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ABSTRACT. We consider a random walk on a homogeneous Poisson point process with
energy marks. The jump rates decay exponentially in the a-power of the jump length and
depend on the energy marks via a Boltzmann-like factor. The case o = 1 corresponds
to the phonon-induced Mott variable range hopping in disordered solids in the regime of
strong Anderson localization. We prove that for almost every realization of the marked
process, the diffusively rescaled random walk, with an arbitrary start point, converges
to a Brownian motion whose diffusion matrix is positive definite and independent of
the environment. Finally, we extend the above result to other point processes including
diluted lattices.
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1. INTRODUCTION AND RESULTS

Random walks on random point processes such as Mott variable range hopping have
been proposed in the physics literature as effective models for the analysis of the conduc-
tivity of disordered systems; see e.g. [AHL, SE]. They provide natural models of reversible
random walks in random environments, which generalize in several ways the well known
random conductance lattice model. Recently, several aspects of random walks on random
point processes have been analyzed with mathematical rigor: diffusivity [FSS, CF2, FM];
isoperimetry and mixing times [CF1]; and transience vs. recurrence [CFG].

1.1. The model. Let ¢ denote the realization of a simple point process on R%, d > 1, and
identify £ with the countable collection of its points. For example, one can take £ to be a
homogeneous Poisson point process, or a Bernoulli process on Z%. To each point z of ¢ we
associate an energy mark E,, such that the family of energy marks is independent from the
point process and is given by i.i.d. random variables taking values in the interval [—1,1].
We write P for the law of the resulting marked simple point process w = (f , {Ex}m€§)7
which plays the role of the random environment. Then, we consider the discrete—time
random walk (X, n > 0) on £ jumping, at each time step, from a point = to a point y
with probability

r(z,y)e” F=E)

, w(x) = Zr(az, z)efu(Ez’Ez) , (1.1)

z€€

p(z,y) = w(@)

where the functions u and r satisfy the following properties for some constants ¢, a > 0:

(i) w:[~1,1]> = R, is a bounded nonnegative symmetric function:

0 <u(Ey, By) =u(Ey,Ey) < c, (1.2)
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(ii) r is symmetric and translation invariant, i.e. r(x,y) = r(y,z) = r(y — x), and
cLexp(—clz|®) <r(z) =r(—z) < cexp (—c_1 lz|%), z e R?, (1.3)
Here and below | -| denotes euclidean distance. For this model to be well defined it suffices
to assume that w(x) < oo for all € £ and almost all realizations of the environment (see
Lemma B.3). Below, we write X; := X 11> t 2 0, and consider the associated distribution
on the space D = D([0, 00),R%) of right-continuous paths with left limits, equipped with
the Skorohod topology.
Similarly, consider the continuous—time version of the above random walk, with state
space £ and infinitesimal generator

Lf(x) =Y r(z,y)e PP (fy) - f(2), weg, (1.4)

yes

for bounded functions f : £ — R. With some abuse of notation, the resulting random
process on D is again denoted by (X; : ¢ > 0). To avoid confusion we shall refer to the
two processes as the DTRW (discrete-time random walk) and the CTRW (continuous-time
random walk). In words, the CTRW behaves as follows: having arrived at a point x € &,
it waits an exponential time with parameter w(x), after which it jumps to a point y € &
with probability p(x,y). In Lemma B.3 we give some sufficient conditions ensuring that
the CTRW is well defined, i.e. no explosion takes place.

An important special case of the model introduced above is Mott variable range hopping,
obtained by choosing

r(v) = w(By, By) = B (|E| + |By| + By — E) (1.5)

where [ is a positive constant proportional to the inverse temperature. Here the underly-
ing point process is often taken as the homogeneous Poisson process or the diluted lattice
7%, the common law v of the energy marks is assumed to be of the form v(dE) = ¢|E|"dE
on [—1,1] for some constants ¢ > 0 and v > 0, and the relevant issue is the asymptotic
behavior as f — oo. Mott variable range hopping is a mean field dynamics describing low
temperature phonon—assisted electron transport in disordered solids, in which the Fermi
level (which is 0 above) lies in a region of strong Anderson localization. The points of &
correspond to the impurities of the disordered solid and the electron Hamiltonian has expo-
nentially localized quantum eigenstates with localization centers x € £ and corresponding
energy F,. The rate of transitions between the localized eigenstates can be calculated
from first principles by means of the Fermi golden rule [MA, SE]. Due to localization, one
can approximate the above quantum system by an exclusion process, where the hard—core
interaction comes from the Pauli blocking induced by the Fermi statistics. If, however,
the blocking is treated in a mean field approximation, one obtains a family of independent
random walks with rates described by (1.5) in the limit 8 — oo [MA, AHL]. Mott’s law
represents a fundamental principle describing the decay of the DC conductivity at low
temperature [Mo, SE]. In view of Einstein’s relation [S], this law can be restated in terms
of the diffusivity of Mott variable range hopping.

1.2. Invariance principle. When we need to emphasize the dependence on the environ-
ment w and the starting point g, we write Xy(zo,w) for the two processes defined above
and Py ., for the associated laws on D. Asymptotic diffusive behavior of both DTRW and
CTRW is studied via the rescaled process

XO@) =eX,2, (1.6)
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(e)

and the associated laws Pxi,w on D.

Definition 1.1. We say that the strong invariance principle (SIP) holds if there exists a

positive definite d x d matriz D such that P almost surely, for every xg € &, ngi?w converges
weakly to d-dimensional Browninan motion with diffusion matriz D. We say that the weak
invariance principle (WIP) holds if the above convergence takes place in P-probability.

The terms quenched and annealed are sometimes used to replace strong and weak,
respectively, in the above definition. Diffusive behavior of the CTRW has been rigorously
investigated in [FSS]. Under suitable assumptions on the law of the point process the
authors prove the WIP. Moreover, [FSS| proves lower bounds on the diffusion coefficient
D in agreement with Mott’s law for the special case (1.5), as 8 — oo. The corresponding
upper bound is proven in [FM]. In [CF2], the authors consider the case d = 1, where they
obtain the SIP, and analyze the large 8 behavior of various generalizations of the model
(1.5) at the edge of subdiffusivity.

The aim of the present work is to prove the strong invariance principle in dimension
d > 2. To state our main result we need to introduce some more notation. We write
£(A) for the number of points of ¢ in a bounded Borel set A € R? Let E denote the
expectation associated to the law P of the environment w. Set py = E (£([0,1)%)*), so
that p; is the density and ps stands for the second moment of the point process. If £ is
a stationary simple point process with finite density, then we can consider the associated
Palm distribution. If £ is a homogeneous Poisson point process (from now on, PPP), then
its Palm distribution is simply the law of the point process obtained from £ by adding a
point at the origin. In general, if P is the law of w = (£, {E,}), then we let Py denote
the associated Palm distribution (see Section 2 for the definition) and we write Eq for the
expectation with respect to Py. As explained in Lemma B.3 in the appendix, if po < o0,
then P-a.s. the law P, on D is well defined for both DTRW and CTRW, for all z¢ € &.
Moreover, under the same assumption, the law Py, on D with starting point 0 is well
defined Py—a.s.

Our main result applies to several examples of point processes. These include homoge-
neous PPP, as well as Bernoulli fields on a lattice, referred to as the diluted lattice case
below. In Section 2.3 we describe conditions on the point process, under which all our
arguments apply. Below we restrict to d > 2 since the one dimensional case is already
treated in [CF1].

Theorem 1.2. Let d > 2, o > 0, and fiz an arbitrary law v on [—1,1]. Let £ be the
realization of a homogeneous PPP, or a diluted lattice, or else any stationary simple point
process with py < 00, and satisfying the assumptions listed in Section 2.3. Then, the
following holds for both the DTRW and the CTRW: Py almost surely, as € — 0, Péig
converges weakly to d-dimensional Brownian motion with positive diffusion matrix Dprrw
and Dorrw respectively. Moreover, the diffusion coefficients are related by

Derrw = Eow(0) Dprrw - (1.7)

The desired result is then a consequence of Theorem 1.2 together with standard prop-
erties of the Palm distribution:

Corollary 1.3. Under the assumptions of Theorem 1.2, the strong invariance principle
holds for both DTRW and CTRW, with the same diffusion matrices appearing in Theorem
1.2.
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As a consequence of the above result, for the model (1.5) the quenched diffusion matrix
Derrw satisfies stretched exponential estimates as 8 — oo, in agreement with Mott’s
law. This follows from the bounds of [F'SS] and [FM] on the annealed diffusion matrix and
the fact that the quenched and annealed diffusion matrices must coincide.

1.3. Background and discussion. To illustrate the kind of difficulties encountered in
the proof of Theorem 1.2, let us briefly recall the standard approach (see [Koz, KV, DFGW]
and references therein) for the invariance principle in the case of reversible random walks
in random environment. The main idea is to consider the environment as seen from
the moving particle, and to use this new Markov process to define a displacement field
X(z) = x(w,x) that compensates the local drift felt by the random walk X; in such a
way that the process M; := X; + x(X;) defines a martingale. The displacement field x
is usually referred to as the corrector. A strong invariance principle for the martingale
M; can be obtained in a rather standard way, so that what remains is to show that the
corrector’s contribution is negligible. In particular, one needs that for every t > 0:

lim € x(X;/e2,w) =0, in Py, - probability . (1.8)
e—0

Roughly speaking, the L2-theory developed in [KV, DFGW] allows to obtain the statement
(1.8) in probability with respect to the random environment. This approach can then
be used to prove the WIP, as detailed in [FSS]. Moreover, this approach provides an
expression for the limiting diffusion matrix in terms of a variational principle. However,
to have the strong invariance principle, (1.8) must hold almost surely with respect to the
environment. This turns out to be related to a highly non trivial ergodic property of the
field .

The same difficulty appears in analogous investigations for the random conductance
model in Z%. In this model, one has i.i.d. non-negative weights r(z,y) on the nearest
neighbor edges {z,y} of Z%, so that the random walk with generator (1.4) becomes a
reversible nearest neighbor lattice walk. When the weights r(z,y) are uniformly positive
and bounded, the SIP for this model has been proved in [SS]; see also [Koz, Bo, BoDe].
In the case of super-critical Bernoulli weights, [SS] proved the SIP for d > 4. Later,
[MP, BB] proved the SIP for all d > 2. These results were recently extended in [M, BP]
to the general case of bounded but possibly vanishing weights, under the only assumption
that positive weights percolate. More recent developments include the case of unbounded
weights [BD]. All these works prove the SIP using the approach outlined above, although
the techniques used may differ. Following [SS, BB, MP], an important ingredient for the
proof of estimate (1.8) is represented by suitable heat kernel and isoperimetric estimates.
However, it is known that such estimates cannot hold if the system lacks ellipticity, i.e. if
arbitrarily small weights are allowed; see [FoMa, BBHK]. An important idea of [M, BP]
to overcome this problem was then to consider the random walk embedded in an elliptic
cluster and to control the corrector for this restricted process.

Our random walk on random point process has several features in common with the
random conductance model. The lack of ellipticity corresponds to the existence in the
point process of regions of isolated points, where the walk can be trapped. For instance, it
was shown in [CF1] that the existence of these traps is responsible for the loss of diffusive
isoperimetric and Poincaré inequalities, as soon as the power « in (1.3) is larger than the
dimension d.

On the other hand, there are some important differences with respect to previous work
on the random conductance model: the long-range nature of the jumps, the existence of
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overcrowded regions (i.e. regions with atypically high density of points) and the intrin-
sically non-deterministic nature of the state space, that is the lack of a natural lattice
structure for the point process. As we will see, these are the source of new technical
difficulties.

As in [M, BP], we are forced to work with a suitable cluster of good points. In our
setting this good set has to be defined in such a way that: (i) good points x must have
uniformly bounded weights w(x), (ii) given two good points x,y there must exist a path
from z to y visiting only good points with uniformly bounded jump lengths. The re-
quirement (ii) alone could be achieved by a simple local construction as in [M, BP]. On
the other hand, due to long jumps, non negligible contributions to the weights w(x) may
come from arbitrarily far overcrowded regions. Therefore, requirement (i) forces a nonlo-
cal construction of the family of good points, making harder any quantitative control on
its geometry. For the homogeneous PPP, this problem is solved by showing that a suit-
able discretized {0, 1}-random field with infinite-range spatial correlations stochastically
dominates a supercritical Bernoulli field on Z%; see Section 2.

In addition, the ability of the walk to take long jumps has led us to the development
of an extended version of the analysis of “holes” in the cluster of good points needed
in [M, BP]. In particular, a suitable enlargement of holes is required in Section 4.1 to
gain some control on the number of jumps and the distance traveled by the walk between
successive visits to the cluster of good points.

A convenient way to deal with the lack of a lattice structure, and to obtain statements
valid for every starting point xg € &, is to work with the Palm distribution of the point
process, as in the statement of Theorem 1.2. On the other hand, the method developed in
[BB] to establish sublinearity of the corrector is intrinsically based on a lattice structure
and, at a first analysis, the Palm distribution and the lattice strategy of [BB] seem to
collide. To overcome this conceptual obstacle, in several steps of the proof, we have
introduced intermediate “bridge” distributions (cf. Sections 7.2, 7.3, and 7.6). These
distributions are probability measures on the space of the environments, having both a
lattice structure and an absolutely continuous Radon—-Nykodim derivative with respect to
the Palm distribution (or other related distributions that appear along the proof). An
alternative option would be to follow [MP, M] rather than [BB, BP] to establish (1.8).
This approach is more naturally adapted to the continuum setting. However, it is more
demanding in terms of heat kernel and tightness estimates and more extra work would be
needed to establish the bounds used there.

It is worthy of note that similar problems are encountered when analyzing random
walks on Voronoi tessellations or random walks on the infinite cluster of the supercritical
continuous percolation for Poisson processes. Some of the methods developed here are
likely to find applications in the analysis of these other models.

1.4. Outline of the paper. As we mentioned, the proof of Theorem 1.2 is entirely based
on a suitable control of the corrector field. Since the energy marks play a very minor role
in such an estimate, for the sake of simplicity we set u(E;, E,) = 0, throughout most of
the paper, and we identify the environment w with the point process £. The extension to
non trivial energy marks will be discussed only in Section 8. Another simplification which
causes very little loss of generality is obtained by setting r(x) = e 1#1* for some a > 0,
throughout the rest of the paper.

In Section 2 we take a close look at the random environment, state our main assumptions
and define the cluster of good points. In particular, in Section 2.4 we verify that the
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homogeneous PPP satisfies the main assumptions. The corrector field is introduced in
Section 3. The main sublinearity estimate for the corrector is stated in Section 3.3, cf.
Theorem 3.6. There, this estimate is shown to imply Theorem 1.2 and Corollary 1.3.
The rest of the paper is then devoted to the proof of the sublinearity estimate. Section 4
introduces the restricted random walk, i.e. the random walk X,, embedded in the cluster of
good points. In particular, we state two crucial estimates: the heat kernel bound and the
expected distance bound. This section also contains the analysis of “holes” in the cluster
of good points. The heat kernel bound is proved in Section 5, while the expected distance
bound is proved in Section 6. Section 7 is entirely devoted to the proof of the sublinearity
estimate. Finally, Section 8 deals with the slight modifications needed in the presence of
energy marks. The appendix collects several technical results used in the main text.

