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Abstract

We consider a family of nonlinear stochastic heat equations of the
form ∂tu = Lu+ σ(u)Ẇ , where Ẇ denotes space-time white noise, L the
generator of a symmetric Lévy process on R, and σ is Lipschitz continuous
and zero at 0. We show that this stochastic PDE has a random-field
solution for every finite initial measure u0. Tight a priori bounds on the
moments of the solution are also obtained.

In the particular case that Lf = cf ′′ for some c > 0, we prove that
if u0 is a finite measure of compact support, then the solution is with
probability one a bounded function for all times t > 0.
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1 Introduction

Consider the stochastic heat equation

∂

∂t
ut(x) =

κ
2

∂2

∂x2
ut(x) + σ (ut(x)) Ẇt(x), (1.1)

where κ > 0 is a constant, σ : R→ R is a Lipschitz function that satisfies

σ(0) = 0, (1.2)

and Ẇ denotes space-time white noise. In other words, Ẇ is a mean-zero
generalized Gaussian random field [19, Ch. 2, §2.4] with covariance measure
Cov(Ẇt(x) , Ẇs(y)) := δ0(x− y)δ0(t− s) for all s, t > 0 and x, y ∈ R.

∗Research supported in part by the NSFs grant DMS-0747758 (M.J.) and DMS-1006903
(D.K.).
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The solution to (1.1) represents the density of heat in an idealized thin metal
rod that is placed in a homogeneous medium, the white noise represents a non-
linear source/sink of heat, and the constant κ/2 > 0—the so-called viscosity
coefficient—denotes the viscosity of the medium. It is well known that (1.1) has
a random-field solution if, for example, the initial heat profile u0 is a bounded
and measurable function [27, Ch. 3].

Now suppose that u0 : R → R+ is in fact bounded uniformly away from
zero, as well as infinity; i.e., that 0 < inf u0 6 supu0 < ∞. We have shown
recently [12] that, in that case, x 7→ ut(x) is a.s. unbounded for all t > 0 under
various conditions on σ. In particular, if σ(x) = cx for a constant c > 0—this
is the so called parabolic Anderson model [9]—then our results [12] imply that

0 < lim sup
|x|→∞

log ut(x)

(log |x|)2/3
<∞ a.s. (1.3)

Eq. (1.3) holds, for instance, for the parabolic Anderson model in the important
[flat] case that u0(x) ≡ 1.

Another well-studied case is the parabolic Anderson model when u0 = δ0
is point mass at 0 [the narrow-wedge case]. This case arises in the study of
directed random polymers [22]. Gérard Ben Arous, Ivan Corwin, and Jeremy
Quastel have independently asked us whether (1.3) continues to hold in that
case (private communications). One of the goals of the present articles is to
prove that the answer to this question is “no.” In fact, we have the following
much more general fact, which is a corollary to the development of this paper.

Theorem 1.1. If σ(0) = 0 and u0 is a finite measure of compact support, then
supx∈R ut(x) = supx∈R |ut(x)| <∞ a.s. for all t > 0.

2 Some background material

We begin by recalling some well-known facts; also, we use this opportunity to
set forth some notation that will be used consistently in the sequel.

2.1 White noise

Throughout let W := {Wt(x)}t>0,x∈R denote a two-parameter Brownian sheet
indexed by R+×R; that is, W is a two-parameter mean-zero Gaussian process
with covariance

Cov (Wt(x) ,Ws(y)) = min(s , t) min(|x| , |y|)1(0,∞)(xy), (2.1)

for all s, t > 0 and x, y ∈ R. The space-time mixed derivative of Wt(x) is
denoted by Ẇt(x) := ∂2Wt(x)/(∂t ∂x) and is called space-time white noise.
Space-time white noise is a generalized Gaussian random field with mean zero
and covariance measure Cov(Ẇt(x) , Ẇs(y)) = δ0(x− y)δ0(t− s).
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2.2 Lévy processes

Let X := {Xt}t>0 denote a symmetric Lévy process on R. That is, t 7→ Xt

is [almost surely] a right-continuous random function with left limits at every
t > 0 whose increments are independent, identically distributed and symmetric.
It is well known that X is a strong Markov process; see Jacob [21] for this
and all of the analytic theory of Lévy processes that we will require here and
throughout. We denote the infinitesimal generator of X by L. According to
the Lévy–Khintchine formula, the law of the process X is characterized by its
characteristic exponent ; that is a function Ψ : R→ C that is determined via the
identity E exp(iξ ·Xt) = exp(−tΨ(ξ)), valid for all t > 0 and ξ ∈ R. Elementary
arguments show that, because X is assumed to be symmetric, the characteristic
exponent Ψ is a nonnegative—in particular real valued—symmetric function.
For reasons that will become apparent later on, we will be interested only in
symmetric Lévy processes that satisfy the following:∫ ∞

−∞
e−tΨ(ξ) dξ <∞ for all t > 0. (2.2)

In such a case, the inversion formula for Fourier transforms applies and tells us
that X has transition densities pt(x) that can be defined by

pt(x) :=
1

2π

∫ ∞
−∞

e−ix·ξ−tΨ(ξ) dξ (t > 0 , x ∈ R). (2.3)

Note that the function (t , x) 7→ pt(x) is continuous uniformly on (η ,∞) × R
for every η > 0.

Let us note two important consequences of the preceding formula for tran-
sition densities:

1. pt(x) 6 pt(0) for all t > 0 and x ∈ R; and

2. t 7→ pt(0) is nonincreasing.

We will appeal to the these properties without further mention.
Throughout we assume also that the transition densities of the Lévy process

X satisfy the following regularity condition:

Θ := sup
t>0

[
pt/2(0)

pt(0)

]
<∞. (2.4)

Because pt(0) > pt(x) and
∫∞
−∞ pt(x) dx = 1, it follows pt(0) > 0 and hence

Θ is well defined [though it could in principle be infinity when X is a general
symmetric Lévy process].

Let us mention one example very quickly before we move on.

Example 2.1. Let X denote a one-dimensional standard Brownian motion.
Then, X is a symmetric Lévy process with transition densities given by pt(x) :=
(2πt)−1/2 exp{−x2/(2t)} for t > 0 and x ∈ R. In this case, we may note also
that Lf = (1/2)f ′′, Ψ(ξ) = ‖ξ‖2/2, and Θ =

√
2.
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3 The Main result

Our main goal is to study the nonlinear stochastic heat equation

∂

∂t
ut(x) = (Lut)(x) + σ(ut(x))Ẇt(x) for t > 0, x ∈ R, (3.1)

where:

1. L is the generator of a symmetric Lévy process {Xt}t>0 that satisfies (2.2);

2. σ : R→ R is Lipschitz continuous with Lipschitz constant Lipσ; and

3. σ(0) = 0.

