∑
x∈Zd, x r∼z, |x|≥r/4

PZ,pc

(
0
≤k←→ x in Zd

)
≤ C4k

rd
+

∞∑
n=8

C5k

rd

(
1

2

)n−1
≤ C6k

rd
.

This finishes the proof of (1.8) in the case A
√
k > r/8.
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Proof of (1.9). We bound the sum over u, v, and w by distinguishing three cases: |u| ≥ r/4, |v−w| ≥ r/4,
and the remaining term.

If |v −w| ≥ r/4, then (1.9) follows by applying (1.8). Indeed, by (1.8) we get one factor of k/rd from
summing over w, and by (1.10) two factors of k from the remaining two sums.

If |u| ≥ r/4, we let u′ = u + w and v′ = v + w, and replace the sums over u and v by sums over u′

and v′ and use translation invariance to obtain that (1.9) over this range equals

∑
w
r∼z, |w|≥3r/4

∑
u′,v′ : |u′−w|≥r/4

PZ,pc

(
w
≤k←→ u′ in Zd

)
PZ,pc

(
u′
≤k←→ v′ in Zd

)
PZ,pc

(
0
≤k←→ v′ in Zd

)
≤ Ck3

rd
,

(7.2)
where we use that |u′ − w| = |u| ≥ r/4, together with (1.8) and (1.10).

It remains to bound the sum over all u, v, and w with w
r∼ z, |w| ≥ 3r/4, |u| < r/4, and |v−w| < r/4,

which we denote by
∑′. By the triangle inequality, we have |u− v| ≥ r/4. We write∑′

PZ,pc

(
0
≤k←→ u in Zd

)
PZ,pc

(
u
≤k←→ v in Zd

)
PZ,pc

(
v
≤k←→ w in Zd

)
=
∑′

PZ,pc

(
0
≤k←→ u in Zd

)
PZ,pc

(
u
≤k←→ v in Zd

)
PZ,pc

(
0
≤k←→ v − w in Zd

)
.

Note that v
r∼ v − w + z and |u − v| ≥ r/4. With the change of variables (v, x) = (v, v − w + z), we

observe that the above sum is bounded from above by∑
u,x

∑
v
r∼x, |v−u|≥r/4

PZ,pc

(
0
≤k←→ u in Zd

)
PZ,pc

(
u
≤k←→ v in Zd

)
PZ,pc

(
0
≤k←→ x in Zd

)
.

Applying (1.8) to the sum over v, and then (1.10) to the sums over u and x, we obtain that the above
sum is bounded from above by (C7k/r

d) ·C7k ·C7k. Putting all the cases together, we arrive at (1.9).

8 Proof of Theorem 1.7

Proof of (1.11). Take x ∈ Tdr . Let k = bV 1/3c. We write

Ppc
(

0↔ x in Tdr
)

= Ppc
(

0
≤3k←→ x in Tdr

)
+ Ppc

(
{0↔ x in Tdr} \ {0

≤3k←→ x in Tdr}
)
.

It follows from Proposition 2.1, (1.8), and the choice of k that

Ppc
(

0
≤3k←→ x in Tdr

)
≤ τZ,pc(0, x) + C1V

−2/3.

Note that the event {0↔ x in Tdr}\{0
≤3k←→ x in Tdr} implies that (a) ∂BT,k(0) 6= ∅, (b) ∂BT,k(x) 6= ∅,

and (c) BT,k(0) and BT,k(x) do not intersect. Let G′ be the subgraph of Tdr obtained by removing all edges
needed to calculate BT,k(x). Note that the events (a)-(c) imply that ∂BT,k(x) 6= ∅ and ∂BG′

T,k(0) 6= ∅. By
(2.1),

sup
G

Ppc
(
∂BG

T,k(0) 6= ∅
)
· Ppc (∂BT,k(x) 6= ∅) ≤ (C2/k)2 ≤ C3V

−2/3.

This completes the proof of (1.11).

Proof of (1.12). Let x ∈ Tdr . Let n be a positive integer smaller than r/2. We distinguish two cases: |x| <
2n/3 and |x| ≥ 2n/3. In the first case, we observe that the event {0 ↔ x by a path which visits ∂Qn}
implies that there exists a vertex y ∈ ∂Qn such that

{0↔ y in Qn} ◦ {y ↔ x}.
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By the BK inequality, Theorem 1.5(a) and (1.11),

Ppc(0↔ x in Tdr by a path which visits ∂Qn) (8.1)

≤
∑
y∈∂Qn

Ppc(0↔ y in Qn) · Ppc(y ↔ x in Tdr) ≤ C4( sup
y∈∂Qn

τZ,pc(y, x) + C5V
−2/3).

Since |x| < 2n/3, the distance between x and any y ∈ ∂Qn is at least n/3. Therefore, by (1.1), we have
τZ,pc(y, x) ≤ C6n

2−d, and (1.12) follows.

In the case |x| ≥ 2n/3, we simply use the bound

Ppc(0↔ x in Tdr by a path which visits ∂Qn) ≤ Ppc(0↔ x in Tdr)
(1.11)

≤ τZ,pc(0, x) + C5V
−2/3.

Since |x| ≥ 2n/3, we obtain by (1.1) that τZ,pc(0, x) ≤ C7n
2−d, and (1.12) follows.
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