2. THE RANDOM ENVIRONMENT

Since we have set u(-,-) = 0, we may disregard the energy marks, and the random
environment coincides with the state space £ of the random walk, i.e. the point process.

2.1. Stationary, ergodic simple point process and Palm measure. We denote by
N the family of locally finite subsets ¢ of R? endowed with the o—algebra generated by
the sets {(A1) = n1,...,§(Ax) = ng}, A1,..., A being disjoint bounded Borel subsets
of R4, ny,...,n; varying in N = {0,1,...} and £(A) := |¢ N A|. Elements £ € A are
usually identified with the counting measure on &. Moreover, given & € A/ and z € R?, we
denote by 7,.£ the translated set £ — x. A simple point process is a measurable map from
a probability space to the measurable space N.

Fix a simple point process on R% with law P, ergodic and stationary w.r.t. the group
of space translations, having finite density p = p1 = E(£([0,1)%)). Due to stationarity
p can also be expressed as E(£(A))/4(A) for any bounded Borel subset A C R? having
positive Lebesgue measure £(A). We denote by Py the Palm distribution associated to P.
Considering the measurable subset Ny = {£ € N : 0 € &}, Py is a probability law on
Ny coinciding, roughly speaking, with “P(-|0 € £)” (cf. Theorem 12.3.V in [DV]). A key
relation between P and Py is given by the Campbell identity [DV]: for any nonnegative
measurable function f on R? x A

1
[ ] R (6 = [ P [ s, (2.1)

2.2. Black and white boxes. For any K > 0 we write Bx = [0, K)? for the cube of
side K in R?. Boxes B(z) := Bi + Kz, z € Z%, are generically called K-boxes. We also
use the notation B, = B(z), for the K-box at z € Z%. A K-box B(z) is called occupied if
€N B(z) # . We encode this information in the field o = (o, : 2z € Z%) defined on N by

©) 1 if B(z) is occupied (2.2)
0.(&) = :
0 otherwise.

Let us now introduce another parameter Ty > 0. A K-box B(z) is called overcrowded
if the number of points of £ in B(z), n, := {(B(z)), satisfies n, > Ty. We define

R.(€) = {(log n,)¥e if B(z)'is overcrowded , (2.3)
0 otherwise .
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Next, we define G = U,cz4Q(z, R,), where Q(z,7) = {z/ € Z? : |z — /| < r}. Note
that Q(z,0) = (. Of course, G contains all points z such that B(z) is overcrowded. The
interest in the set G comes from the following simple estimate.

Lemma 2.1. There exists a positive constant T = T (o, K, Ty) such that w(z) < T, for
all z € €N B(2) with z € Z4\ G.

Proof. Note that if x € B(z) and y € B(v) then |z —y|oo = K|z —v|ooc —2K. Therefore we
can find positive constants c1, co (depending on «, K, Tp) such that, for any z € B(z) N¢
we have
w(z) < ¢ Z n, e~z vl (2.4)
vezd
Since z € Z*\ G, it must be that all points v € Z¢ satisfy |z —v|o > (logn,)?®. Therefore

ny < exp{lz — vlgo/z} and using this in (2.4) one has w(x) < ¢3 for some new constant
c3 = c3(a, K, Tp). O

We call a point z € Z¢ black if z belongs to G or if the box B(z) is unoccupied. If z
is not black, we call it white. From Lemma 2.1, if z is white then w(z) < T, for every
r € €N B(z), for some constant 7. Finally, we introduce the field ¥ = (9, : z € Z9)

defined on N as
0 if z is black
¥ = ’ 2.5
(¢) {1 if 2 is white.. (2:5)
The random fields o(§) and 9(&), where ¢ is sampled with law P, are often denoted simply
o,9. We shall write o, 9570 when the dependence on the parameters K, Ty needs to be

emphasized. Clearly, these random fields are stationary w.r.t. Z% translations due to the
stationarity of P.

2.3. Main assumptions on the point process. Given a stationary, ergodic point pro-

cess with finite density p and law P, we shall make the following assumptions:

(H1) For each p € (0,1) there exist K,Tp > 0 such that the random field of white points
910 stochastically dominates the independent Bernoulli process Z(p) on Z¢ with
parameter p.

(H2) For each K > 0 and for each vector e € Z? with |e|; = 1, consider the product
probability space © := N x ([0, K)? U {0})Z whose elements (¢, (a; : i € Z)) are
sampled as follows: choose £ with law P, and then choose independently for each
index i a point b; € £ N B(ie) with uniform probability and set a; := b; — iKe €
[0, K) If €N Bie) = 0, set a; = 0. We assume that the resulting law PU¢) on
N x ([0, K)4 U {0})% is ergodic w.r.t. the transformation

7: (& (a1 1 € Z)) = (TreE, (ai1 11 € Z)) . (2.6)
2.3.1. Remarks. Since ¥, = 1 implies 0, = 1, it is clear that assumption (H1) implies the

following statement, which we shall refer to as Property (A):
(A) For all p € (0,1), there exists K > 0 such that the random field o/ stochastically
dominates the independent Bernoulli process Z(p) on Z% with parameter p.
Also, it is not hard to check that if p(K) is the largest p such that o stochastically
dominates Z(p), then p(mK) > (1 —(1 —p(K))md), and therefore p(mK) — 1 as m — oo.

Observe that the law PU¢) is invariant w.r.t. the transformation 7 (due to the station-
arity of P). Assumption (H2) means that, for each K > 0 and for each vector e € Z? with
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le|; = 1, any measurable subset A C © such that 7.4 = A must have P(5:¢)probability 0
or 1. We point out that assumption (H2) alone implies that P is ergodic.

When working with the energy marks, assumption (H2) will be slightly modified as
discussed in Section 8.

2.4. The homogeneous PPP satisfies (H1)—(H2). The homogeneous PPP with den-
sity p is plainly an ergodic, stationary simple point process with finite moments of any
order. In order to prove assumption (H2), we fix A C © such that 74 = A and set
P = PWe) If A depends only on ¢ restricted to [~¢K,¢K] and on {a; : |i| < £ — 1}
for some integer ¢, then A and 7™ A are independent for m large and therefore P(A) =
P(ANT™A) = P(A)P(r™A) = P(A)%. This implies that P(A) € {0,1}. The general
case can be treated by a standard approximation argument. The rest of this section is
concerned with the proof of assumption (H1), which we reformulate as follows.

Theorem 2.2. For every p € (0,1) and p > 0, there exist constants K, Ty, depending on
p and p, such that, for the homogeneous PPP with density p, the random field 9 = 970
defined in (2.5) stochastically dominates the Bernoulli field Z(p) with parameter p.

2.4.1. Preliminary estimates. Before we start the proof of Theorem 2.2 we shall establish
a few preliminary facts.

Lemma 2.3. A Poisson variable N with mean X\ satisfies
P(N > t) < exp{—t(logt —log\) +t — A} < exp{—t},  Vt=e’\
Proof. Take s =log(t/\) in the following expression, valid for all s > 0:
P(N > t) =P(e*N > e) < e*'E(e*Y) = exp{—st + Xe® — \}. O

Next, recall the definition (2.3) of the set G. The random variables n, are i.i.d. Poisson
variables with mean pK?, and using Lemma 2.3, the variables R, satisfy

P(R., >r) =P(n. > exp (r%) ,n. > Tp) < exp (—exp (7‘%)) (2.7)
whenever exp (r%) > e2pK?.
Set ym = exp (— exp(m%)), m € N, and consider the Bernoulli random field Z(~,,) on

7% with parameter ,,. Next, let {Z(v,,), m € N} denote an independent sequence of the
random fields Z(v,,) on some probability space with law P and set

R, :=sup{m = mq : Z(ym). = 1},

with the convention that the supremum of the emptyset is 0. Here and below my is a
constant related to Ty by

Th = exp (m8/2) . (2.8)

Note that the random variables f%z, z € 7%, are independent. Moreover, R. is finite P-a.s.

E( i Z('Vm)z>: i Ym < 0.

m=mg m=mo
Lemma 2.4. For all p, K > 0, there exists a constant Ty such that, for all z € 7.%:
PR, <t)<P(R,<t), Vt>0. (2.9)
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Proof. For every t > 0,

P(R.<ty= [ (Q-w)< eXp{— > 'Yk}-
k> |—t-| Vmo k> |—t-‘ Vmo
If t < mo, then P(R, < t) = P(R, = 0) = [132,, (1 = %) which can be bounded by
e Ymo. Now, take mg, Ty as in (2.8) and assume Ty > e2pK¢. In particular, R, < mg is
equivalent to R, = 0, cf. (2.3), and (2.7) holds for all » > mg. Therefore, for all ¢ < myg
one has

P(R. <t)=P(R,=0)=1-P(R. >mg) >1—exp(— exp(mg/z)).

Using that e=2* < 1 —a for # € [0, 3], and that exp(— exp(mg/Q)) < Yo /2 for mg

sufficiently large, we conclude that P(R, < t) > 1 — vy,,/2 = e 7m0 for all t < mg. This
concludes the proof of (2.9) for 0 <t < my.

Suppose now that mg < m—1 <t < m. Then P(R, <t) = [12,,(1—9%) <e ™. On
the other hand, reasoning as above we see that P(R. > m — 1) < 37, and therefore

1
IP’(RZ<t)>P(R2<m—1):1—P(RZ>m—1)>1—§ym>e‘7m.

This ends the proof of the lemma. O

Lemma 2.4 implies that the random field R = (R, : z € Z%) is stochastically dominated
by the random field R = (R, : z € Z%). Taking a coupling between R and R on an
enlarged probability space such that R, < R, for all z € Z% a.s. we get that

G = Uuez4Q(a, Ry) C G := U,cz4Q(a, Ry) . (2.10)

The random set G can be described by the random field Y = (Y, : z € Z%) (in the sense
that z € G if and only if Y, = 1) where

Y, = max{Y,™ : m >mq},

and, for each m,

y.(m .=

z

1 if3dacZ?: Z(ym)a=1,2 € Q(a,m),
0 otherwise.

Lemma 2.5. For every K, p > 0, there exist a constant Ty such that for each m > my, the
random field Y™ is stochastically dominated by the Bernoulli random field Z(qm) with
parameter ¢, = 2"+,

Proof. We apply a result of [LSS] on stochastic domination, in the form which appears in
Theorem (7.65) in [G]. Namely, set £ = 2(m + 1) + 1, so that Y™ is a £-dependent field
taking values in {0,1}. Note that

PYI™ = 1) <y, (2.11)
Suppose that there exist two parameters u,v > 0 such that
(1= u)(1 =) >t
(1-— u)uzd > 4y, .

Then, by Egs. (7.114)~(7.115) in [G], we know that Y (™) is stochastically dominated by an
independent Bernoulli random field with parameter 1 — wv. Therefore, we have to prove
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that v and v can be taken in such a way that 1 — uv < 2—m+1l  Thig can be achieved
by the choice u = 1 — ym £42™" and v = 1 — 2™ Indeed, (1 —u)(l-— v) = (%y,, and
(1- u)ued > 4 €% if m is large enough (using that 1 — 2 < e™®). Moreover, by definition
1 —uv <y b4 gmé? 4 g—m < 27+ if m is large enough. This concludes the proof. [

Since all random fields Y™ are independent, thanks to the above lemma we can build,
on a suitable probability space, the random fields (Y™, Z(q,,)), m > myg, such that they
are all independent and

Yz(m) < Z(gm)» Vz e zd, a.s.

In particular we have that ¥ = max{Y(m) :m = mg} is stochastically dominated by the
random field Z := max{Z(g,) : m > mp}. Note that Z is a Bernoulli random field, with
parameter

¢=P(Zy=1) < Z Gm = Z 97l — 9=mot2 (2.12)

m=myo m=mo
2.4.2. Proof of Theorem 2.2. The results discussed above can be summarized as follows.

Proposition 2.6. For every K,p > 0, and € > 0, there exists Ty such that, for the homo-
geneous PPP with intensity p, the random set G = G(K,Ty) is stochastically dominated
by the Bernoulli field Z(e) with parameter €.

Proof. From Eq. (2.10), Lemma 2.5 and Eq. (2.12), it suffices to take Tp (and therefore,
by (2.8), mg) so large that ¢ < e. O

We can now conclude the proof of Theorem 2.2. Let us fix p € (0,1) and e =1 — /p.
Then fix K = K(p) such that P({(B(0)) = 0) < €/2. Also, let ¢y > 0 be so large that

P(E(B(0)) =0|&(B(0)) <t) <eforallt >t
Next, choose Ty = Ty(K,p) so large that G is stochastically dominated by Z(e) as

in Proposition 2.6. Let w, = 1 if z € 7 \ G and w, = 0 otherwise. For fixed z, let

A, C {0,1}2" be an arbitrary measurable set such that A, C {w, = 1}. If Ty > to then,
by independence of the Poisson field, one has

P(¢(B(2)) > 0w € A,) =P(£(B(2) > 0| £(B(2)) < Ty) >1—¢.

Since this bound is uniform over all possible values of w./, 2’ # z, it follows that the set
of white boxes 9, i.e. ¥, = w,0,, z € Z4, stochastically dominates the Bernoulli field with
parameter (1 — )2 = p. This ends the proof.

3. THE CORRECTOR FIELD Y

Let u be the measure on Ny x R? such that the scalar product in L2(Ny x R?, p) is
given by

(1, 0) = Bo | Y r(w) u(€, x) o(&, )| (3.1)
el
Since P has a finite second moment, by Lemma B.1 in the appendix

(1,1), =Eg {Z 7’(3:)] = Ey[w(0)] < co.

el
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3.1. Potential vs. solenoidal forms. We call u € L?(u) a square integrable form. In
what follows we shall study this space in some detail. In general, we will call a form any
measurable function u: Ny x R — R.

Given ¢ : Ny — R we define the gradient form Vi) as

Vip(§, x) := p(12€) — ¥ () - (3.2)

Hence, Vi € L?(u1) whenever 1) is bounded (written 1) € B(Np)).

The space Hy C L?(u) of potential forms is defined as the closure of the subspace given
by the gradient forms Vi with ¢ € B(Np). Its orthogonal complement ’H% is the space
of solenoidal forms.

A form u: Ny x R* — R is called curl-free if for any ¢ € Ny, n > 1 and any family of

n points xg, r1,...,T, € £ with zg = z,,, we have
n—1
Zu(ijﬁ,:UjH —xj)=0. (3.3)
J=0

A square integrable form u € L?(u) is called curl-free if this holds for Py-a.e. &.
Lemma 3.1. FEach potential form u € Hy is curl-free.

Proof. This is trivial to check for u = Vi, ¢» € B(Np). In the general case, let 1, be a
sequence in B(Np) such that V1), converges to u in L?(i). By taking a subsequence we
can assume that the convergence holds also p—a.s. Since each Vi), satisfies (3.3) Pp-a.s.
by taking the limit in (3.3) we conclude that the same identity holds for w. O

A form w is called shift—covariant if

’U,(g,.ﬁ) = u(§>y) + U(Ty§,$ - y) 9 V.CE, Yy € § (34)

If u is a square integrable form, we call it shift—covariant if the above property holds for
IP’ofa.a. f .

Lemma 3.2. FEach curl-free form is shift—covariant.