As regards the initial data, we will assume here and throughout that

u0 is a nonrandom, finite Borel measure on R. (3.2)

We recall from Walsh [27] that a solution to (3.1) a mild solution if it solves
the following random integral equation:

ut(x) = (pt ∗ u0)(x) +

∫
(0,t)×R

pt−s(y − x)σ(us(y))W (dsdy). (3.3)

It is known that a mild solution to (3.1) exists, under the above assumptions,
provided that u0 is a bounded and measurable, non-random function [27, Ch.
3]. We will soon see that the same fact remains to hold under the less restrictive
condition (3.2). Since we will never need another notion of a solution to (1.1),
from now on we will mean “mild solution” when we refer to a “solution” to
(1.1).

The best-studied special case of the random heat equation (3.1) is when
Lf = νf ′′ is a constant multiple of the Laplacian. In that case, Equation (3.1)
arises for several reasons that include its connections to the stochastic Burgers’
equation (see Gyöngy and Nualart [20]), the parabolic Anderson model (see
Carmona and Molchanov [9]) and the KPZ equation (see Kardar, Parisi and
Zhang [23]).

One can think of the solution ut(x) to (3.1) as the expected density of par-
ticles, at place x ∈ R and time t > 0, for a system of interacting branching
random walks in continuous time: The particles move as independent Lévy pro-
cesses on R; and the particles move through an independent external random
environment that is space-time white noise Ẇ . The mutual interactions of the
particles occur through a possibly-nonlinear birthing mechanism σ. The spe-
cial case Lf = νf ′′ deals with the case that the mentioned particles move as
independent Brownian motions.

The most special example of (3.1) is when σ(x) ≡ 0; that is the linear heat
[Kolmogorov] equation for L, whose [weak] solution is ut(x) = (pt ∗u0)(x). It is
a simple exercise in harmonic analysis that when σ(x) ≡ 0, the solution to (3.1)
exists, is unique, and is a bounded function for all time t > 0. Indeed,

(pt ∗ u0)(x) =

∫
R

pt(y − x)u0(dy) 6 pt(0)

∫
R

u0(dy) = pt(0)u0(R) <∞. (3.4)
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Hence, supx∈R(pt ∗ u0)(x) is finite, as was asserted.
Consider the case where the characteristic exponent Ψ of our Lévy process

X satisfies the following condition: For some [hence all] β > 0,

Υ(β) :=
1

2π

∫ ∞
−∞

dξ

β + 2Ψ(ξ)
<∞. (3.5)

It is well known that if, in addition, u0 is a bounded and measurable function,
then (3.1) has a solution that is a.s. unique among all possible “natural” candi-
dates. This statement follows easily from the theory of Dalang [13], for instance.
Moreover, Dalang’s theory shows also that (3.5) is necessary as well as sufficient
for the existence of a random-field solution to (3.1) when σ is a constant func-
tion. This is why we assume (3.5) per force. The technical condition (2.2) in
fact follows as a consequence of (3.5); see Foondun et al [18, Lemma 8.1].

Dalang’s method proves also the following without any extra effort:

Theorem 3.1 (Dalang [13]). Suppose u0 is a random field, independent of the
white noise Ẇ , such that supx∈R E(|u0(x)|k) < ∞ for some k ∈ [2 ,∞). Then
(3.1) has a mild solution {ut(x)}t>0,x∈R that solves the random integral equation
(3.3). Furthermore, {ut(x)}t>0,x∈R is a.s.-unique in the class of all predictable
random fields {vt(x)}t>0,x∈R that satisfy:

sup
t∈(0,T )

sup
x∈R

E(|vt(x)|k) <∞ for all T > 0. (3.6)

Finally, the random field (t , x) 7→ ut(x) is continuous in probability.

We will not describe the proof, since all of the requisite ideas are already
in the paper [13]. However, we mention that the reference to “predictable” as-
sumes tacitly that the Brownian filtration of Walsh [27] has been augmented
with the sigma-algebra generated by the random field {u0(x)}x∈R. The men-
tioned stochastic integrals are also as defined in [27]. We will need the following
variation of a theorem of Foondun and Khoshnevisan [17] also:

Theorem 3.2 (Foondun and Khoshnevisan [17]). Suppose u0 is a random field,
independent of the white noise Ẇ , such that supx∈R E(|u0(x)|k) <∞ for every
k ∈ [2 ,∞). Then the mild solution {ut(x)}t>0,x∈R to (3.1) satisfies the follow-
ing: For all ε > 0 there exists a finite and positive constant Cε such that for all
t > 0 and k ∈ [2 ,∞),

sup
x∈R

E(|ut(x)|k) 6 Ckε e(1+ε)γ(k)t, (3.7)

where γ(k) is defined by:

γ(k) := inf

{
β > 0 : Υ(2β/k) <

1

4kLip2
σ

}
. (3.8)
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Once again, we omit the proof, since it follows closely the ideas of the paper
[17] without making novel alterations.

The existence and uniqueness of the solution to (3.1) under a measure-valued
initial condition has been studied earlier in various papers. For example, Bertini
and Cancrini [3] obtain moment formulas for the parabolic Anderson model
[that is, σ(x) = cx] in the special case that Lf = (κ/2)f ′′and u0 = δ0 is the
Dirac point mass at zero. They also give sense to what a “solution” might
mean. The most-recent word on this topic can be found in Borodin and Corwin
[4]. Weak solutions to the fully-nonlinear equation (3.1) have been studied in
Conus and Khoshnevisan [11]. An independent work in preparation by Chen
and Dalang [10] establishes, in the framework of Walsh [27], the existence of
random field solutions to (3.1) in the case where Lf = f ′′, and derives very
precise information about the moments of the solution.

We are now ready to state one of the main results of this paper, which extends
the previous two results to the case when the initial data is a nonrandom, finite
Borel measure.

Theorem 3.3. If Θ < ∞ and (3.2) holds, then (3.1) has a mild solution u
that satisfies the following for all real numbers x ∈ R, ε, t > 0, and k ∈ [2 ,∞):
There exists a positive and finite constant Cε := Cε(Θ)—depending only on ε
and Θ—such that

E
(
|ut(x)|k

)
6 Ckε e(1+ε)γ(k)t {1 + pt(0)(pt ∗ u0)(x)}k/2 , (3.9)

where

γ(k) := inf

{
β > 0 : Υ(2β/k) <

1

4kLip2
σ

}
. (3.10)

Moreover, the solution is almost-surely unique among all predictable random
fields v that solve (3.1) and satisfy

sup
t>0

sup
x∈R

[
E
(
|vt(x)|2

)
e(1+ε)γ(2)t {1 ∨ pt(0)(pt ∗ u0)(x)}

]
<∞ for some ε > 0. (3.11)

From this we shall see that, in the particular case where L is a multiple of
the Laplacian, the solution remains bounded for every finite time t > 0, as long
as the finite initial measure u0 has compact support. This verifies Theorem 1.1.