Proof. Let u : Ny x R = R be a curl-free form. Taking in (3.3) n = 3, 29 = 23 = 0
(recall that £ € Np), 1 = y and x2 = z, we get that

w(&,y) +u(ryé, x —y) +u(r€, —z) =0. (3.5)

On the other hand, taking in (3.3) n = 2, z9 = z2 = 0 and 1 = z, we obtain
u(§,x) + u(r€, —x) =0 (3.6)
for any £. From (3.5) and (3.6) one obtains (3.4). O

Given u € L*(u) we define the divergence as divu (§) = > zee T(@)u(€, z).  Since

Eoldivu| < (u,u),l/Z(l, 1),1/2, we have that divu € L!(u). By these definitions, we have a

key relation between the gradient and divergence.
Lemma 3.3. For each ¢ € B(Ny) and each curl-free u € L*(u)
(u, Vi), = —2Eg [¢p divu] . (3.7)

In particular, a form u € L*(u) is solenoidal (that is, u € HS) if and only if divu = 0,
Po—a.s.
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Proof. We only need to prove (3.7), since the last statement is then obvious. Due to (3.6)
(which holds for all x € &, Pp—a.s.) we can rewrite the Lh.s. of (3.7) as

(0. 90) = ~Eo[ S r(@)u(rt ~0)o(m:)] - B[ S r@u(e. o). (38)
x€€ z€

We define the function f on NgxR% as f(&, z) = r(x)u(€, 2)p(€). Then it holds f(7.€, —x) =
r(x)u(r:€, —x)Y(1:€). In addition,

EO[Z f(fvx)} < |0l ooEo [w(0)] 2 (u, w) /2 < o0.
el

This allows us to apply Lemma B.1 (i) in the Appendix to the function f and to conclude
that

Eo| 3 r(@)u(€, 2)0(€)] = Eo| 3 r(@)u(raé, —2)u(mat) (3.9)

FISI z€

(by Lemma B.1 (i) we know that the integrand in the r.h.s. belongs to L' (Pg)). The above
identity allows then to rewrite the r.h.s. of (3.8) as

_2E, [Z r(x)u(é, x)q/;(g)] — 9B divul. O

HASI3

Lemma 3.4. Let u € ’Hé. Then for Pyp—a.a. &
Y rwluEy)l <o, Y r(yulEy) =0. (3.10)

yes yesl
In particular, for P—a.a. € and for all x € €
Zr(y—x)]u(m{,y—x)] < 00, Zr(y—x)u(n{,y—x) =0. (3.11)
yes yes

Proof. The second statement (3.11) follows from the first one (3.10) by Lemma B.2 in the
appendix. In order to prove (3.10), we first observe that

[ Botae) = rwlutw)] < Eow0)]{ [ Pod) S rn)lute.n)P} = Cluu)i.

yeE yee
and the last member is finite. This implies the upper bound in (3.10). The identity in
(3.10) is equivalent to divu = 0 Py—a.s., which follows from the previous lemma. O

3.2. Corrector field. We can now define the corrector field x following the construction
of [MP]. Consider the form u;: Ny x R — R? i =1,...,d, defined by u;(§,z) = z; (the
i~th coordinate of x € R?). Note that, since P has finite second moment, Lemma B.1
assures us that u; € L?(u). Let m: L?(u) — Hv be the orthogonal projection on potential
forms and define
Xii=m(—u;), i=1,...,d.

Setting ®; := z; + x; € ’Hé , from Lemma 3.4 we see that ®; is harmonic, i.e. for Py-a.a.
& @ € LY(Pyg) and Ege®; =0, for all i = 1,...,d. The vector form x = (x1,...,Xa) is
the so called corrector field.

Up to now x has been defined as element of L?(u)¢, hence as a pointwise function
it is defined modulo a set of zero p—measure. It is convenient to work with a special
representative of y, which is everywhere defined on Ay x R? and has good properties:
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Lemma 3.5. There exists a representative ¥ : Ny x RY — R? of the corrector x € L*(u)?
such that

X r)=x(&y) +xX(né&z—y),  VEEN, Vr,yel. (3.12)
In particular, X(&,0) =0 for all £ € Np.

Proof. The conclusion of the Lemma follows from (3.12) by taking z = y = 0. Let us
therefore concentrate on (3.12). Due to Lemma 3.1, x; is a curlfree square integrable
form. We fix a representative y; of x; as pointwise function on Ny x R? and call B; C N
the set of £ satisfying (3.3) w.r.t. the form y;, for any family of n points xg, z1,..., 2, in
€. By definition, it must be Py(B;) = 1.

We claim that if &€ € B; then 7,.& & B; for all z € £. Suppose for the sake of contradiction
that 7,¢ € B; and fix a family of n points xg, x1,...,x, in £&. Then the points yo, y1,. .., Yn
defined as yi = x — x lie in 7,£. Because 7,£ € B;, we conclude that

|
—

- n

Z Ty] (126), Yi+1 — Yy ) = Xi (ijf,$j+1 - xj)’
7=0

T
o

thus implying that £ € B;, which is a contradiction. This concludes the proof of our claim.
At this point we define B = ﬂ;-i:lBi and

" .f
xi(§,x) == {XZ(&CC) if ¢ € B,

0 otherwise .

Let us check (3.12). If £ € B and z € &, then also 7,¢ must belong to B (if it was not
in B; for some 4, since —y € 7,£ we would conclude that £ = 7_,(7,§) does not belong to
B; O B). In particular, the identity (3.12) can be rewritten as

Xl(gal‘) :X’L(gay)_}—f(l('rygax_y)a \V/’L:].,,d,

which is trivially true by definition of B and B;. Take now £ ¢ B and z,y € £&. By
definition of y we get (&, ) = x(&,y) = 0. Since for some ¢ it must be £ ¢ B;, we know
that also 7,& does not belong to B; D B. As consequence, it must be x(7,&,2 —y) = 0 and
the identity in (3.12) reduces to 0 = 0+ 0. O

From now on, when working with the corrector field x we will always refer to the
pointwise function ¥ : Ny x R — R? of the above lemma.

3.3. Sublinearity and the proof of Theorem 1.2 and Corollary 1.3. The core of
the proof of Theorem 1.2 lies in the following result:

Theorem 3.6. Under the assumptions of Theorem 1.2: for Py—a.a. £

1
lim — max ’X & x ’:0. (3.13)
n—oo n HASI
|Z]oo <m0

The proof of Theorem 3.6 is completed in Section 7. Here, we show how Theorem 1.2
follows from Theorem 3.6. The argument is standard; see [SS, BB, BP, BD] for very
similar arguments. We only sketch the main steps.
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3.3.1. Proof of Theorem 1.2. Let us start with the discrete parameter case. Set (&, x) :=
x + x(&, ), so that M,, = ®(£, X,,), n € N, is a martingale (see Lemma 3.4). Also, define
MY :=v - M,, for v € R%, and, for every K > 0:

Fi(€) = Eog (IMY?; MY > K)

Let ﬁ”o denote the probability on Ny with density Eﬂ%) with respect to Py, and let IEO
denote the associated expectation. Recall that the Markov chain on environments, n —
Tx, &, is ergodic with reversible invariant distribution given by Py; see [F'SS, Proposition

2]. Therefore, by the Ergodic theorem, for every K > 0:

n

1 > Frorx, & — EoFy, (3.14)

n k=0
Py¢as., for Po-a.a. & as n — oo. As in [BB, Section 6.1] and [BP, Section 5], using
the above convergence together with the monotonicity of K — F, allows us to verify the
assumptions of the Lindeberg-Feller Martingale Functional CLT (as in, e.g., [Du, Theorem
7.7.3]). Tt follows that, for every v € RY, Py-a.s. t aME’t/EQJ converges weakly, as ¢ — 0,
to one-dimensional Brownian motion with diffusion coefficient

(v, DprrRwv) = EoEoe (|M7]?) . (3.15)

In particular, with the notation (3.1), it holds [Dprrwli; = (i, ®j)u/(1,1),, where
S, =x;4+xi,%,5=1,...,d. That Dppgrw is positive definite follows from the fact that if
(3.15) is zero for some coordinate axis v = e;, j = 1,...,d, then z; = —x;(&,x), Pp-a.s.
for every x € £, and this is not compatible with Theorem 3.6.

To conclude the proof we argue as in [BB, Section 6.2]. Namely, from Theorem 3.6 we
have that Py—a.s. for 6 € (0,1/2), there exists x(§) < oo such that for all z € £ it holds
IxX(&, x)| < k(&) + 0 |x|. Writing x = ®(&,x) — x(§, x), one has

X)) <2 2 My,
kmggglx(é, k)| < 26(8) + kmgggb\ k|

which implies, by the arbitrariness of 0, that maxy < » [x(§, X»n)| = o(v/n) in Py ¢ proba-
bility, for Pp—a.a. £&. This ends the proof of Theorem 1.2 for the DTRW. It is worth noting
that a separate tightness argument is not needed for this proof, since one uses the strong
sublinearity given by Theorem 3.6.

To treat the CTRW, observe that it consists of a time change of the DTRW. Indeed,
the CTRW waits at site = an exponential time of parameter w(z) and then jumps to y € &
with probability p(z,y) (it could be y = z). With this notion of “jump”, if n*(¢) denotes
the number of jumps of the CTRW up to time ¢, then the CTRW at time ¢ coincides with
the DTRW at n*(t). Therefore, arguing as in [DFGW, Theorem 4.5], it is sufficient to
show that the limit

lim n*(¢)/t = Eqw(0), (3.16)
t—o0

holds Py¢-a.s., for Py-a.a. {. Let 0;, ¢ = 0,1,2,... denote an independent family of i.i.d.
exponentials of parameter 1 and write T; := o;/w(X;) for the waiting time after the i-th
jump of the discrete-time chain. Then, setting Ry = 0, and R,, =1;,_1 + - - - + Ty, we have
that n*(t) = n if and only if R,,—1 <t < R,. Observing that w(z) = w(z,&) = w(0, 7,§)
for every x € &, and invoking the ergodicity of the environment process n — 7x,£ as in
(3.14) above, we see that Po—a.s. and Py ¢-a.s.

lim Ry/n= Eo(1/w(0)) = 1/Eqw(0) .
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This implies (3.16). Moreover, this also shows that [Dorrwli; = (®i, ®;),, and the
relation (1.7) must hold. O

3.3.2. Proof of Corollary 1.3. This corollary is a direct consequence of Theorem 1.2 and
Lemma B.2 in the appendix, taking in Lemma B.2 A as the set of configurations £ € Ny
such that both the DTRW and the CTRW starting at the origin converge under diffusive
rescaling to the Brownian motions described in Thereom 1.2.

4. RESTRICTED RANDOM WALK

Recall the definition of occupied boxes and white boxes, as in Section 2. As consequence
of (H1), see also property (A), once p is taken large enough, P-a.s. the random sets
{reZ?:0,=1}and {x € Z? : ¥, = 1} have a unique infinite connected component,
the infinite cluster; see e.g. [G]. Here points z,y are thought of as connected if there exist
points g, Z1, . .., Ty in the above random sets such that zo = z,z, = y and |z;—x;41|1 = 1
foralli = 0,...,n — 1. We call Cy the infinite clusters in {z € Z¢ : o, = 1}, and C%,
the infinite clusters in {x € Z? : ¥, = 1}. By taking p large, from the domination
assumptions (H1) we also know that there exists ¢ < oo such that P-a.s. the holes of C
and CZ intersecting the box [—n,n]? have diameter at most clogn [BP, Prop. 2.3] (in
particular, all holes have finite cardinality). Finally, we define

Q:oo - UCUECOOB(H:.) ) Q:Zo = UIGC&B(w) .

The dependence on the parameters K, T is understood. The set €% is often referred to
as the cluster of white boxes, while €, is called the cluster of occupied boxes. Clearly,
Coo D €% . The points £ N € are sometimes referred to as the good points.

Given a starting point in £ N €%, the random walk Y}, is the discrete-time random walk
made by the consecutive visits of X, to the set £ N €% : setting

Tp:=min{n>1: X, €£NC,}, (4.1)
the transition probability from x to y of Y is given by

Wz,y(f) = PI,S(XT1 = y) . (4'2)

Thus Y,, = X7,, where T, is the time of the n-th visit to £ N €%,. The continuous—
time random walk Y; is defined as Yjy(;), where N (t) is the Poisson process with intensity

1. Equivalently, Y, is the continuous-time Markov chain on &N ¢, whose infinitesimal
generator is given by

Lof(z) = Y wey(©)(fy) — f(2)). (4.3)

ye&Nck

In order to simplify the notation, we simply write Y; instead of }7,5 when no confusion can
be generated. It is simple to check that (w(z) : x € £ N €Y) is a reversible measure both
for Y,, and for Y;.

Following [BP], a crucial step towards the proof of Theorem 3.6 consists in establishing
the following bounds on the distance and heat kernel of the restricted walk.
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Proposition 4.1. For a suitable deterministic sequence b, = o(n?) and for P-a.a. &:

limsup max  sup sup td/2Px75(Yt =y) < oo, (4.4)
n—oo TEENEL: yeener, t>n
2o <
E elYe —x
limsup max sup ErelVi — 2| < 00. (4.5)
n—o0 Telfﬂﬁéoi t> by \/E
T oo <N

Before going to the proof of Proposition 4.1, which is given in Section 5 and Section 6,
we start by developing some tools that will be repeatedly used in the sequel.

4.1. Enlargement of holes. Connected components in the complement of C% and in
the complement of €7 are called discrete holes and holes, respectively. A generic discrete
hole C is thus a finite set, while a subset C’ C R¢ is a hole if and only if it can be written
as C' = B(z1) U---U B(zn), where {21,...,25,} is a discrete hole. For the moment we
restrict our analysis to discrete holes.

Given z € 74, we use G(z) to denote the unique discrete hole C such that z € C. For
a vertex z € C%, we set G(z) = 0. Let di(z,2') = |z — 2|1, 2,2/ € Z%, denote the £,
distance, i.e. the graph distance in Z¢. Also, we use da(z, 2') = |z — 2/| for the usual /5
distance. Given an arbitrary D C Z% and i = 1,2, we write di(z, D) for the point-to-set
¢; distance and diam;(D) = sup, ,.cp di(z,2') for the ¢; diameter of D. We write |D| for
the cardinality of D.

The enlargement of a discrete hole C is given by the set

C={ze€Z%: dy(z,C) < diamy(C)}. (4.6)

Note that an enlarged discrete hole C will in general contain some vertices z € C%, and
a vertex z € CX can be covered by several enlarged holes. When z ¢ C%, we use the

notation G(z) := G(z) for the enlargement of G(z). When z € C%, we set G(z) = (.

Two vertices z,2' € Z¢ are said to be related if they both belong to some enlarged
discrete hole C. This notion induces in an obvious way an equivalence relation between
vertices: two vertices z, 2z’ are equivalent (written z ~ 2’) if and only if there exist vertices
20, - - - 2 SUch that zg = z, 2z, = 2/, and z;, 2;41 are related for all4 = 0,...,n—1. Consider
now the graph obtained from Z¢ by identifying all equivalent vertices. Call d(z,2’) the
associated graph distance (each vertex is at distance 0 from any member of its equivalence
class). Note that according to this definition, two distinct vertices z, 2’ € C% may well
have distance 0 (if there exists a nearest neighbor path v connecting z, 2’ such that v is
fully contained in the union of all enlarged holes).

Clearly, d(z,2') < d1(z,2') for any pair of vertices. Our assumptions allow us to compare
the two distances in the opposite direction as well.