4 An example

Consider (3.1) where L = −κ(−∆)α/2 is the fractional Laplacian of index α ∈
(0 , 2], where κ > 0 is a viscosity parameter. The operator L is the generator
of a symmetric stable-α Lévy process with Ψ(ξ) ∝ κ|ξ|α, where the constant
of proportionality does not depend on (κ , ξ). It is possible to check directly
that Υ(1) < ∞ if and only if α > 1. Let us restrict attention to the case that
α ∈ (1 , 2], and recall that we consider only the case that u0 is a finite measure.
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A computation shows that Υ(β) ∝ κ−1/αβ−(α−1)/α uniformly for all β > 0.
Moreover, pt(x) is a fundamental solution of the heat equation for L, and Θ =
21/α since pt(0) ∝ (κt)−1/α uniformly for all t > 0. Theorem 3.3 then tells us
that (3.1) has a unique mild solution which satisfies the following for all real
numbers t > 0 and k ∈ [2 ,∞):

sup
x∈R

E
(
|ut(x)|k

)
6 Ck1

(
1 + (κt)−1

)k/α
exp

(
C2
tk(2α−1)/(α−1)

κ1/(α−1)

)
, (4.1)

where C1 and C2 are positive and finite constants that do not depend on
(t , k ,κ). In other words, the large-t behavior of the kth moment of the so-
lution is, as in [17], the same as it would be had u0 been a bounded measurable
function; that is,

lim sup
t→∞

1

t
log sup

x∈R
‖ut(x)‖k 6 const · (kα/κ)

1/(α−1)
. (4.2)

However, we also observe the small-t estimate,

lim sup
t↓0

t1/α sup
x∈R
‖ut(x)‖k 6 const · κ−1/α, (4.3)

which is a new property. Moreover, the preceding estimate is tight. Indeed, it
is not hard to see that

‖ut(x)‖k > ‖ut(x)‖2 > (pt ∗ u0)(x). (4.4)

Therefore, in the case that u0 is a positive-definite finite measure,

sup
x∈R
‖ut(x)‖k > (pt ∗ u0)(0) =

1

2π

∫ ∞
−∞

e−const·κt|ξ|α û0(ξ) dξ (4.5)

=
1

2π(tκ)1/α

∫ ∞
−∞

e−const·|ξ|α û0

(
ξ

(tκ)1/α

)
dξ.

The second inequality follows from applying Parseval’s identity to (pt+ε ∗u0)(x)
and then letting ε ↓ 0 using Fatou’s lemma. Another application of Fatou’s
lemma then shows that

lim inf
t↓0

t1/α sup
x∈R
‖ut(x)‖k > const · κ−1/α, (4.6)

as long as u0 is a positive-definite finite measure such that lim|z|→∞ û0(z) > 0;
that is, as long as the conclusion of the Riemann–Lebesgue lemma does not
apply to u0. Thus, (4.3) is tight, as was claimed. There are many examples of
such measure u0. For instance, we can choose u0 = aδ0 + µ, where a > 0 and µ
is any given positive-definite finite Borel measure on R.
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5 Preliminaries

5.1 Some inequalities

We recall from Foondun and Khoshnevsian [17] that

Υ(β) :=
1

2π

∫ ∞
−∞

dξ

β + 2Ψ(ξ)
=

∫ ∞
0

e−βt‖pt‖2L2(R) dt; (5.1)

This is merely a consequence of Plancherel’s theorem. Because X is symmetric
we can describe Υ in terms of the resolvent of X. To this end define

Υ(β) :=

∫ ∞
0

e−βtpt(0) dt. (5.2)

This is the resolvent density, at zero, of the Lévy process X. Because of sym-
metry,

‖pt‖2L2(R) = (pt ∗ pt)(0) = p2t(0). (5.3)

Therefore, it follows that Υ(β) = 1
2Υ(β/2). In particular, Dalang’s condition

([13, (26), thm. 2]) Υ(1) <∞ is equivalent to the condition that Υ(β) <∞ for
some, hence all, β > 0.

We close this subsection with some convolution estimates.

Lemma 5.1. For all t > 0,

pt(0) ·
∫ t

0

pr(0) dr 6
∫ t

0

pt−s(0)ps(0) ds 6 2Θ · pt(0) ·
∫ t

0

pr(0) dr. (5.4)

As it turns out, the preceding simple-looking result is the key to our analysis
of existence and uniqueness, because it tells us that∫ t

0

pt−s(0)ps(0)

pt(0)
ds −−→ 0 as t ↓ 0, (5.5)

at sharp rate
∫ t

0
pr(0) dr.

Proof. The first inequality holds simply because ps(0) > pt(0) for all s ∈ (0 , t).

For the second one, we split
∫ t

0
pt−s(0)ps(0) ds into two parts:

∫ t/2
0

and
∫ t
t/2

.

Note that pt−s(0) 6 pt/2(0) 6 Θpt(0) when s ∈ (0 , t/2); and ps(0) 6 pt/2(0) 6
Θpt(0) when s ∈ (t/2 , t). The lemma follows from these observations.

Let ~ denote space-time convolution; that is,

(f ~ g)t(x) :=

∫ t

0

ds

∫ ∞
−∞

dy ft−s(x− y)gs(y), (5.6)

whenever f, g : (0 ,∞)×R→ R+ are both measurable.
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Lemma 5.2. For all t > 0, x ∈ R, and n > 1,p2 ~ · · ·~ p2︸ ︷︷ ︸
n times


t

(x) 6

(
2Θ

∫ t

0

ps(0) ds

)n−1

· pt(0)pt(x). (5.7)

Proof. The result holds trivially when n = 1. Let us suppose that (5.7) is valid
for n = m; we prove that (5.7) is valid also for n = m+ 1. Note that

Tm+1 :=

 p2 ~ · · ·~ p2︸ ︷︷ ︸
m+ 1 times


t

(x)

=

∫ t

0

ds

∫ ∞
−∞

dy

p2 ~ · · ·~ p2︸ ︷︷ ︸
m times


t−s

(y) p2
s(x− y) (5.8)

6
∫ t

0

ds

(
2Θ

∫ t−s

0

pr(0) dr

)m−1

pt−s(0)

∫ ∞
−∞

dy pt−s(y)p2
s(x− y)

6

(
2Θ

∫ t

0

pr(0) dr

)m−1 ∫ t

0

ds pt−s(0)

∫ ∞
−∞

dy pt−s(y)p2
s(x− y).