Proposition 4.2. For all a > 0, there exist K, Ty such that for all z € 74:
- 1
IP’(d(O,z) <0, z)) < eadi(02) (4.7)

Proof. Due to assumption (H1) we can find K, Ty such that the field of white points ¥
dominates a supercritical Bernoulli field Z (p) with parameter p. Therefore, the probability
appearing in (4.7) is smaller than IP’p(d(O, z) < %dl (0, z)), where P, is the law of the

Bernoulli random field Z(p) (and d(0, z) is accordingly defined as a function of Z(p) and
its unique infinite cluster instead of ¥ and C2°, respectively).
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Let us first observe that if d(0,z) = 0 then there exist discrete holes C1, ..., C,, such

that the union of the enlarged discrete holes 5’1, cee C~'m contains a nearest neighbor path
from 0 to z. In particular, there must exists a nearest neighbor path (z9 =0,..., 2, = 2)
in Z% of length n > d1(0, z) such that

Zdlaml Zz 1{ZZ¢G(zJ) Vj<i} -

More generally, by pasting together different paths as in the example above, one obtains
that the event d(0,z) < 3 di(0, 2) is contained in the event: there exist n > d;(0,z) and a
nearest neighbor path v, = (20 =0, ..., 2, = z) in Z¢ such that

n
< X0 = 3 G g .

Therefore, using the exponentlal Chebyshev estimate and a union bound, for any A > 0:

P (d(o 2) < d1(0 z)) < Y YR MO,
n > di(0,2) In
where E, denotes expectation w.r.t. P,. We claim that for every A > 0 there exists
€ (0,1) such that
E,[e?M0m)] < 2m | (4.8)
for all nearest neighbor paths =, of length n. Once (4.8) is proved, estimating by (2d)"
the total number of paths 7, connecting 0 and z, one obtains that for all a > 0, there
exist suitable constants A > 0 and p € (0, 1) such that

P (d(O Z) d1(0 z)) < Z (4d)ne—>\n/2 < e—ad1(0,z)’
n > dq1(0,z)
and the proposition follows.
We turn to the proof of (4.8). Let the path v, = (20 =0,..., 2, = 2) be fixed. Let F;
denote the o—algebra generated by the random variables G(zp), ..., G(z;). To prove (4.8),

it is sufficient to establish the uniform estimate: For any A > 0 there exists p € (0,1) such
that

]Ep [exp{)\ diaml(é(zi))l{zi¢g(zj) ,Vj<i}} ‘ ‘Fi—l} <2. (49)

Note that the definition (4.6) implies that diam; G(0) < cdiam; G(0), for some finite
constant ¢ = ¢(d). Therefore, it suffices to show that for any A > 0 there exists p € (0, 1)
such that (4.9) holds with G(z;) replaced by G(z;). At this point the conclusion follows
from a standard Peierls argument, as in [BP, Lemma 3.1; proof of Eq. (3.12)]. O

We extend the definition of d to all points in the process ¢ using the corresponding K-
boxes. Namely, for any z € &, let z(z) denote the unique point of Z? such that 2 € B(z(x)).
Then, we set

d(z,y) = d(z(x), 2(y)), z,y€E. (4.10)
The next estimate is a useful corollary of Proposition 4.2.

Corollary 4.3. Toke K, Ty satisfying (4.7) for some a > 0. Then, P-a.s. there exists
k= k(§, K) < oo such that for all z,y € &:

|z —y| < H(1+log(1+ ]:B\)—l—d(x,y)) ) (4.11)
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Proof. From the definition (4.10), and the fact that
Klz(z) — 2(y)| — e1(K) < o =yl < K2(z) — 2()| + 1 (K),

for some constant c1(K), we see that it suffices to prove for Z? an estimate similar to
(4.11): P-a.s. there exists k = x(£) < oo such that for all z, 2’ € Z%:

|z — 2| <k (L4 1log(1l + |2]) +d(z,2)) . (4.12)

Combining the estimate of Proposition 4.2 and the Borel Cantelli argument shows that
P-a.s. there exists ng = ng(§) < oo such that whenever n > ng, |z| < n, then

1 -
|z — 2| < 3 d(z,2"), forall|z—2'| > logn. (4.13)

Let us verify that this implies (4.12). We may suppose first that |z — 2’| > log(1 + |z]). If
|z| = ng then we may take n = [|z|] and the claim follows from (4.13). Thus, assume that
|z] < ng. Clearly, we may further assume that |2’| > ng, since otherwise |z — 2/| < 2ny.
Therefore, if |z — 2’| > log(1 + |2|) the claim follows from (4.13) by taking n = [|2/|]
and exchanging the roles of z and 2’. In conclusion, the only case remaining is when
|z| < no, 2| > np and |z — 2/| <log(1+ |2/[). But if ¢ is such that log(1 +¢) < t/2 for
all t > tg, then we must have either |2’| <ty (and in this case |z — 2/| < ng +tg) or

2] < lal + 12 = 2| < Jz] + log(1 + [2']) < J2] + [£]/2,

which implies |2/| < 2ng. Therefore, |z — 2’| < |z| + |2/| < 3np. This concludes the proof
of (4.12). O

4.2. Some uniform estimates. The enlarged discrete holes allow us to obtain some
useful estimates that we collect here. It is first convenient to extend our notation. Consider
the map ¥(A) defined on finite subsets A C Z¢ as U(A) = UzcaB(z). Then, given a hole
C = ¥(C") (C' C 7% being a discrete hole), its enlargement C is defined as ¥(C"), where
C' is defined by (4.6). Note that we use the same notation C for the enlargement of a hole
and of a discrete hole C' (see Sec. 4.1). The kind of hole (discrete or not) we are handling
will be clear from the contest. In this section we use a slightly different definition of the
hole G(x) with respect to the previous section. Namely, given x ¢ € we write now G(x)
for the unique hole C' containing x. If = € €, we set G(z) = 0.

Given a hole C' we call [C] - the class of C' - the union of all holes C’ such that

(C C’) = 0, i.e. such that there exists a chain of holes C' = Cy,...,Cy, = C’ such that

C; N Cit1 # 0. We stress that [C] is not the family of points z € ¢ such that d(z,C) = 0,
in particular [C] N €k = 0.

Finally, we define

In = ZH{Xiﬂ&U[G(XFl)}} :

i=1
'), represents the number of jumps into a new class of holes up to time n (to be distin-
guished from the number of different classes of holes visited up to time n). As an example,
suppose Xg € €, X1 ¢ € and Xy € €. In this case, 's =T'; = 1.
Let
=inf{n>1: X, €ei}, (4.14)
and call I' = I'r; the number of jumps into new classes before the return to €% .

Lemma 4.4. There exists 6 > 0 such that uniformly in £ e N, v € £:
Pe(T>k)<(1-0)F, keN. (4.15)
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Proof. Define the times at which the walk jumps out of a class of holes:
ri=inf{n>7n_1: X, ¢ [G(X,_))]|}, 710=0. (4.16)

Note that jumps within the cluster are included. From the strong Markov property applied
to the stopping times 7;, the claim (4.15) follows if one has the estimate: for some § > 0,
for all ¢, uniformly in £ it holds Px, ¢ (X7,, €€%) = 0. Thus, it suffices to show that
for some § > 0, uniformly in € and x € &:

Pre (X1 € € | X1 ¢ [G(X0)]) > 3. (4.17)

0
If 2 = Xo € €& the bound (4.17) is easy: here [G(Xo)] = 0 and all we have to show is
that P, ¢ (X1 € €) > 0; this follows from the fact that w(z) < T(K,Ty) (see Lemma,
2.1) and r(z,y) = 61 = 91 (K) for some y € €&, so that, with e.g. § = 61 /7.

Pre (X1 € €) > play) = ") >

If x = Xy ¢ €, then x € C for some hole C' = G(Xp). Then

Px7§(X1 S Q:;o)
Pmﬁ(Xl € (’:éo) + Pm7§(X1 ¢ (S [C])

Pre (X1 € & [ Xy ¢ [G(X0)]) =

It is sufficient to prove that uniformly, for some ¢ > 0:
Pre(X1 ¢ €5 UIC]) <67 Pog(Xy € €L). (4.18)

To prove (4.18) we write

Poe(Xi¢ € ulCh) = Y Y Pe(X1€B(Y)), (4.19)
C’: C'¢[C] 2’ €Z4:B(z")CC’

where the sum is over holes C” in a different class than C. Let y denote the closest point
y € ENCE to x. Note that P, ¢(Xq € €) > p(x,y) =r(y — x)/w(z).

If 2,¢ € Z¢ denote the vertices such that x € B(z) and y € B((), then |z —y| > K|z —
¢| = e1(K). By construction, if 2’ € B(z') with 2/ € C’ for some hole C’ ¢ [C], then
v —2'| > K|z — 2| — e1(K) and |z — 2’| = 2|z — {| — 2. To justify the last inequality, let
C = ¥(C), C being a discrete hole in Z¢. The definition of ¢ implies |z — ¢| < diama(C).
Since C’ ¢ [C] and therefore 2’ ¢ C,

|z — 2| > |2 — ¢| + diamy(C) — 2 > 2|z — (| — 2. (4.20)

Next, observe that
ny < el (4.21)
since otherwise z € Q(Z', R,/), cf. (2.3), which contradicts the fact that z, 2z’ belong to
distinct classes of holes. Note indeed that, since x = Xy ¢ €& and x € B(z), it must be
n, = To.
Define the function ¢ : (0,00) x N = (0,00) as ¢(a,m) = 3_,cza. |y 2me‘“‘”‘a. It is
not hard to check that, for all fixed a > 0, > 0, as m — oo:

ola,m) = O(e™ ™" md=). (4.22)
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To bound (4.19) we write, for all £ > 0:

w(z) Pre(X1 & €5, U[C]) < o(K) 3 nye—Kl=21°
2/ €74 |2—2'| > 2|2—(|-2
C/(E’K) Z 6_(1_€)KO‘ |'U|04 :Cl(g,K)(p((l_g)Ka,2|Z—C’ _2>7 (423)

vEZ: [v] > 2|z—(|—2
where we have used (4.21). On the other hand
w(x) Ppg(X1 € €)= r(y — ) > " (K) e K ==¢I" (4.24)
From (4.22), for all a, K > 0, taking e.g. ¢ > 0 such that (1 —€)2% > 1, the ratio

p((1 —e)K*, 2|z — (| - 2)
e_Ka B

is uniformly bounded in z, ¢ € Z9. Using (4.23) and (4.24), this proves the uniform bound
(4.17). O

Lemma 4.5. For ¢,y > 1, set uy.(t) = t7 exp[c(log(t + 1))]. Uniformly in & and x € &:

Eoe| sup  uyo(d(a, Xj))] <. (4.25)
1<j<T

Proof. With the definition (4.16) we have that I' = max{n > 0: 7, < T1} and

r
sup  d(z, X;) ZCZ Xoy Xoi1) (4.26)
i=0

1<5<Th

where I is defined as in Lemma 4.4 and Xy = z.
Let us first suppose that o > 1. In this case it is sufficient to show the claim with w. .(t)
replaced by exp[c(log(t + 1))?], which is a convex function. Since, for every N € N:

N N

o1+ 30 )] € o+ 1) o [ S04 0 )]
i=0 =0

simple estimates yield

N

exp {20<log [1 + ZJ(XTZ.,XTZ.H)DQ}

=0

N
< exp {er (log(N +1))° } N1+1 S exp {er(loglt +d(X,, X))} (427)
=0

for some constant ¢; = ¢1(a, ¢). Suppose that, for some constant cg, uniformly in £ and
refandieN

Ey¢eexp{ci(log[l +d(X, X7, )])*} < 2. (4.28)
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Then, taking expectation in (4.27), using Schwarz’ inequality:

E,¢ [exp {c(log [1 + ZF: (X, Xﬂ'+1)] )aH
D L S T (RS )
N=0

[N

[e=]

fZngl“ N)% exp {ex (log(N + 1))}

The last sum above is uniformly finite by Lemma 4.4. It remains to show the validity
of (4.28). To this end, it suffices to show that, for some constant ¢, uniformly in £ and
T €& -

E,¢exp {ci(log[l +d(z, X-)]))*} <ca. (4.29)
By summing over all possible ways of jumping out of the starting class of holes [G(z)] one
obtains that (4.29) follows from

Ey¢ lexp {c1(log[l + d(z, X1)])*} | X1 ¢ [G(2)]] <ea. (4.30)
Let z,y and z,({ be as in the proof of Lemma 4.4, i.e. x € B(z), y € B(() and y is the
closest point y € €N € to x. As in (4.24) we have
e~ K |z=(|®

Pre(X1 ¢ [G(2)]) 2 Pre(X1 € €x) > c3 (4.31)

w(x)

for some constant c3. Let 2/ € Z% be such that X; is in the K-box B(z'). Note that
d(x, X1) = 0 for all 2’ such that |z — 2’| < 2|z — (| — 2. For other values of X; we simply
bound d(x, X1) < c4|z — 2|, for some ¢4 = c4(d, K, ). Reasoning as in (4.23), to bound
(4.30) we write, for all € > 0:

wa(2) B¢ [exp {er(logll + d(z, X))} : X ¢ [Gla)]

<1+eK) S nue Kol ealoglirlz=2)

PAVAS
|z—2'| > 2[z—(|-2

< 1 + Cl(g, K) Z 6—(1—8) K« ‘U‘a

vezZd:
[v| > 2|z2—(]—2

=1+(e, K)p((1 —e)K*, 2|z — (| — 2), (4.32)
where we have used (4.21). From (4.32) and (4.31) we can conclude, as in the proof of
Lemma 4.4, that the left hand side of (4.30) is uniformly bounded. This ends the proof
of the case a > 1.

To prove the claim for o < 1, observe that it is sufficient to prove the estimate (4.25)
with u, .(t) replaced by t7. Here v =1 and t7 is convex. Thus,

Ex,g[(id(xn,xw H ZPNF N zNV[ ZEM< (Xr Xr,,)? )F
=0

A uniform estimate of the expectatlon in the right hand side above can be obtained exactly
as in the proof of (4.28). This ends the proof. O

We turn to a simple corollary of our previous results.
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Lemma 4.6. For every p > 1, there exists ¢ > 0 such that uniformly in & and x € £, and
for all n:

Ey¢| sup J(x,Xj)p} <cenP. (4.33)
1<j<Tn

Proof. Setting A; :=supy < j <1, , d(X1,_1, X1,_,45), We have

n
sup  d(z, X;)P < nP~? ZA?.

1<j<Tn =

The strong Markov property at time T;_1 together with the uniform estimate of Lemma
4.5 imply that for some ¢ > 0, for all z and i one has E, ¢ [A?] <. O

4.3. Some almost sure estimates. We describe some more consequences of the esti-
mates derived above.

Lemma 4.7. P-a.s., for every p > 1, there exists k = k(p,§) < oo such that for all x € &,
and for all n € N:

E:r,é[ sup |X; — m|p} < k[1+log(1 + |z])]"n?. (4.34)
1<j<Th
Proof. Using Corollary 4.3, we can write
1X; — 2l <k [L+1og(1+|2])]” + kd(Xj,z)" .
The conclusion then follows from Lemma 4.6. O

Lemma 4.8. Take K, Ty as in Proposition 4.2. Then, P-almost surely, for all x € &
Px7§(T1 < OO) =1.