Since p2
s(x − y) 6 ps(0)ps(x − y), the Chapman–Kolmogorov equation implies

that

Tm+1 6

(
2Θ

∫ t

0

pr(0) dr

)m−1

·
∫ t

0

pt−s(0)ps(0) ds · pt(x), (5.9)

and the result follows from this, Lemma 5.1, and induction.

Lemma 5.3. For all t > 0, x ∈ R, and n > 1,p2 ~ · · ·~ p2︸ ︷︷ ︸
n times

~ (p• ∗ u0)2


t

(x)

6 u0(R)

(
2Θ

∫ t

0

ps(0) ds

)n
· pt(0)(pt ∗ u0)(x).

(5.10)

Proof. For every nonnegative function f , (5.6) and Lemma 5.2 together imply
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that p2 ~ · · ·~ p2︸ ︷︷ ︸
n times

~ f


t

(x)

=

∫ t

0

ds

∫
R

dy

p2 ~ · · ·~ p2︸ ︷︷ ︸
n times


s

(y)ft−s(x− y)

6
∫ t

0

ds

(
2Θ

∫ s

0

pr(0) dr

)n−1

ps(0)

∫
R

dy ps(y)ft−s(x− y)

6

(
2Θ

∫ t

0

pr(0) dr

)n−1 ∫ t

0

ds ps(0)(ps ∗ ft−s)(x).

(5.11)

We set ft(x) := pt(0)(pt∗u0)(x) and appeal the Chapman–Kolmogorov property
[ps ∗ pt−s = pt] in order to obtain the following:p2 ~ · · ·~ p2︸ ︷︷ ︸

n times

~ (p• ∗ u0)2


t

(x)

6 u0(R)

p2 ~ · · ·~ p2︸ ︷︷ ︸
n times

~ p•(0)(p• ∗ u0)


t

(x)

6 u0(R)

(
2Θ

∫ t

0

pr(0) dr

)n−1 ∫ t

0

ps(0)pt−s(0)ds · (pt ∗ u0)(x).

(5.12)

An application of Lemma 5.1 completes the proof.

6 Finite-horizon estimates

We first define a sequence {u(n)}n∈N of random fields by: u
(0)
t (x) := 0 for all

t > 0 and x ∈ R. Then, for every n > 0, we set

u
(n+1)
t (x) := (pt ∗ u0)(x) +

∫
(0,t)×R

pt−s(y − x)σ(u(n)
s )W (dsdy). (6.1)

Thus, u(n) denotes simply the nth stage of a Picard iteration approximation to
a reasonable candidate for a solution to (3.1).

Proposition 6.1 below will show that the random variables {u(n)
t (x)}n∈N are

well-defined with values in Lk(P), for x ∈ R and all times t that are “reasonably
small.”

For each a > 0, let

g(a) := inf

{
t > 0 :

∫ t

0

pr(0) dr > a

}
, (6.2)

where inf ∅ :=∞. Clearly, g(a) > 0 when a > 0.
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Proposition 6.1. For all integers n > 0, real numbers k ∈ [2 ,∞) and x ∈ R,∥∥∥u(n+1)
t (x)

∥∥∥
k
6 4

[
1 ∨ k1/2Lipσ

]√
u0(R)pt(0)(pt ∗ u0)(x), (6.3)

for 0 < t 6 g((32Θ[1 ∨ kLip2
σ])−1).

Proof. Define

µ
(n,k)
t (x) :=

∥∥∥u(n)
t (x)

∥∥∥2

k
. (6.4)

Clearly, µ
(0,k)
t (x) ≡ 0. Then, we have√

µ
(n+1,k)
t (x)

6 (pt ∗ u0)(x) +

∥∥∥∥∥
∫

(0,t)×R
pt−s(y − x)σ

(
u(n)
s (y)

)
W (dsdy)

∥∥∥∥∥
k

(6.5)

6 (pt ∗ u0)(x) +

(
4k ·

∫ t

0

ds

∫ ∞
−∞

dy p2
t−s(y − x)

∥∥∥σ (u(n)
s (y)

)∥∥∥2

k

)1/2

6 (pt ∗ u0)(x) +

(
4kLip2

σ ·
∫ t

0

ds

∫ ∞
−∞

dy p2
t−s(y − x)µ(n,k)

s (y)

)1/2

= (pt ∗ u0)(x) +
(

4kLip2
σ ·
(
p2 ~ µ(n,k)

)
t
(x)
)1/2

.

Notice, that (3.4) implies that |(pt ∗ u0)(x)|2 6 u0(R)pt(0)(pt ∗ u0)(x). Now,
define Ck := 8(1 ∨ kLip2

σ), and note that

µ
(n+1,k)
t (x) 6 2|(pt ∗ u0)(x)|2 + 8kLip2

σ ·
(
p2 ~ µ(n,k)

)
t
(x)

6 Ck

[
|(pt ∗ u0)(x)|2 +

(
p2 ~ µ(n,k)

)
t
(x)
]

...

6
n∑
j=0

Cj+1
k


p2 ~ · · ·~ p2︸ ︷︷ ︸

j times

~ (p• ∗ u0)2


t

(x).

(6.6)

We apply Lemma 5.3 to find that

µ
(n+1,k)
t (x) 6 Cku0(R)pt(0)(pt ∗ u0)(x) ·

n∑
j=0

(
2CkΘ ·

∫ t

0

ps(0) ds

)j
6 2Cku0(R)pt(0)(pt ∗ u0)(x),

(6.7)

provided that t 6 g((4CkΘ)−1). This is another way to state the lemma.
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Proposition 6.2. If 0 < t 6 g((16kΘLip2
σ)−1), then for all integers n > 0 and

for all x ∈ R,∥∥∥u(n+1)
t (x)− u(n)

t (x)
∥∥∥2

k
6 2−nu0(R)pt(0)(pt ∗ u0)(x). (6.8)

Proof. Define for all n > 0, t > 0, and x ∈ R,

D
(n+1,k)
t (x) := E

(
|u(n+1)
t (x)− u(n)

t (x)|k
)2/k

= ‖u(n+1)
t (x)− u(n)

t (x)‖2k. (6.9)

Clearly,

D
(n+1,k)
t (x) 6 4k

∫ t

0

ds

∫ ∞
−∞

dy p2
t−s(y − x)E

(∣∣∣σ (u(n)
s (y)

)
− σ

(
u(n−1)
s (y)

)∣∣∣k)2/k

6 4kLip2
σ ·
∫ t

0

ds

∫ ∞
−∞

dy p2
t−s(y − x)D(n,k)

s (y)

= 4kLip2
σ ·
(
p2 ~D(n,k)

)
t
(x)

6 · · · 6 (4kLip2
σ)n ·

 p2 ~ · · ·~ p2︸ ︷︷ ︸
n times

~D(1,k)


t

(x). (6.10)

Because D
(1,k)
s (y) = |(ps ∗ u0)(y)|2 for all k ∈ [2,∞), Lemma 5.3 yields

D
(n+1,k)
t (x) 6 u0(R)

(
8kLip2

σΘ

∫ t

0

pr(0) dr

)n
pt(0)(pt ∗ u0)(x), (6.11)

and hence the result follows.