Proof. For every m,n, write
Px{(Tl > TTL) = Pxé(Tl >m, S, > m) + P$7€(T1 >m, S, < m),

where S,, denotes the first time k& > 1 such that |Xj|oo > n.

Given y € &, let z(y) € Z? be the unique point such that y € B(z). Fix v € £\ €% such
that |z(v)| < n. Then z(v) is in a discrete hole (i.e. z ¢ C%). We know that 9 dominates a
supercritical Bernoulli field with large parameter p, and for the latter it is well known that
a.s. holes intersecting [—n,n]? have diameter at most O(logn) (see [BP][Prop. 2.3]). By
the stochastic domination, the same property still holds for the the discrete holes, which

are the holes in 9. We claim that w(v) < ¢/e°8™ 2 To prove our claim, we write

w)= Y. ry-v+ Y. ry-a).
yeg: yes:
[z(y)—2(v)| < n [2(y)—2(v)[>n

For every z € Z¢ such that |z — z(v)| < n, if n, > Ty (i.e. if B(z) is overcrowded) then

it must be n, < e“l°8™? hecause any hole intersecting [—n,n]? has diameter O(logn).

Taking n large enough that Ty < ec(og n)% we have

RO EEDY ecllogm) & —er(F)]z—2(2)|* ¢ cellogm)E

yes: 274
lz(y)—2(v)| < n lz—z(v)] < n
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On the other hand, if |z(y) — z(v)| > n, then z(y) cannot belong to the same hole of z(v),

and therefore n, < e|z(y)_z(”)|% whenever n, > Ty. It follows that

Z r(y —wv) < Z Toe|z_z(”)‘% e~ (B)lz==(0)1" ey

yes: 2€7%:
|z(y)—=(v)|>n lz—2(v)|>n
The above estimates trivially imply our claim.
Due to this claim and using again the fact that the hole containing v has diameter at
most O(logn) we can estimate

—eal(l et
Pfué’(Xl c ¢* ) 2 € C4(0gn) 2 6765(10gn)a .
9 oo w(v)
From this observation we infer that
P, e(Th >m, S, >m) < (1 - e‘c5(l°g”)a>m < exp [—m e_c5(l°g")a} . (4.35)

On the other hand, by Markov’s inequality
Pre(Ti > m, Sy <m) < Pog swp |Xj|>n) <n'Bog( swp [X]). (436)

1<j<T 1<j<h
By Lemma 4.7 we conclude that
Ppe(Ty >m, S, <m) < cp(§) nt, (4.37)

for some P-a.s. finite constant c,(§). Taking m,n = n(m) such that n(m) — oo and
mexp|[—(log n(m))¥] — oo, as m — oo, (4.35) and (4.37) imply the conclusion. O

4.4. Harmonicity with respect to the restricted random walk.

Proposition 4.9. Let ®(¢,2) =z + x(&§,x). Then for P-a.a. £ and for any x € ENEE:
(1,8, X1y — ) € LN (Prg),  Epe(®(ru&, Xp, — ) =0. (4.38)

Proof. We recall that x; + x;(§,z) € 7—[%, for each coordinate 7. Hence, by Lemma 3.4,

there exists a Borel subset A having P—-probability 1 such that for all £ € A and for all
z €€,

Sry - )@(mEy— ) <oo, S orly—2)B(réy—2) = 0.

yes yeé

This implies that the process (M3),, > o defined in terms of (X,), >0 as

M§=0, MS$=Y ®(rx,& Xjp1 — X;) forn>1
j=0

is a martingale w.r.t. P,¢. By shift covariance we have M§ = O (7x,&, X, — Xo) for all
n > 0. In particular, given m € N and ¢ € A, from the Optional Stopping Theorem, for
any m € N, we have that ®(7,&, X7yam — ) € L'(Py¢) and

Ep e ®(m2:8, XTyam — ) =0, z €. (4.39)
Since T is a.s. finite (see Lemma 4.8), we have

lim (758, Xtyam — ) = @(128, X1y, — @), P, eas,
m—00
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In addition, using Lemma 7.2 below, we know that a.s. |®(&, y)| < ¢(§) uy.c (Jy|) for suitable
constants ¢,y > 0 and ¢(§) < co. We have
’@(ng,XTl/\m — l‘)‘ < ez (§) u%c< max | X; — x|) , m>1. (4.40)
1<j<T

Therefore, Corollary 4.3 and Lemma 4.5 allow us to use the Dominated Convergence
Theorem to conclude. O

Proposition 4.9 shows that ®(7,£,Y,, — z), with Y,, = Xp , is a martingale for every
x € ENCL . Since YV = X1y, for an independent Poisson process with mean 1, Proposition
4.9 also implies

Corollary 4.10. For P-a.a. £, the process (®(1.£,Y; — 2) : t > 0) is a continuous—time
martingale w.r.t. to the law of the restricted random walk Y; starting at z € £ NE5.

5. HEAT KERNEL BOUND

In this section we prove the heat kernel bound (4.4). In order to avoid confusion, in this
section we restore the convention to write Y;, for the discrete—time restricted RW and }7,5
for the continuous—time restricted RW. The proof of the heat kernel bound (4.4) is divided
in two parts: in the first one we derive a similar bound for a cut—off restricted random
walk (see Proposition 5.1) by applying together the isoperimetric estimates of [CF1] and
the method developed in [MoPe|. In the second part (see the proof of Proposition 5.3),
we show that the above cut-off gives an approximation which is good enough to maintain
the diffusive heat kernel bound. In particular, (4.4) follows immediately from Proposition
5.3.

5.1. Cut—off of the restricted random walk. We fix L > 0 and introduce the discrete—
time RW (Xy(lL) tn > 0) on &1, := £N[—L, L)% jumping from 2 to y in &7, with probability

rly—a
P ay) = W 0@ = 3 (e~ ). (5.1)
wiH ()
2€€L
We call O, C Z% the largest connected component of the field ¥ (defined in (2.5)) inside
[~L,L]*. Then, we set ¢ = Uzec, B(z) and (1, =N Cy. Let YTEL) be the restricted ran-

dom walk associated to X7(1L) when visiting the good points (7, (similarly to the definition
of Y, as the restricted random walk associated to X, when visiting the good points €%).

We define fft(L) = Yjs,f) where N; is a Poisson process of parameter 1, independent of the
random walk YngL). The following heat kernel bound holds:

Proposition 5.1. Take L = L(t) = t* with u > 1/2. Then for P-a.a. £
limsup max td/2P$75 (YQ(L) =y) < o0. (5.2)

t—oo  ZTYECL
The fact that L(t) is polynomial in ¢ in the above heat kernel estimate is essential.
Indeed, because of the max; ye¢, , one cannot expect the result to be true for functions
L(t) with an exponential growth in ¢, since it would contradict well known phenomena for
the simple random walk on the supercritical percolation cluster [B].

Proof. Clearly, (w(L) (), x € L) is a reversible measure for the random walk XT(LL). Let

L
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Note that w() (x)wg(cLy) = wl) (y)wéLx) for all x,y € (r, i.e. (w(L) (), z € (1) is a reversible
measure both for ¥, and for }Z(L) (recall that wg([;Ly) coincides also with the probability
rate of a jump of YX) from z to y).

Let us denote by 77, the measure w) () on ¢;, and call o (t), t > 0, the isoperimetric
profile of the RW Y &) w.r.t. 7z

@ (t) := inf {[U t U CCp, m(U) < (EA 1)7rL(CL>},

2
where Iy := 7, (U)™1Y seu, WL(x)wg(fy). Note that due to the definition of (y, it holds
yeCL\U
1< m(z) <e, x €(rL (5.3)

for some positive constant ¢ independent of £ and L (the upper bound follows from Lemma
2.1, the lower bound is trivial: w)(z) > r(0)).

(L)

In order to estimate P, ¢ (Yt = y), x,y € (g, we apply Theorem 13 in [MoPe] which

states that, given €,t > 0, if

4/e
t> / 785“ (5.4)
Ay, (@) Am () () WP (1)

then W)
PV =y < I (144, 5.5
:E,ﬁ( t y) WL(CL) ( ) ( )
To get a bound from below of the isoperimetric profile ¢, we observe that, given z # y in
L,

r(y — )
m ()
where mp(z) = >, ., 7(y — x). Since mp(z) < w)(z), mr(z) satisfies a bound of the

same form of (5.3). In particular,
miU) , m(U)
mp(Ce) ~ w(Cr)’

We stress that x is a positive constant that does not depend on &, L.
Due to (5.6) and (5.7) we conclude that

or(t) = Yr(kt), Vit € (0,1/2) : kt € (0,1/2), (5.8)

where 11, denotes the isoperimetric profile of the continuous—time random walk on (7 with
generator

rp(@)wlh) = mp(2) Pre(X\Y = y) = r(y — 2) = mp(2) , (5.6)

YU C (1. (5.7)

r(y—=
cr@) = S D ) gy, wed,
mr(x)
yelr
with reversible measure my. We take v > 0. The value will be fixed at the end. Due to
assumption (H1) and [CF1, Lemma 2.1], there exists a constant § > 0 such that P-a.s. it

holds

) 1 1
for a suitable {—dependent constant Lo(€). Since L diverges with ¢, we have L > L(&)
eventually in t. Let us choose e = L% /t%2. Due to our assumption 4/e goes to 0 as t — oo.

In particular, we can take t large enough that 4/ € (0,1/2) and 4x/e € (0,1/2). This
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together with (5.8) implies that ¢, (u) > ¥ (ku) for u as in the r.h.s. of (5.4). In addition,
note that

47TL(Z)/7TL(CL)d = 5L_d, z € (L (5.10)

for some new constant ¢ > 0. Since the bound (5.9) reads

) ~ ~d(1-)
7% > if0<u<L ,
vilw) > { o, ifu> [,

wl/dr,

taking ~ small enough we can assume that 4t%/2 > L% thus implying that (see (5.10))

ths, of (5.4) € /4td/2L_d 8du /4”td/2L_d 8ds

eL—d W/’%(’W)  Jwer-a 81/’%(5) -

8LV L—d+dy 8.2 4rtd/2 [~

— s lds + 2/ §?1 s = ¢(L¥ + ). (5.11)
5 wkelL—d 6 [ —d+dy

Taking v small, we get L?Y < t. At the cost of changing the definition of ¢ by setting
e = ¢ L%/t%? with ¢ small enough, we can assume that the last expression in (5.11) is
smaller than ¢, thus implying (5.4) and therefore that

Doy < =+ L), wyed.

CLl

At this point the claim follows from the fact that P-a.s. [(z| > ¢;L? for some positive
constant c; and for all L. Indeed, defining C7 as the maximal connected component in
[~L,L]* N Z* for the Bernoulli field Z(p), it is known e.g. that if p is large enough, then
a.s. [C]| > %Ld for all L sufficiently large. Due to the stochastic domination assumption
(H1), the same holds for Cr, as well. Since &, and therefore (r, has at least one point in
each box B(z) with z € Cf, it must be |¢z| > ¢;L¢ for some ¢; = ¢;(K). This concludes
the proof. O

Poe (Y,

(D) We first define a coupling P, between the

5.2. Comparison between Y; and }2
random walks XT(LL) and X, starting at the same point x in (r, as follows. We realize
(X, : n > 0) starting at x, and call 7 =inf{n > 1 : X,, € {1}. Then we set x{” = x,
for n < 7, while on [r,00) the random walk X evolves independently from X,, with
jump probabilities p(L)(-, -). To check the validity of the coupling, let A be the event that
X, = XSLL) forn < N (i.e. A= {N < 7}). Note that, given y,z € (r, the probability

PQE(XJ(\%_)H = z|X](\f) =y, A) can be written as

Po(Xn41 = 2| XN =y, A) + Po(Xn1 & G| Xn =y, ApP(y, 2)

_rlemy)  wly) —wP ) rly—2)  rly—2)
— w(y) * w(y) wD(y) — wB(y) =p(

Introduce a Poisson process Ny of parameter 1 independent from X7(LL) and X,,, and

therefore also from Y7$L) and Y,,. Recall the continuous—time random walks z(L) = Yjsff),

Y, %)

Y; = Yn,. We denote again by P, the probability measure of the space where all the above
processes are defined, and we write F, for the associated expectation. An important
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consequence of this coupling is the following observation. There exists € = e(d) > 0 such
that, for m € N:

P, <E|n<m : Yn;éYTSL)) ng<l<max X >EL) (5.12)
NS Tm
Here T), is, as usual, the time of the m-th visit to €7 for the walk X,,. The above claim,
in turn, is an immediate consequence of the following

Lemma 5.2. There exists ¢ = £(d) > 0 such that P-a.s., for all sufficiently large L, it
holds ¢;, N [—eL,eL]? = £N &, N[—eL,eL]%

Proof. Let us prove the equivalent statement for the corresponding white K-boxes. Namely,
setting ¢ = L/ K, we want to prove

CpN[—el,el]® = C* N [—el,el]?. (5.13)

By the stochastic domination assumption, and well known facts about Bernoulli perco-
lation with large p (see e.g. [CF1, Proposition B.2]), we may assume that Cp, coincides
with the largest connected component of [/, /]2 N C%,. Thus, the only thing that can go
wrong in checking (5.13) is that there exist two vertices x,y € [—ef,ef]?NC%, that are not
connected within [—¢, ¢]%. Call F} this event. Using the stochastic domination assumption,
and the fact that p is large, one can check that this event has exponentially (in ¢) small
probability for a suitable ¢ > 0. To see this, let do(x,y) denote the graph distance of
two vertices z,y € C% in the graph C’ (this is often called the chemical distance). From
known estimates [AnPi|, for v > 0, if p is large, there exists a > 0 such that

P(de(z,y) = (1 +7)di(z,y) |z, y € CL) <ate th@y), (5.14)

Let z, y be two vertices as in the event Fy. Note the bounds d;(z,y) < del and de(x,y) > 2(1—
g)¢. Moreover, one can find y' such that |¢/|c < 34, 4del > di(x,y’) > ef, and
do(z,y") = 2(1 — 2e)¢ > 2(1 — 2¢)(4de)"dy(z,y'). Therefore, taking ¢ small enough,

a union bound and (5.14) imply, for some constant ¢, the exponential bound

1 -1
§ E: 1 act Cec 54.

|z| < el |y'| < 3el
The identity (5.13) then follows from the Borel-Cantelli lemma. O
We can finally prove (4.4), an immediate consequence of

Proposition 5.3. For P-a.a. &,

limsup max sup t¥2P,(Y; =y) < 0. (5.15)
t—oo TELNEL : yeenes,
|zloo <t
Proof. Since P,(|Ny —t| > t/2) < e~ for some positive constant ¢, we can write
[3t/2]
P.(Yi=y)— Y P(Ya=y)P(N,=n)]<e . (5.16)
n=|1/2]

We take L(t) = t* with u > 1. If z € £ N € and |x|o < t then, for ¢ large enough
(independently from z), it holds = € {1, (L := L(t)) by Lemma 5.2. We then consider the

random walks }Z(L) and YTEL) starting at x. Reasoning as above we get that an expression
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similar to (5.16) holds also for }Z(L) and Y™, On the other hand, thanks to (5.12) we can
use (for n < [3t/2])

Po(Yn =y) < Py (yn(m _ y) +Pm(1<jrr<1ajzi N 1X;| > eL).
xXJ X 3t/2

Together with the above observations, this gives:

_ [3t/2]
Paz(}/t:y> < _Ct‘|‘ Zt;QJ x n—y (Nt:n)

<2 4P (Y(L): )+P max  |X;|>eL). (5.17
z | ¥t Y m(1<j<TL3t/2J| ]‘ ) ( )

To bound the last expression, we use Markov inequality and Lemma 4.7:

P, < max | X;| > €L> < (eL)'E, < max \Xj|>

1<j <T34)2) 1<j < T 3¢2)
'L (|| + [1+1og(1 + |2])]) [3t/2]. (5.18)
If L =t* and uw > 1, then we can assume ¢t < €L, and collecting (5.17), (5.18) and
invoking Proposition 5.1 (using again Lemma 5.2) we get for P-a.a. & that t%/2P,(Y; =

y) <c(1+ td/Z*“H) for all z,y € £ N &} such that |z|s < t, for some finite constant
c = c(§). Taking e.g. u = 2 + d/2 concludes the proof. O

6. EXPECTED DISTANCE BOUND

In this section we prove the distance estimate (4.5). Given x,y € {N €Y define the heat
kernel by ¢i(z,y) = Ppe(Y: = y)/w(y). Given § > 0, define also

D =sup su max  FE,¢[d(z, X;)? 6.1
geAp/xemré* | max Eogld(@, X;)"] (6.1)
M(z,t) = Ey¢ld(z,Yy)] Z d(x,y)q(z, y)w(y) (6.2)
yeENEs
yegENes
Cunlnd) = sup {3 wfpe- e}, (6.4
0<s<d yeenes,

(By continuity, Q(x,0) = logw(x).) By Lemma 4.6, we know that D < oo.
Lemma 6.1. For all z,
M'(z,t)?
M (z,t)?

DQ(z,t), YVt >0, (6.5)

<
> exp {—1— Cya(z,6) + Q(z,1)}, if M(z,t)>d5"". (6.6)

Proof. The proof of (6.6) is an adaptation of [B, Lemma 3.3]; see also [BP, Lemma 6.3(a)]
for a similar argument. To prove (6.5), recall that w,, denotes the jump rate of the
restricted random walk (cf (4.2)). For (6.5), following [B, Proposition 3.4] almost exactly,
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we use the triangle inequality for d and then Schwarz’ inequality to arrive at:

< p(Satr v )
(X e @) — a(o.2) Qo) ~ gtz 2)) . 60

where 3, . corresponds to 30 ceres D ieenes - )
The conclusion is now very different from [B] and the use of the distance d instead of
the euclidean distance becomes crucial. We observe that by Lemma 4.6

th:cywyz Y,z Z%wy ZPy§ (X7, = 2)d(y, 2)*

Z cYi=y)E [J(y,XT1)2] <D,
Y

so that the first factor inside the brackets in the last member of (6.7) is bounded by D
Exactly as in [B, Proposition 3.4], the second factor is equal to 2Q’(z,t). We therefore

have M'(xz,t)? < DQ'(z,t), as desired. O
Lemma 6.2. Take K, Ty satisfying (4.7) for some a > 0. For P-a.a. &,
Chor(,8) < C(€)6U1 + log(1 + 2] + C(€)ef & zeene’, (6.8)
for some positive constant C(§). In particular, for P-a.a. &,
Cool(z,1/3/1) := C . 6.9
DO, J0b el 1V = Gl < 00 69
[Z|oo <m0

Proof. The last bound (6.9) trivially follows from (6.8). Therefore, we concentrate on (6.8).
Due to Lemma 2.1 and the definition of the random field ¥}, we know that w(y) < ¢ =
c¢(K,Tp) for all y € £ N €. Moreover, we know that all K-boxes B(z) with z € C%

are not overcrowded, i.e. {(B(z)) < Ty. In particular, we can bound }_ ccp(,) e~slz=l

from above by Toe *K(v=21=c(d) if » € B(v). Let x = s(£, K) be the positive constant
appearing in Corollary 4.3. We define

W(x) ={y € ENCL « [z —yl/rx < 2[1 +log(1 + [z])]} .
Then, applying also Corollary 4.3, we conclude that
slz—
Cyoi(z,8) < ¢ sup {Sd|W(CE)| + 5% Z e %y\}
0ot YECL\W (@)

< CO1 +log(1 + |z|)]¢ + Ce®® sup {sd Z e’
0

<s<d Le7d

K|z|

=T } ,
for a positive constant C' independent from x. The last term can be estimated by
oo Kr o
c(d)C’ / sle™ o 1Yy = ¢(d)C’ / e Yy ldy < ¢ (d)C”,
1 s

thus concluding the proof of (6.8). O
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Let us now come back to the heat kernel estimate of Proposition 5.3. We know that
td/QIP’g(Yt = y) is bounded from above uniformly as ¢t > 1, z,y € £ N €%, and |z| < ¢, for
P-a.a. £. Since w(y) = r(0) = 1 and ¢(z,y) = P$(Y; = y)/w(y), this implies that there
exists a (finite) positive constant A = A(&) (that we take larger than 1) such that

sup sup td/zqt(:v,y) <A, Veefner. (6.10)
t> |z|Vl yeenes,

Proposition 6.3. Let t(x) = || Ve and set T'(z) = t(z)logt(x) V (%, where the positive
constant ¢ = ¢(§) is the same appearing in (4.33) of Lemma 4.6 withn =p=1. Then for
P-a.a. £ there exists a constant Co(§) > 1 such that

M(z,t) < Co(§)Vt  Vxeén€i,, vt =T(x). (6.11)

Proof. We will follow [B, Proposition 3.4]. Since Co(£) > 1, we can assume that M (z,t) > v/t
otherwise we have nothing to prove. In this case, since t > T'(x) > |z|, by (6.6) and (6.9)
we can estimate
M(z,)? > exp {1~ C1(¢) + Q(z,1)}. (6.12)
We will use this key lower bound at the end.
Following [B], we define L(t) = %(Q(z,t) + log A — Zlogt) (recall (6.10)). Note that
L(t) > 0ont > t(x) by (6.10). Then, we define

. {1 if L(t) >0 on (0,t(z)],

sup{t € (0,¢(x)] : L(t) <0} otherwise. (6.13)

Note that in the second case, it must be L(tg) = 0, i.e. Q(z,t9) = —log A + 4 logty.
We claim that M (z,ty) < \/dDT(z). To this aim, let us first assume that L(¢) > 0 for
all ¢ > 0. Then ¢ty = 1 and from the definition of T'(x) and Lemma 4.6 we deduce that

M (z,to) = Epe(d(z, YE*)) = B, ¢ [E%g (d(z, YEN)| < e B(Ny) = ¢ < /dDT(x),

where (N¢): >0 is a Poisson process of parameter 1 independent from the discrete-time
restricted random walk and were “c.t.” and “d.t.” mean continuous-time and discrete—
time, respectively (to avoid ambiguity). Let us now assume that L(t) < 0 for some ¢t
(the second case of (6.13)). Since L(t) > 0 for t > t(z) as already observed, it must
be ty < t(x). By (6.5) in Lemma 6.1 and Schwarz’ inequality, M (x,tp) can be bounded

from above by \/toD( go Q' (z, s) ds) 12, By continuity at both endpoints and using that
L(tp) = 0, this last expression is bounded from above by

d 1/2
VtoD (2 logty —log A — log w(:z:)) < VtoDdlogty < \/DdT(x), (6.14)

(recall that A > 1 and w(z) > r(0) = 1). This concludes the proof of our claim.
Since Q'(x,t) = dL'(t) — d/(2t) and using (6.5), by the same computations as in [B] we
get for all ¢ > tg

t 1 1/2
M(z,t) — M(z,t0) < vdD t (2—8 +L’(s)) ds < V2dDt + L(t)VdDt. (6.15)
0

Using now the bound M (z,tp) < y/dDT(x) and t > T(x) we conclude that
M (z,t) < \/dDT(z) + V2dDt + L(t)VdDt < (1 + V2)VdDt + L(t)VdDt. ~ (6.16)
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Conversely, because v/t < M (x,t), we can apply (6.12) to find that
M(xz,t) = Co(&)e MVt (6.17)

for some positive constant Cy depending on . Combining these last two equations (6.16),
(6.17), and eliminating the common +/Z, we see that

" < [VAD/Co(€)](1 + V2 + L(t)) (6.18)

Since ¥ > 14y + %y2 for all y > 0, the above formula implies that L(¢)? < a + bL(t) for
suitable constants a = a(&), b = b(&). This last bound implies that L(t) < C3(§). Coming
back to (6.16) we get (6.11). O

6.1. Proof of (4.5). We have now all the tools to prove (4.5). We take K, Tj satisfying
Corollary 4.3 and we define b, = n? with v € (1,2). If t > b, with n large enough, then
t > T(z) for all x € £ N € such that |z]o < n. In particular, applying Proposition 6.3
we conclude that for P-a.a. &,
limsup max  sup w < 00. (6.19)
nfoo TEENEL: ¢ >4, \/i

[z[eo < 1
We now apply Corollary 4.3, to estimate
|Ye — d(z,Yr)
Vi Vi
The above bound together with (6.19) trivially implies (4.5). O

< Y21+ log(1 4 n)] + &

7. SUBLINEARITY OF THE CORRECTOR

This section is devoted to the proof of Theorem 3.6.

7.1. Preliminary bounds. We start with a polynomial estimate on the size of the cor-
rector for points within the cluster €. Note that we are now working with the cluster of
occupied boxes € and not with the (smaller) cluster of white boxes €% . We will come
back to the latter towards the end of this section.

Lemma 7.1. For 6 >d+1,

. -0 _ _ B
nh_)rgon x,ngng@oo lx(Txf,y $)‘ 0, P-a.s. (7.1)

%00 [yloe < 1
Proof. For any z,y € £ N€y with 2|, |y|co < n there exists a path z = xg,..., 2, =y €
¢, with x; and x;41 belonging to adjacent K—boxes B;, B;+1 on €. For a fixed A < oo,
let E), C N, denote the event that, for any z,y € £ N €sx with |2]s, |y|ee < n, there
exists such a path with the additional property that max; |z;|oc < An.
Note that there exists 6 = 6(K) > 0 such that r(z;4+1 — ;) > 6 for every i (cf. (1.3)).
Therefore, using the shift—covariance property we get

m—1
(T2 y — )| <60 r(min — @) [X(7a, 6w — @) (7.2)
=0
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We shall write B C B(¢) when a K-box B is contained in the | - |o—box in R? centered at
the origin, of size /. Thus on E),, we can estimate

Ra(€) = max |x(r6,y - YYD rly— o) (b y — o)

[2]oc;Yloe < 1 BCB(An) z€ENB yee

=07t Y Y rly—olk(mby—a) =0 Y g(ml), (73)

reg: yeg z€E:
|Z]|oo < AN [Z]oo < A
where the function g : No — [0, 00) is defined as g(§) = >_, . 7(2)[x(&, 2)|. Thus,
}P’[Rnl{Em} > ne] < n_eE[Rn; E,\m] < 5—1n—9E[ 3 g(Tzf)} . (74)
T€e§:
[Z]oo < A

Applying now the Campbell identity (2.1), with the notation (3.1) we can write the last
expectation as

p(22n) Eo(g(€)) < p(2An) Eo(w(0))"/?|1x|| 12y < 00 (7.5)

Using this bound in (7.4) we obtain P[Rn 1{E>\,n} > ne] <C nd*H, for some finite constant
C = C(\, p,0). In conclusion,

P[Ro> 0’| <P|Rals,,) >n’| +PIES,] < Cn'™ +PES,).
If X is sufficiently large, the same argument used in the proof of Lemma 5.2 shows that

P[EY ,,] is exponentially decaying in n. Taking # > d+ 1, the Borel-Cantelli lemma implies
that n=R,, — 0, P-almost surely. O

Recall the definition of the positive exponent a (cf. (1.3)). The next lemma extends
the estimate of Lemma 7.1 to the case where y ¢ €. For o < 1 this remains polynomial.
When « > 1 the bound is of the form exp((logn)®). To unify the notation we use the
function

Uqy,o(t) = " exp[c(log(t + 1))°]
introduced in Lemma 4.5.

Lemma 7.2. There exist constants v, c such that for P—a.a. & and for all n = ng(§),

max T,y — < U n) . 76
2EENCos || gn’X( 26,y — 2)| Sty e(n) (7.6)
y€§7 |y‘ <n

Proof. As in the proof of Proposition 7.1, we get
E[ 3 S huty-o)ly-2)] <ent, (7.7)
z€&:i|z| < nyel
for some constant c. From (7.7) and Markov’s inequality, the Borel-Cantelli lemma shows
that P-a.s. for all n large enough:
max Z Ix(Tub,y — ) |r(y — z) < n?t2. (7.8)

z€l: |z| <n

Now, take x,y € £ such that ]:U|, |y[ < n with n large. If x € £ N €, from Lemma 7.1,
Ix(72&, z—x)| < n? forall z € €Ny, |2| < n. However, a.s. there exists z € ENCy, |2] < 7,
such that |z — y| < Clogn (the distance of y from €, cannot be larger than C'logn).
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Thus, the claim follows by writing |x(7.&,y — )| < |x(72€, 2 — z)| + |x(72€, ¥y — 2)| and
using (7.8) on the obvious bound

X(:€y—2)| < sup DTN Tix(ngy —a)lr(y — x). 0
z€&: |z| < n yee

7.2. Sublinearity along a given direction in €. Let us fix a coordinate vector e (i.e.
e € Z% |el; = 1). Recall the notation B, = B(z), for the K-box at z € Z%. Omitting the
dependence on e, we set ng(£) = 0 and define inductively

nit1(§) = min{j > n;(§) : Bje C €} .
By property (A) in Section 2.3.1, for K large, the above maps are well-defined P-a.s.

We introduce the space Q = {¢ : By C €x(€)} x BY. A generic element of this space
is denoted by w = (f y(v; r i€ N)) On the space 2 we define a probability measure P,
(depending on the coordinate vector e) as follows: the marginal distribution of ¢ is given
by P(-|By C €) while, conditioned to &, the sequence (v; : i € N) is determined by
choosing independently for each index i a point w; with uniform probability in B, ¢). N§
and then setting
v; = w; —ni(§)Ke, (7.9)
so that v; € By. Trivially, by (7.9), knowing w = (&, (v; : ¢ € N)) the points w; are
univocally determined, hence we write w; = w;(w). Below we write E, for the expectation
w.r.t. P,. We point out that the space € is an example of the bridge spaces mentioned in
the Introduction. The following key result is a consequence of assumption (H2):

Lemma 7.3. Consider the map T : Q — Q defined as
T(f, (’UZ‘ 11 € N)) = (Tnl(g)Kefa (’Ui+1 SRS N)) .

Then P, is ergodic and stationary w.r.t. the transformation T .

Proof. Consider the space © with probability measure P := P%) inyolved in assumption
(H2). Define the subset W C © as

W= {(¢(a;: 1 €Z)) €O : By CCx}

Then P(W) =P(Bj C €) > 0.
Recall the transformation 7 : © — © introduced in assumption (H2). It is invertible and
ergodic w.r.t. P (by assumption (H2)). It is simple to check that it is measure preserving

(using the stationarity of P).
Let FF: © - NU{oo} be defined as

F(¥) =min{k > 1 : 7% € W} = ny (), U=(¢(a;:i€Z) €O

and set S(9) = 77O (9) if F(¥9) < oo (define S arbitrarily on the event {F(9) = oo},
having zero P—probability). By the above observations all the conditions of Lemma 3.3 in
[BB] are satisfied. In particular, we get that S (restricted to W) is a measure preserving
and ergodic transformation with respect to P(-|W).