Let us conclude this section by making a few remarks about the predictability
of the Picard iterates u(1), u(2), . . . . [We thank Dr. Le Chen and Professor Robert
Dalang for correctly pointing out to us that this issue requires an explanation].
In the case that Lf = f ′′, a detailed proof can be found in Chen and Dalang
[10].

We wish to demonstrate that if Z is a predictable random field and satisfies
the integrability condition∫ t

0

ds

∫ ∞
−∞

dy [pt−s(y − x)]2E(|Zs(y)|2) <∞, (6.12)

then (t , x) 7→
∫

(0,t)×R pt−s(y − x)Zs(y)W (dsdy) defines a predictable random

field. Thanks to the construction of space-time stochastic integrals, due to
Walsh [27], it suffices to consider only the case that Z is an “elementary random
field” [27, (2.5), p. 292] and this reduces our problem to one about showing that
the Gaussian field

(t , x) 7→ Γt(x) :=

∫
(0,t)×R

pt−s(y − x)W (dsdy) (6.13)
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is itself a predictable random field. It is not hard to verify the following “stochas-
tic Fubini theorem”:

(Γt ∗ ϕ)(x) =

∫
(0,t)×R

(pt−s ∗ ϕ)(y)W (dsdy) a.s., (6.14)

valid for every non-random rapidly-decreasing test function ϕ : R → R. A
variant of this can be found in Walsh [27, Theorem 2.6, p. 296]; the present
formulation can be proved in a similar way.

Standard facts about Gaussian random fields and Lévy processes imply that
(t , x) 7→ (Γt ∗ ϕ)(x) is continuous a.s. [up to a modification], and this implies
that (t , x) 7→ (Γt ∗ ϕ)(x) is a predictable random field. Finally, let ϕε denote
the probability density function of a mean-zero normal distribution on R with
variance ε. Then, one can check directly that

lim
ε↓0

sup
t∈[0,T ]

sup
x∈R

E
(
|(Γt ∗ ϕε)(x)− Γt(x)|2

)
= 0, (6.15)

for all T ∈ (0 ,∞). In accord with the Walsh theory [27], this is sufficient for
the predictability of the Gaussian random field Γ.

7 Proof of Theorem 3.3

We prove Theorem 3.3 in two parts: First we show that there exists a solution
up to time

T := g((64Θ[1 ∨ Lip2
σ])−1). (7.1)

From there on, it is easy to produce an all-time solution, starting from time
t = T.

Let {u(n)}∞n=0 be the described Picard iterates defined in (6.1). Since

0 < T 6 g
((

32ΘLip2
σ

)−1
)
, (7.2)

Proposition 6.2 implies that the sequence of random variables {u(n)
t (x)}n∈N

converge in L2(Ω) for every 0 < t 6 T and x ∈ R.1

Define Ut(x) := limn→∞ u
(n)
t (x), where the limit is taken in L2(Ω). By

default, {Ut(x); x ∈ R, t ∈ (0,T]} is a predictable random field such that

lim
n→∞

E

(∣∣∣u(n)
t (x)− Ut(x)

∣∣∣k) = 0 for all x ∈ R, (7.3)

provided that t ∈ (0 ,Tk], where Tk := g
((

32kΘ
[
1 ∨ Lip2

σ

])−1
)

. (Notice that

T2 = T.) Moreover, Proposition 6.1 tells us that

‖Ut(x)‖k 6 4k
1/2 [1 ∨ Lipσ]

√
u0(R)pt(0)(pt ∗ u0)(x), (7.4)

1As is customary, Ω denotes the underlying sample space on which random variables are
defined, and L2(Ω) denotes the collection of all random vaiables on Ω that have two finite
moments.
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for all x ∈ R and t ∈ (0 ,Tk]. Finally, these remarks readily imply that

Ut(x) = (pt ∗ u0)(x) +

∫
(0,t)×R

pt−s(y − x)σ (Us(y)) W (dsdy), (7.5)

for all x ∈ R and t ∈ (0 ,T]. In other words, U is a mild solution to (3.1) up to
the nonrandom time T.

Next we define a space-time white noise Ẇ by defining its Wiener integrals
as follows: For all h ∈ L2(R+ ×R),∫

R+×R
hs(y)W(dsdy) :=

∫
(T,∞)×R

hs−T(y)W (dsdy). (7.6)

In other words, Ẇ is obtained from Ẇ by shifting the time T steps. Induction

reveals that every {u(n)
t (x); x ∈ R, t ∈ (0 ,T]} is independent of the space-time

white noise Ẇ. Therefore, so is the short-time solution {Ut(x); x ∈ R, t ∈
(0 ,T]}.

Next let V := {Vt(x)}x∈R,t>0 denote the mild solution to the stochastic heat
equation

∂

∂t
Vt(x) = (LVt)(x) + σ(Vt(x))Ẇt(x), (7.7)

subject to V0(x) = UT(x). Since UT is independent of the noise Ẇ, the preceding
has a unique solution, thanks to Dalang’s theorem (Theorem 3.1). And since
supx∈R ‖UT(x)‖2 < ∞ for all ε > 0, there exists Dε ∈ (0 ,∞) such that for all
t > 0, and x ∈ R,

E
(
|Vt(x)|2

)
6 D2

ε e
(1+ε)γ(2)t, (7.8)

thanks to Theorem 3.2. Finally, we define for all x ∈ R,

ut(x) :=

{
Ut(x) if t ∈ (0 ,T],

Vt−T(x) if t > T.
(7.9)

Then it is easy to see that the random field u is predictable, and is a mild
solution to (3.1) for all t > 0, subject to initial measure being u0. Uniqueness
is a standard consequence of (3.9).