Consider now the map 7 : W — Q mapping (&, (a; : i € Z)) to (f, (Ane) 1 € N)) Note
that

T(n(09)) = w(S(¥)) Vg ew. (7.10)
Take A C Q measurable such that T(A) = A. Due to (7.10), S(7=}(A)) = 7~ 1(A) and
therefore P(m—1(A)|[W) € {0,1} by the ergodicity of S w.r.t. P(:|W). Since P,(A) =
P(m=1(A)|W), we conclude that P,(A) € {0,1}. O
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We define the vector function ¥ :  x R* — R? as

X(w,z) = X(Toeé, 2 =),  w=(&(vi:ieN)). (7.11)
Note that from the shift—covariance property of x (cf. Lemma 3.5)
X(w,r) = X(w,y) =x(ry§, 2 —y), VEEN, Vx,yel. (7.12)

Lemma 7.4. E.(|x(w,w1)]) < 00 and E.(x(w,wy)) = 0, where wy is defined as in (7.9).

Proof. Let us first show that E,(|x(w,w1)|) < co. For { € {By C €}, we define d(&) as
the length of the minimal path in the cluster Cwo (&) C Z% from 0 to n1(£)e. Note that
d(&) = n1(€). Then, setting gx(§) = Zye{ r(y)|x(&,v)|*, by the same arguments leading
to (7.4) and applying twice Schwarz’ inequality, we get

E.(|%(w, w1)]) ZE (1R (w, w1)]; d(€) = j) <

i [ Z g1(m€); d —]}BOCQ: ] 5]P’(BOC1€ )1/2><

2€&:|T|oo < Kj

Sofucsmee] s ¥ wewe]"s ¥ weo]”

z€éi|z|oo < Kj z€€:|z|0o < Kj

C>z\>~

Using the Campbell identity as in (7.5), we get that the last two expectations are bounded
by C(K, d)jdeﬂLz(”) and C(K,d)j?, respectively. Finally, due to property (A) in Section
2.3.1 and standard facts in percolation theory (see for example Lemma 4.4 in [BB]),
P[d(§) > j|Bo C €] < €% for some positive constant a = a(K,d). Collecting the above
bounds we get that E.(|x(w,w1)]) < oo.

We know that  is the L?(u)-limit of a sequence Y, of functions of the form y, (&, x) =
Gn(72€) — G (€), where G, : Ny — R? is bounded and measurable. Since (1, 1), < oo, we
derive that x,, € L' (1) and that ||xn—x||1(,) goes to zero as n — co. Repeating the above

computations with ¥ replaced by ¥ — ¥, we conclude that E, (| X(w, w1) — Xn(w, w1)|) goes
to zero as n — oo. In particular, lim, e Es(Xn(w,w1)) = E«(X(w,w1)). On the other
hand, we can write

Ex(Xn(w, w1)) = Es(Xn(70,&, w1 — v0)) = Ex(Gn(7w,§)) — Ex(Gr(700€)) -

Setting w = (& (v; : i € N)) and F,(w) = Gn(7,€), we can write Gp(7,§) = Fn(Tw).
Hence, the conclusion follows from Lemma 7.3. O

Lemma 7.5. With the notation of Eq. (7.9), one has
lim X(w’wk)
k—o0 k

Proof. Let w = (&, (v; : i € N)). Since vy = wy, it holds x(w,wo) = x(7v,&,0) = 0. Hence,

we can write Y (w,wg) = Z;:é (X(w,wj41) — X(w,wj)). Applying now (7.12), we get

=0, P, -a.s. (7.13)

X(w,wg) = Z?;é X(Tw; &, wj41 — wj). On the other hand, since T/w = (Tnj(S)Kef, (Vjga :
i € N)), we can write

X(ij'éa Wj+1 — w]) =

X (ij (Tnj () Ke€)s Vj+1 + N1 (T (o) keb) Ke — vj> = )Z(Tjw,wl(’fjw)) . (7.14)
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Hence, x(w,wy) = Z?;é X(T?w, w1 (T7w)). The conclusion follows from the ergodicity
stated in Lemma 7.3 and the results of Lemma 7.4. g

Next, we state a simple corollary of the above lemma, which is the starting point of our
further investigations. In order to stress the dependence of the map n;(-) from the vector

e we write nz(-e). Below, Np = {1,2,...}.
Corollary 7.6. Given a vector e € Z% with |e|; = 1, for P(:|By C €s)—a.a. & there exists
a random sequence of points (w,(f) : k € Ny) such that w,(f) €N B(ngf) (&e), k € Ny and

]

(e
T, w
lim max (720 k

=0. 1
k—o0 xo€€NBy k 0 (7 5)

7.3. Sublinearity on average in €. In this section we derive from Corollary 7.6 the
sublinearity on average of the corrector field on £ N €. A similar problem is attacked
by Berger and Biskup in Section 5.2 in [BB] for the random walk on the supercritical
percolation cluster. Their method cannot be applied directly to our context, and the
adaptation of the geometric construction in [BB] would lead to a tremendous technical
effort. We propose here a different construction, based on a two-scale argument, which
allows us to give a self-contained treatment of the problem. The two scales refer to the
fact that below the cluster Cs is considered at scale K (i.e. CX) and at scale mK (i.e.
C™E) | where the key point is that the cluster C¥ can be made arbitrarily dense in Z4
by taking m large. Our target is to prove the following result:

Proposition 7.7. For each gy > 0, for P(-|By C € )~-a.a. £ € N and for all zo € £N By,
it holds

lim 1 Z I{|x(T2y&, ¢ — xg)| = eon} =0. (7.16)

n—oo nd
TEENCo :|T]oo <M

For the reader’s convenience, we isolate from the proof some technical lemmata.

Call B := {e € Z? : |e|; = 1} and Ay := [—s, s]%. Recall the definition of the random

field 0. In order to stress the dependence on K, we write here BX, CX and ¢X.

Given positive numbers C,e and m € N, we consider the Borel subsets Ac.,, and
Acm in N defined as the family of £ € A satisfying properties (P1) and (P2), respectively:

(P1) for all e € B and N € Ny, if j € Ny satisfies B]’-’;K C e N ALy (e je €
CE M Ay) then there exists a point = € B;-ZK N & such that

max |X(Tz€, ¢ —x0)| < C+eN.
moefﬁB(’)ﬂK

(P2) for any z,2’ € €N BYK one has
IX(1e€, 2" — z)] < C.

Let us fix £,0 € (0,1). Thanks to property (A) (see Subsection 2.3.1), we can fix once
for all m so large that

P(0e CmE)y>1-56. (7.17)

We have stated Corollary 7.6 working with the K -partition of R?, but trivially the conclu-
sion remains valid if we work with the mK—partition (recall property (A)). In particular,
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having fixed £ and m, we can find C' large enough that P(Ac . |0 € CE) > 1—4§. Taking
C large we also have P(A¢,,|0 € C7K) > 1 — 6. In particular,

P(Acem NAcm|0 € CTEY > 1 —26. (7.18)
Given an integer v with 1 < v < d, we call
A=A, Nn{zeR: 2;=0Vi>v}.

Lemma 7.8. For P-a.a. £ there exists ng = ng(§), depending also on C,m,¢e,d, such that
forallv:1<v<dand for all n > ng one has

1
zeAYNCK

Proof. By the ergodicity assumption (H2) and the bounds (7.17) and (7.18), we have P-a.s.
that

lim ———— I N =
wooo [AR V2] A;:C’"K (Tnicat € Acin (1 Acm)
. 1
Jim s Y Wit € Acem N Ao 0{0 € CEY) =
n zeArNZd

P(Acem N Acm|0 € CTEYP(O0 € CTE)Y > (1-20)(1 —6) >1-35. O

Suppose now that ¢ satisfies (7.19) for all n > ng(§) (below we take n > ng(§)). Call
G = {2z € Ay NCRF : Tga€ € Acem N Acym} C 7.
By (7.19), one has
IG¥)/|IAZNZY =135, (7.20)

Given a € Z% and 1 < v < d, we set a” = (ay,az,...,a,,0,...,0). Then we define

Gy ={reA,NZ: 2" Gy},

Gn:{xGAnﬂZd cx¥ €@y Yril<v<d}.
Trivially, G,, = N9_,GY. Moreover, by (7.20) it holds |G%|/|A,NZ%| > 1—3§ and therefore,

applying De Morgan’s law,
|Gpl/|An N ZY > 1 —3d6. (7.21)

Lemma 7.9. Suppose that & satisfies (7.19) and take n > no(€). If x € €N B™X with
a € G, then there exists z(1) € € N B™E such that Ix (2, 20 — 2)| < Cd + edn.

Proof. Since a € G¢ and a?' € G4~ ¢ CTK | by property (P1) applied to T,xe& with
N = n we know that there exists (41 € £ B;’Zl[fl such that

X (26, 297D — 2)| < C 4 en,.
Repeating the above argument, we obtain that there exist points £, 2 < i < d, such
that: 2@ =z, 20 ¢ ﬂBZfK and |x(7, & 20D — )| < C + en. In particular, by the
shift covariance property,
d
X (726, 2 — 2)] < Z IX(Ty €, 20D — 20)] < dC + den. O
=2
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Lemma 7.10. Suppose that £ satisfies (7.19) and take n = no(§). Then, for all z,y €
€01 (Uaee, BK™), it holds |x(raé,y — )| < 4dC + 3den.

Proof. Suppose that = € £ N B™K with a € G,, and y € €N B,’)“K with b € G,,. Take z(1),
y) as in Lemma 7.9. By shift covariance,

X(masy — ) = x(m€, 2 — 2) + x (1,006, y — 2V)
= x(12&, 2" = 2) + x(r,0 &y — 2D) + x (0 &y — y V).
Again by the shift covariance (see (3.6)), it holds x(7,1)&,y — yM) = —x(r,6, 9D —y).
Hence, by the bound in Lemma 7.9 and the analogous estimate for y and y™),
(e y — 2)| < 2dC + 2den + (7,006, 3™ — 2D)]. (7.22)

On the other hand, a' € G! and b' € CTX. By property (P1) applied to 7,,x.1&, we
conclude that there exists y € BmK such that |x(7,m&,79 — )| < C + en, while by

property (P2) applied to 7,, ;1€ we get that |x (75, yM) —7)| < C. The thesis then follows
observing that the shift covariance implies the identity

X,y — 20y = x(r,006, 5 — 2W) + x (56, - 7). O
We are finally able to conclude:

Proof of Proposition 7.7. We need to show that, given €y, dg > 0, for P(-|By C € )-a.a
£ € N and for all zg € £N By,

1
Slgglo IVGIZ] Z {|x(T2&, ¢ — m0)| = €08} < o - (7.23)
T€ENCa0
|z] < s
Fix L such that
KB (&(Bg );€(BY) = L) < 8/2. (7.24)

Take ¢ := 0/(8d) and take 6 > 0 small enough that

P(0 € CK) N So K

6d 6dL ’
Set r := [s/K]| and n := [r/m]. Then choose first m and after that C' as in the above
construction, i.e. choose m large enough to assure (7.17), after that choose C' large enough
to assure (7.18). Finally, take s large enough that r > mng(§), where ng(£) is as in Lemma
7.8 (this is meaningfull for P-a.a. &, and in particular for P(:|By C € )-a.a. &).

By ergodicity, |[Al|7! > jenrIjer € CE) converges to p := P(0 € CX) as r — oco. In
particular, for r large enough (we write r > r1(£)) the above average is larger than p/2.
Hence, at the cost of losing a set of zero P—probability and taking r > r1(§) V mng(€), we
can assume that

5 < (7.25)

[{j e AL, jey € CEY > (2r +1)p/2. (7.26)

Call 7 the projection of Z? on its first coordinate axis Zey, namely 7(z) = 2! = (21,0, ...,0).

Note that 7(G,,) C G,, and, due to (7.21),
17(Gy)| = |Gpl/(2n+ 1)1 > (1 —3d6)(2n + 1)
In particular,

{j €Al |j/mler € G} = (1 —3d6)(2n+ 1)m > (1 — 3d6)(2r +1). (7.27)
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Since by (7.25)
(1=3do)2r+1)+ (2r+1)p/2=2r+1)(1 —3dd+p/2) >2r+1,
we get that the set in the Lh.s. of (7.26) and the set in the Lh.s. of (7.27) must intersect.

Hence, there exists j € Al such that BJI; c ¢ and BJI; C B™K for some a € G,,.

Thanks to Corollary 7.6 on scale K, P(:|By C € )-a.s. there exists x € £ in the above
box B;; such that

IX(T2o&,x — x0)| < C(E) +er, Vzg € £EN By. (7.28)
Note that x € &€ N (Useg, BM). For all other points y € & N (Ugeg, B™X), by (7.28),
Lemma 7.10 and the choice € = £(/8d we have
X (a0, y = 20)| < [X(Two€, = 20)| + [x(7u€,y — )| < (C(€) +er) + (4dC + 3drm™e)
<€) +4dre < C'(€) +egr/2 < C'(€) +e05/2. (7.29)
In particular, for s large enough (7.29) is smaller than ggs.
Then we can bound

S (b y—z0) Zeos) <Y EBENEBE) > L)

yeenek . 2€A-NZ4
|y|oo <s

+ Y Y EBEIEBE) <L) = |A N Z7(Ai(s) + Az(s)) . (7.30)

a€AN,NZE:  zeZ9:
afGn BEcBPK

Using (7.24) and the ergodicity in assumption (H2), at the cost of removing a set of zero
P—probability, we have

lim Ai(s) = K E(&(BF): &(BE) = L) < 60/2. (7.31)

§—00

On the other hand,

1 3 3 d
R — —

a€EANNZE:  zeZd:
afGn  BKcBmE

Since s ~ nKm, by (7.21) we have that lims_, Az(s) < LK ~?3ds, which is smaller than
d0/2 by our choice of § (cf. (7.25)). Coming back to (7.30), we get the thesis. O

7.4. Sublinearity on average in €} . We now need to come back to the set of good
points £ N €.

Lemma 7.11. If A C N is a measurable set such that P(A|By C €x) = 1, then P(A|By C
c)=1

Proof. Since € C €, the set B := {By C € } \ A is contained by the set D := {By C
Cs} \ A. Therefore we have the following sequence of implications

P(AByCC€)<1=PB|ByC¢y)>0=PB)>0=PD) >0
= P(D|By C €x) >0=P(A|By C €x) < 1, (7.32)
showing the contrapositive. 0

From Proposition 7.7 and Lemma 7.11 we easily obtain the following
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Corollary 7.12. Given € > 0, for P(-|By C €, )-a.a. £ € N and for all zo € £N By,
. 1
nh_)rr;o o Z {|x(T2y&, ¢ — xg)| = en} =0. (7.33)
x€ENCE |zl < n
7.5. Strong sublinearity in C7_.
Lemma 7.13. For each ¢ > 0, for P(-|By C €& )-a.a. & and for all zy € £N By,

1
Jm L X (72§, — w0)| = 0. (7.34)
[]oo <
Proof. Let us define
R, (€) = — o) - :
n(§) jonax - dnax IX(720& 2 — o) (7.35)
|zloe <70

Due to Lemma 7.1 and Lemma 7.11, for 6 > d + 1
lim n %R, =0,  P(-|By C ¢ )as. (7.36)

n—oo

Following an idea of Y. Peres, we only need to prove a recursive bound of the form: for
each £,0 > 0, there exists an a.s. finite random variable ng = ng(, €, 9) such that

R, <en+4Rs5,, n=ng. (737)

From (7.37), using the input (7.36), it is easy to conclude; see the explanation after [BP,
Lemma 5.1].