Let us now consider k > 2 and follow the same argument as above, but use
Tk instead of T; i.e., we run the solution U up to time Tk only and then keep
going with the classical technique of Dalang. Then, a similar argument leads
us to a moment estimate of order k for ut(x), thanks to another application of
Theorem 3.2. The solution obtained from Tk is the same as the one obtained
when stopping at T by the uniqueness result.

We pause to state an immediate corollary of the proof of Theorem 3.3, as
it might be of some independent interest. In words, the following shows that if
σ has truly-linear growth and Θ <∞, then the solution to (3.1) has nontrivial
moment Liapounov exponents.
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Corollary 7.1. Suppose Θ <∞, Lσ := infx∈R |σ(x)/x| > 0, and u0 is a finite
Borel measure on R. Then,

0 < lim sup
t→∞

1

t
log E

(
|ut(x)|k

)
<∞, (7.10)

for all k ∈ [2 ,∞).

Proof. Let {Vt(x)}t>0,x∈R denote the post-Tk process used in the proof of The-
orem 3.3. It suffices to prove that

0 < lim sup
t→∞

1

t
log E

(
|Vt(x)|k

)
<∞, (7.11)

for all k ∈ [2 ,∞). This follows from [17].

The proof of Theorem 3.3 is based on the idea that one can solve (3.1) up
to time T, using the method of the present paper; and then from time T on we
paste the more usual solution, shifted by time T time steps, in order to obtain
a global solution to (3.1). But in fact since the pre-T and the post-T solutions
are unique [a.s.], we could replace T by any other time η (not necessarily one
of the Tk) before it as well. The following merely enunciates these observations
in the form of a proposition. The proof follows from the fact that the sequence
Tk goes to 0 as k increases. We omit the details. However, we state this simple
result explicitly, as it will be central to our proof of Theorem 1.1.

Proposition 7.2. Choose and fix some η ∈ (0 ,T), and let us define the pre-
dictable random field {V̄t(x)}t>0,x∈R exactly as we defined {Vt(x)}t>0,x∈R, ex-
cept with T replaced everywhere by η. Finally define ūt(x) as we did ut(x),
except we replace (U, V,T) by (U, V̄ , η); that is,

ūt(x) :=

{
Ut(x) if t ∈ (0 , η],

V̄t−η(x) if t > η.
(7.12)

Then, the random field ū is a modification of the random field u.

8 Stability and positivity

Let u denote the solution to (3.1), as defined in Theorem 3.3, starting from a
finite Borel measure u0. We have seen that (pt ∗u0)(x) is finite for all t > 0 and
x ∈ R fixed. Also, for ε > 0, let U (ε) denote the solution to (3.1), starting from
the [bounded and measurable] initial function pε ∗ u0.
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Proposition 8.1 (Stability). For every t, ε > 0, ut, U
(ε)
t ∈ L2(Ω ×R). More-

over, the following bound is valid for all β such that Υ(β) > (2Lip2
σ)−1:∫ ∞

0

e−βt dt

∫ ∞
−∞

dx E

(∣∣∣ut(x)− U (ε)
t (x)

∣∣∣2)
6

[u0(R)]2

π

∫ ∞
−∞

(
1− e−εΨ(ξ)

)2
β + 2Ψ(ξ)

dξ.

(8.1)

In particular, the left-hand side tends to zero as ε ↓ 0.

Proof. Let u
(n)
t (x) be the nth Picard iterate, defined in (6.1). Then,∥∥∥u(n+1)

t (x)
∥∥∥2

2

6 |(pt ∗ u0)(x)|2 + Lip2
σ ·
∫ t

0

ds

∫ ∞
−∞

dy p2
t−s(y − x)

∥∥∥u(n)
s (y)

∥∥∥2

2
.

(8.2)

We integrate [dx] to find that

E

(∥∥∥u(n+1)
t

∥∥∥2

L2(R)

)
6 ‖pt ∗ u0‖2L2(R) + Lip2

σ ·
∫ t

0

‖pt−s‖2L2(R) · E
(∥∥∥u(n)

s

∥∥∥2

L2(R)

)
ds

= ‖pt ∗ u0‖2L2(R) + Lip2
σ ·
∫ t

0

p2(t−s)(0) · E
(∥∥∥u(n)

s

∥∥∥2

L2(R)

)
ds;

(8.3)

see (5.3). Note that |û0(ξ)| 6 u0(R), whence

‖pt ∗ u0‖2L2(R) =
1

2π

∫ ∞
−∞

e−2tΨ(ξ) |û0(ξ)|2 dξ 6 |u0(R)|2 · p2t(0), (8.4)

thanks to Plancherel’s theorem. [One can construct an alternative proof of
this inequality, using the semigroup property of pt and the Young inequality.]
Therefore,

E

(∥∥∥u(n+1)
t

∥∥∥2

L2(R)

)
6 |u0(R)|2 · p2t(0) + Lip2

σ ·
∫ t

0

p2(t−s)(0) · E
(∥∥∥u(n)

s

∥∥∥2

L2(R)

)
ds.

(8.5)

Define, for all predictable random fields f , the quantity

Kt(f) := sup
s∈(0,t)

E
(
‖fs‖2L2(R)

)
1 + p2s(0)

 , (8.6)
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in order to find that

E

(∥∥∥u(n+1)
t

∥∥∥2

L2(R)

)
(8.7)

6 |u0(R)|2 · p2t(0) + Lip2
σ · Kt

(
u(n)

)
·
∫ t

0

p2(t−s)(0) [1 + p2s(0)] ds

6 |u0(R)|2 · p2t(0) +
1

2
Lip2

σ · Kt
(
u(n)

)
·
(∫ 2t

0

ps(0) ds+

∫ 2t

0

p2t−s(0)ps(0) ds

)
6 |u0(R)|2 · p2t(0) +

1

2
Lip2

σ · Kt
(
u(n)

)
·
∫ 2t

0

ps(0) ds · (1 + 2Θp2t(0)) ;

see Lemma 5.1. Since Θ > 1, this leads us to the following:

Kt
(
u(n+1)

)
6 |u0(R)|2 + Lip2

σΘ · Kt
(
u(n)

)
·
∫ 2t

0

ps(0) ds. (8.8)

Recall T from (7.1). If t ∈ (0 ,T/2], then
∫ 2t

0
ps(0) ds is certainly bounded above

by (4ΘLip2
σ)−1, whence we have

Kt
(
u(n+1)

)
6 |u0(R)|2 +

1

2
Kt
(
u(n)

)
6 · · · 6 2|u0(R)|2, (8.9)

since Kt(u(0)) = 0. Therefore,

E
(
‖ut‖2L2(R)

)
6 2|u0(R)|2 (1 + p2t(0)) for all t ∈ (0 ,T/2]. (8.10)

One proves, similarly, that uniformly for all ε > 0,

E
(
‖U (ε)

t ‖2L2(R)

)
6 2|u0(R)|2 (1 + p2t(0)) for all t ∈ (0 ,T/2]. (8.11)

By Proposition 7.2, the process {ut+T/2}t>0 starts from uT/2 ∈ L2(Ω × R)
and solves the shifted form of (3.1), and hence is in L2(R) for all time t >
T/2 by Foondun and Khoshnevisan [16, Theorem 1.1]; for earlier developments
along similar lines see Dalang and Mueller [14]. Similar remarks also apply to

{U (ε)
t (x)}x∈R,t>0.
Define,

D(ε)
t (x) := E

(∣∣∣ut(x)− U (ε)
t (x)

∣∣∣2) . (8.12)

Since pt ∗ (pε ∗ u0) = pt+ε ∗ u0,

D(ε)
t (x) 6 |(pt ∗ u0)(x)− (pt+ε ∗ u0)(x)|2 + Lip2

σ ·
(
p2 ~D(ε)

)
t
(x). (8.13)

We integrate [dx] and apply the Plancherel theorem to find that∥∥∥D(ε)
t

∥∥∥
L1(R)

6
[u0(R)]2

2π

∫ ∞
−∞

e−2tΨ(ξ)
(

1− e−εΨ(ξ)
)2

dξ

+ Lip2
σ ·
∫ t

0

‖pt−s‖2L2(R) ·
∥∥∥D(ε)

s

∥∥∥
L1(R)

ds.

(8.14)
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We integrate one more time [exp(−βt) dt] in order to see that

E(ε)
β :=

∫ ∞
0

e−βt
∥∥∥D(ε)

t

∥∥∥
L1(R)

dt (8.15)

satisfies

E(ε)
β 6

[u0(R)]2

2π

∫ ∞
−∞

(
1− e−εΨ(ξ)

)2
β + 2Ψ(ξ)

dξ + Lip2
σΥ(β) · E(ε)

β . (8.16)

Pick β large enough that Υ(β) 6 (2Lip2
σ)−1 to obtain the claimed inequality of

the proposition. And since Υ(β) <∞, the final assertion about convergence to
0 follows from this inequality and the dominated convergence theorem.

Proposition 8.2 (positivity). If σ(0) = 0 and u0(R) > 0, then ut(x) > 0 a.s.
for all t > 0 and x ∈ R.

Proof. Since u0 is a finite measure, it follows that U
(ε)
0 (x) = (pε ∗ u0)(x) 6

pε(0)u0(R) < ∞, uniformly in x ∈ R. According to Mueller’s comparison

principle, because U
(ε)
0 (x) > 0, it follows that U

(ε)
t (x) > 0 a.s. for all t > 0

and x ∈ R. [Mueller’s comparison principle [26] was proved originally in the
case that L is proportional to the Laplacian. This comparison principle can be
shown to hold in the more general setting of the present paper as well, though
we admit that this undertaking requires some effort when L is not proportional
to the Laplacian.]

Thanks to Proposition 8.1, P {ut(x) > 0 for a.e. t > 0 and x ∈ R} = 1. In
particular, P {ut(x) > 0 for a.e. t > η and x ∈ R} = 1 for all η > 0. This shows
that

P
{
V̄t(x) > 0 for almost every t > 0 and x ∈ R

}
= 1, (8.17)

where V̄ was defined in Proposition 7.2. According to Dalang’s theory (Theorem
3.1), (t , x) 7→ V̄t(x) is continuous in probability. Therefore, it follows that
V̄t(x) > 0 a.s. for every t > 0 and x ∈ R [note the order of the quantifiers].
Therefore, a second application of Proposition 7.2 implies the proposition.

9 Proof of Theorem 1.1

Throughout this section, we assume that σ(0) = 0. We simplify the notation
somewhat by assuming, without a great loss in generality, that κ = 1. In
this way, Lf = (1/2)f ′′ is the generator of standard Brownian motion, and
{ut(x)}t>0,x∈R satisfies (3.3) with

pt(x) :=
e−x

2/(2t)

(2πt)1/2
for x ∈ R and t > 0. (9.1)

The proof of Theorem 1.1 uses the theory of the present paper, but also borrows
heavily from the method of Foondun and Khoshnevisan [16].
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Lemma 9.1. Suppose u0 is a finite measure that is supported in [−K ,K] for
some K > 0. Then for all t > 0, k ∈ [1 ,∞), and x ∈ R,

lim sup
|x|→∞

1

x2
log E

(
|ut(x)|k

)
< 0. (9.2)

Proof. This is essentially the same result as [16, Lemma 3.3]. We mention how
to make the requisite changes to the proof of the said result in order to derive
the present form of the lemma.

Since ut(x) > 0 a.s. (Proposition 8.2), we obtain from (3.3) the following:

E (|ut(x)|) = (pt ∗ u0)(x) =

∫ K

−K

e−(x−y)2/(2t)

(2πt)1/2
u0(dy) 6 const · e−x

2/(4t), (9.3)

using the elementary inequality: (x − y)2 > (x2/2) −K2, valid when |y| 6 K.
And because the preceding constant does not depend on x, we have for all
k ∈ [2 ,∞) and c ∈ (0 ,∞),

E
(
|ut(x)|k

)
6 ck +

{
E
(
|ut(x)|2k

)}1/2 · [P{ut(x) > c}]1/2 (9.4)

6 ck + const · [P{ut(x) > c}]1/2 ;

this follows readily from the estimate of Theorem 3.3. We emphasize that the
“const” does not depend on (c , x). Owing to (9.3), this leads us to

E
(
|ut(x)|k

)
6

[
ck +

α√
c
e−x

2/(8t)

]
, (9.5)

where α ∈ (0 ,∞) does not depend on c. Therefore we may optimize over
c > 0 in order to obtain lim sup|x|→∞ x−2 log E

(
|ut(x)|k

)
6 −k/(4(2k + 1)t).

The lemma follows readily from this.

Lemma 9.2. For all t > 0 and k ∈ [1 ,∞),

sup
j∈Z

sup
j6x<x′6j+1

E

(
|ut(x)− ut(x′)|2k

|x− x′|k

)
<∞. (9.6)

Proof. It is not so easy to prove this result directly from (3.3), since the map
s 7→ us(y) is singular near s = 0. Because t > 0 is fixed in the statement of our
lemma, we may instead apply Proposition 7.2 in order to see that our lemma
follows from the following.

19



Claim. Suppose V̄ solves (3.1), where V̄0 is a random field, independent of the
noise, and mν := supx∈R ‖V̄0(x)‖ν <∞ for all ν ∈ [2 ,∞). Then for every fixed
t > 0 and k ∈ [1 ,∞), there exists a positive and finite constant K such that

sup
x,x′∈R:
|x−x′|61

∥∥V̄t(x)− V̄t(x′)
∥∥

2k

|x− x′|1/2
6 K. (9.7)

We prove Claim by adapting the method of proof of [16, Lemma 3.4] to the
present setting.

First, we assert that for all fixed t > 0 and k ∈ [1 ,∞),∥∥(pt ∗ V̄0)(x)− (pt ∗ V̄0)(x′)
∥∥

2k
6 const · |x− x′|, (9.8)

where the constant is independent of x, x′. Indeed, according to the Minkowski
inequality,∥∥(pt ∗ V̄0)(x)− (pt ∗ V̄0)(x′)

∥∥
2k

6
∫ ∞
−∞
‖V̄0(x)‖2k |pt(y − x)− pt(y − x′)| dy

6 m2k ·
∫ ∞
−∞
|pt(y − |x− x′|)− pt(y)| dy.

(9.9)

We estimate the last integral by applying the fundamental theorem of calculus—
using the fact that p′t(z) = −(z/t)pt(z)—in order to deduce (9.8).

Next we observe that, as a consequence of (3.3), (9.8), and the BDG in-
equality [using the Carlen–Kree bound [8] on Davis’s optimal constant [15] in
the Burkholder–Davis–Gundy inequality [5–7]],∥∥V̄t(x)− V̄t(x′)

∥∥
2k

6 const · |x− x′|

+

(
8k

∫ t

0

ds

∫ ∞
−∞

dy ‖σ(V̄s(y))‖22k · |pt−s(y − x)− pt−s(y − x′)|
2
)1/2

;

(9.10)

see [17] for details for deriving this sort of inequality. Since |σ(z)/z| 6 Lipσ, we
are led to the bound∥∥V̄t(x)− V̄t(x′)

∥∥
2k

6 const · |x− x′| (9.11)

+

(
8kLip2

σ ·
∫ t

0

ds

∫ ∞
−∞

dy ‖V̄s(y)‖22k · |pt−s(y − x)− pt−s(y − x′)|
2
)1/2

.

Theorem 3.2, applied to the present choice of L, tells us that ‖V̄s(y)‖2k 6
exp(csk2) for a constant c ∈ (1 ,∞) that does not depend on any of the param-
eters except Lipσ. Therefore, there exists a finite constant C := C(Lipσ) > 1,
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such that∥∥V̄t(x)− V̄t(x′)
∥∥

2k
(9.12)

6 const · |x− x′|+ Ck1/2eck
2t

(∫ t

0

ds

∫ ∞
−∞

dy |ps(y − x)− ps(y − x′)|
2
)1/2

.

By Plancherel’s formula,∫ ∞
−∞
|ps(y − x)− ps(y − x′)|

2
dy =

1

2π

∫ ∞
−∞

e−ξ
2s/2

∣∣∣e−iξx − e−iξx
′
∣∣∣2 dξ

6
2

π

∫ ∞
0

e−ξ
2s/2 (1 ∧ ξ|x− x′|)2

dξ.

(9.13)

Consequently,∫ t

0

ds

∫ ∞
−∞

dy |ps(y − x)− ps(y − x′)|
2

6 et
∫ ∞

0

e−s ds

∫ ∞
−∞

dy |ps(y − x)− ps(y − x′)|
2

6
2et

π

∫ ∞
0

(1 ∧ ξ|x− x′|)2

1 + (ξ2/2)
dξ.

(9.14)

Let I denote the latter integral. For simplicity, let us denote δ = |x − x′|. It
suffices to prove that I 6 3δ; this inequality implies (9.7) , whence the lemma.

In order to estimate I we write it as I1 + I2 + I3, where I1 :=
∫ 1

0
( · · · ) dξ,

I2 :=
∫ 1/δ

1
( · · · ) dξ, and I3 :=

∫∞
1/δ

( · · · ) dξ. Note that: I1 6 δ2
∫ 1

0
ξ2 dξ = δ2/3;

I2 6 δ2
∫ 1/δ

1
dξ = δ − δ2; and I3 6 2

∫∞
1/δ

ξ−2 dξ = 2δ. Therefore, I 6 3δ −
(2/3)δ2 < 3δ, as asserted.

Our next result follows immediately from Lemma 9.2 and a quantitative
form of the Kolmogorov continuity theorem. The proof is exactly the same as
that of Ref. [16, Lemma 3.6], and is therefore omitted.

Lemma 9.3. For all t > 0, k ∈ [1 ,∞), and ε ∈ (0 , 1),

sup
j∈Z

∥∥∥∥ sup
j6x<x′6j+1

|ut(x)− ut(x′)|2

|x− x′|1−ε

∥∥∥∥
2k

<∞. (9.15)

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We follow carefully the arguments of Foondun and Khosh-
nevisan [16, (3.43) and on].

For all j > 1, we may write [16, (3.43)]

sup
log j6x6log(j+1)

|ut(x)|6 6 32
(
|ut(log j)|6 + (log(j + 1)− log j)3 Ω3

j

)
, (9.16)
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where

Ωj := sup
log j6x<x′6log(j+1)

|ut(x)− ut(x′)|2

|x− x′|1/2
. (9.17)

Consequently,

E

(
sup

log j6x6log(j+1)

|ut(x)|6
)

6 32

(
E
(
|ut(log j)|6

)
+

(
log

[
1 +

1

j

])3

E(Ω3
j )

)
.

(9.18)

According to Lemma 9.1, E(|ut(log j)|6) 6 exp(−D(log j)2) for a positive and
finite constant D that does not depend on j. Lemma 9.3 tells us that E(Ω3

j ) is

bounded uniformly in j. Since log(1 + j−1) 6 j−1, we therefore have

E

(
sup

log j6x6log(j+1)

|ut(x)|6
)

6 const ·
(

e−D(log j)2 + j−3
)
, (9.19)

where “const” can be chosen independently of j. Because the preceding is
summable [in j], it follows that supx>0 |ut(x)| ∈ L6(Ω), whence supx>0 |ut(x)| <
∞ a.s. Similarly, supx60 |ut(x)| < ∞ a.s. This completes the proof, since we
know that ut(x) > 0 a.s. for all t > 0 and x ∈ R (Proposition 8.2), and x 7→ ut(x)
is continuous (Lemma 9.3).
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