We turn to the proof of (7.37). We take £ € N such that {By C €%} and satisfying
(7.36). Moreover, assume ¢ and b, = o(n?) satisfy (4.5) and (4.4) of Proposition 4.1. Take
x0, z such that R, (&) = |x(7z,&, 2 — o), ©o € EN By, z € ENEL, |2]oo < n. Similarly to
[BP], take t = t(n) > bayn V n (we will specify the function ¢(n) at the end). Fix positive
constants C, Cy such that the expressions max, sup, in (4.5) and (4.4) are bounded by C}
and Cy, respectively, if n is large enough, that is n > n,(§) for a suitable constant n.(&).
Take n > K V n.(). Finally, define the stopping time

Spi=1nf{t > 0:|Y; — 2|0 = 2n}.
Due to Corollary 4.10 and the Optional Stopping Theorem we can write
B.|X(7:6,Yins, — 2) + Yins, — 2| = x(7:€,0) = 0. (7.38)
By the shift—covariance property we can write

X(T20€, 2 — @0) = X(Tzo€, Yins, — o) — X(728, Yins, — 2) - (7.39)
Combining (7.38) and (7.39) we get

X(Tzo§, 2 — w0) = B¢ [X(Txoﬁ,yt/\sn —x0) + Yins, — Z} : (7.40)
thus implying that R, () < E, ¢ [’F(ﬁ,Y}ASn)H where

F(& Y;f/\Sn) = X(Tzof, KtASn - 350) + Yt/\Sn —Zz. (7-41)
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Let us introduce the event A = {S,, <t, |Ys, — z|s > 4n}. Using (7.36) we can bound

E.&||F(&,Yins,)|; A] < 3 Bue||F( Yins, )| As Vs, = 2loc € [fon, (k + 1))
k=4

o0

< S {CER? + (k+ 1)n} P [yysn — 2o € [kn, (k+1)n), S, < t}
k=4

< c/nQZk"PZ,g[WSn 2o € [kn, (k +1)n), S, < t] . (7.42)
k=4

Recall that Y; is the continuous time version of the discrete time walk n — Xp . If
|Ys, — 2|loc = kn, then up to time ¢ > S, there must have been a jump of size at least
(k — 2)n starting from some point = such that || < 3n. Taking t = ¥n?, with ¥ > 0,
and using Lemma 4.7, we can estimate for any k >4, p > 1:

P 7§[|Y5 — 2|os € [kn, (k+ 1)n), S, < t]

ZP (Nt = j)P¢|  max X7, — X1, |oo = (k= 2)15 | X7, |00 < 371

o0
Z (Ne=3)j (k—2)n)" max E.¢[|Xn, — X1, % | X1, 1 |oo < 31
=1

1<7,<

\ﬂn ((k=2)n)"" max Eqel|Xr, —2lg]

7[00 < 3n
<ICEk™Pn P 2 (logn)P,
where C'= C(§) is a constant. Coming back to (7.42) and taking p > 2 + 6, we get

: A} < IO P (logn)? Y kPP < (¢/2)n, (7.43)
k=4

E. ¢ [‘F(f, Yins,)

for all n large enough.

The above expectation, coming from the presence of long jumps, does not appear in
[BP]. On the other hand, using Proposition 4.1 and taking ¢t = 9¥n? with 9 > 0, the
control of E, ¢ HF(f7 Y}Agn)} ; AC] can be obtained by the same computations in the proof
of Lemma 5.1 in [BP]. As a final result, one gets (7.37). O

7.6. Proof of Theorem 3.6. We now have most of the tools needed to prove the sub-
linearity of the corrector field stated in Theorem 3.6. First, we need to link the Palm
distribution to the probability measures used above. To this end we introduce a bridge
probability space. We call Qp the distribution on Ny of the point process £ defined in this
way: pick a configuration £ € N with law P(- ]f(Bo) > 1), pick a point vy € €N By with
uniform probability, and set £ = 7‘1,05

Lemma 7.14. Let A C Ny be a measurable subset. Then Qu(A) = 0,1 if and only if
Po(A) =0, 1, respectively.

Proof. By taking the complements, it is enough to prove that Qu(A) = 1 if and only if
Po(A) = 1. Consider the measurable set B :={{ € N : 7,6 € A Vz € {N By}. By the
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Campbell identity (2.1) with f(z,&) =I(x € By; £ € A} we have

1 1
PolA) = ez [ Btae) [ tamitr e )< [ pag) [ elann =
which implies that Py(A) = 1 if and only if P(B) =
Similarly, by definition of Qg we have
1 (€ € A)
A = semrsT gyl
P(£(Bo) 2 1) Jice(Bo) > 1} f(Bo)
1 fB 5(
<-— P(de) B> 200
ST im0
which implies that Qg(A) = 1 if and only if P(B) = 1. O

Thanks to the above lemma, to prove Theorem 3.6 it suffices to show that for P(-|¢(Bp) > 1)—
a.a. &,

1
lim — — =0. 7.44
A b, R Tt w = 2ol (749
|I‘00<"

The plan of the proof is the following: we first improve Lemma 7.13 by passing from
P(:|By C €%) to P(-|¢(Bp) = 1) (see Lemma 7.16); after that we remove the restriction
x € € which appears in Lemma 7.16 by applying the Optional Stopping Theorem.

We fix a coordinate vector e and define the map n, : NV — Ny := {1,2,...} as follows:
n.«(§) =min{n € Ny : B, C € }. (7.45)
By assumption (H1), the map is well defined P-a.s.

Lemma 7.15. Call P the law on N of the point process Tn. () Ke§, where § € N is sampled
with probability P(-|£(By) = 1). Then, for any measurable subset A C N,

P(A|ByC € )=1= P(A) =
Proof. Given a bounded measurable function f : N’ — R we can write

E [f(Tn. e)Ke€); €(Bo) = 1]
P(£(Bo) > 1) '

Ep(f) = / P(dE | £(Bo) > 1) f (. e€) =

Moreover,

tqu

E [f(Tn. (e)ke€); €(Bo) > 1 E [f(Tmxe); €(Bo) = 15n4(§) = m]

1

3
I

_Z F(Tmie€); €(Bo) = 1B ¢ €Wk : 1<k <m—1, Bpe C €], (7.46)

Due to the stationarity of P the last expression can be written as

D E[f(&); €(Bome) 2 1;Bre ¢ €5 Vh:1-m < k< — 158, C €]

m=1

— E[£(£)A(¢); Bo € €], (7.47)
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where we define

n_(§) =max{j < —1: Bje C €5},

() =t#{j - n—(§) <j< —1, &Bje) 2 1}
Collecting the above observations we get

Be(f) = SR S B rgn©s boc el z .

This proves that

I(By C €)
P(¢(Bo) =2 1)
Since P is a probability measure it must hold 1 = E[n(§); By C €] /P[¢(By) > 1]. Take

A C N measurable and satisfying P(A| By C €5 ) = 1. This implies that I(§ € A)I(By C
¢t ) =1L(By C € ) P-a.s. In particular, we have
E[n(I(By C €5)I(E € A)]  E[a(§)I(Bo € €%)]

PO Pemy > PEB) D)

while we have already shown that the last member equals 1. O
Recall the definition (7.35) of R,,.
Lemma 7.16. For P(-|£(By) > 1)-a.a. £, it holds lim,, o Ry /n = 0.

P(dg) = n(§)I(Bo C C)P(dE [£(Bo) = 1) = 7 (§) P(dg) - (7.49)

Proof. Recall the definition of the function n,(§) given in (7.45). As a byproduct of Lemma
7.13 and Lemma 7.15, we get for P(-|§(B0) > 1)fa.a. ¢ that, for any 2’ € £N B, (¢, it
holds )
lim — oy —2)| = .
Jm - max X (rwé,y—2a')| =0 (7.50)
ly—ns(§)Keloo < 2n
(the above choice of 2n instead of n is due to later applications). On the other hand, by
the shift covariance, given xg € €N By, x € {NEE and 2/ € £N B, (¢)es We can write

X(Tap8, @ = m0) = X(T§, 2" — 0) + X (7w, x — 2). (7.51)

Since, given £ and z € £ N € with || < n, it holds |n.(§)Ke — x| < 2n for n large
enough, one can apply (7.50) with y = z. From (7.50) and (7.51) we then obtain

1
lim — max max |x(7& @ — 20)| =0, (7.52)

n—00 N xog€{NBy x€£NCE

|Zloo <

which corresponds to the thesis. O

Let us finally conclude. Take xzy € By N ¢ and z € £ with 2|, < n. From the Optional
Stopping Theorem (cf. Proposition 4.9) we know that

T+ X(Txogvx - .%'0) - E:E,§ [XTI + X(Twovaﬁ - .%'0)] : (7'53)

Take ¢ < 1 and let S = {(k—1)n® < | X1, —x| <kn®}, k =1,2,.... Recalling (7.35), we
can estimate

X(Taos @ — 20)| < 0+ Ron + > _(kn® + Rysins) Prg(Sk) - (7.54)
k=2
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Lemma 7.16 gives us the estimate R, = o(n), and therefore we see that the desired
conclusion follows if we can show that a.s. Y - (n + kn®) P, ¢(Sk) = o(n). This, in turn,
follows from Lemma 4.7 and the fact that || < n. Indeed, for every k > 1, and p > 1:

Prg(Skt1) < Pog(| Xty — 2| = kn®) < 5 (kn) 7" (logn)” .
Taking p > 3 we get the desired bound.

8. PROOF OF THEOREM 1.2 IN THE PRESENCE OF ENERGY MARKS

Let us suppose now that the function u(E,, E,) is non trivial. In this case, the environ-
ment of the random walk is given by w = {(9:, Ey):zeé } and corresponds to a marked
simple point process. We refer to [F'SS, Section 2| for detailed definitions and references.
Here we simply recall that stationarity and ergodicity of the point process £ automatically
extend to P. Moreover, the Campbell identity remains valid in the marked case (with
suitable changes).

We fix some notation. We write N for the state space of the marked point process w
and, given v € R%, we define the translation 7,w as

va::{(x—v,Em):ajef}, w:{(m,Ew):xEG.

Let us suppose that P is an ergodic stationary marked simple point process with finite
second moment. As already mentioned assumption (H1) is the same, while assumption
(H2) has to be slightly modified as follows:

(H2) for each K > 0 and for each vector e € Z¢ with |e|; = 1, consider the product
probability space © := N x [([0, K)% x R) U {0}]% whose clements (w, (a; : i € 7))
are sampled as follows: choose w = {(:B, Ey):xef } with law P, afterwards choose
independently for each index i a point b; € £ N B(ie) with uniform probability and
set a; := (b —iKe, Ey,) (if ENB(ie) = 0, set a; = J). We assume that the resulting
law PU5¢) on N x [([0, K)¢ x R) U {8})])% is ergodic w.r.t. the transformation

71 (w,(a; i € Z)) = (Tkew, (aip1 1 € Z)). (8.1)

The proof that the marked PPP satisfies the new assumption (H2) is similar to the
non—marked case. The proof of Theorem 1.2 in the presence of the energy marks can be
obtained by a straightforward extension of the proof presented in the non—marked case.
Indeed, the presence of the energy marks is rather painless since the weights e ~*(E=Ey) are
uniformly bounded from above and from below by some positive constants. Furthermore,
the following covariant property, implicitly used in the non—marked case, holds: writing
pw(z,y) for the jump probability of X,, in the environment w, then p,(x,y) = prw(x —
v,y —v) for all v € €.

APPENDIX A. STRONG INVARIANCE PRINCIPLE FOR MOTT RANDOM WALK ON
DILUTED LATTICES

In this appendix we discuss the quenched invariance principle for diluted lattices. The
proof differs from the one of Theorem 1.2 in few points (mainly related to ergodicity) that
we comment below. In order to simplify the notation, we disregard the energy marks (all
the arguments can be easily adapted to the marked case).

We start with a lattice I' (or crystal, cf. [AM]): T is a locally finite set I' ¢ R such
that for a suitable basis v1, v, ..., vg of R%, it holds

I'~-2z=T VxEG::{21U1—1—2202+-"+zdvd:27;622 Vi}. (A1)
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Let A be the elementary cell defined as {tlvl +tovg + - Ftgug : 0Kt <1 Vi}. (Note
that both the group G and the cell A depend on the basis vy, va,. .., v4.)

Let w = (ww T x € F) be a site Bernoulli percolation on I" with parameter p € (0, 1].
For each u € T'N A we call P, the law on Nj of the random point process given by
{0}u{z—u:2 €T, w, =1} and we consider Py = ﬁZueAmF P,. As proved in
[FM], Py does not depend on the basis vy, ..., vg and on the fundamental cell A, moreover
Py is indeed the Palm distribution of the stationary point process with law P realized
as {x =V :x € I, wy, = 1} where V is a random vector uniformly distributed in the
fundamental cell A, independent from the field w. Finally, we call P the law of the point
process {z € I : w, = 1}.

It is simple to check that both the discrete-time and the continuous—time Mott ran-
dom walks are well defined Pp—a.s., P-a.s. and P—-a.s. Moreover, as in Theorem 1.2 and
Corollary 1.3, proving the invariance principle for Py—a.a. ¢ with starting point xg = 0,
one automatically gets the strong invariance principle.

The corrector field is defined as in Section 3. By applying a linear isomorphism, we can
assume that the basis vy, ..., vg coincides with the coordinate basis of Z¢ and therefore
that A = [0,1)%. We restrict to K € N;. Then under P, the point processes Bx (2) NTx &
with z € Z% are i.i.d. In particular, P is stationary and ergodic w.r.t. the translation
Tiv;- Moreover, sampling ¢ with law P, the random field o (¢) is a Bernoulli random
field, supercritical if K is taken large enough. Define Cy, as its unique infinite cluster
and define €, as before. In the definition of the law P, on the space ) given in Section
7.2, replace P with P. With this trick, P, remains ergodic and stationary w.r.t. to the
map 7T defined in Section 7.2 and one can prove the sublinearity of the corrector field
along a given direction. At this point, substituting P with P, the proof of the quenched
invariance principle follows the same main steps of the proof of Theorem 1.2, even with
huge simplications. Indeed, working with diluted lattices overcrowded regions are absent.
In particular, taking Tp large enough, the field 9570 coincides with o*.

APPENDIX B. MISCELLANEA
We start with a key technical lemma:

Lemma B.1. Let Py be the Palm distribution associated to a stationary simple point
process P with finite density.

(i) Suppose that p; = E (£([0,1)%)F) < oo, and let f : RY x Ny — R be a measurable
function satisfying Eqg [erg |f(a:,§)q < 00. Then E[erg |f(—1:,7'x§)@ < oo and

Eo| Y- f(@.6)| =E[ Y (-, 7). (B.1)

z€el z€f

(ii) Let n be a nonnegative integer such that p,+1 < oo. Then

E, [(Z e*W‘ff'“)"} <00,  Va,y>0. (B.2)
TSI

Proof. Part (ii) can be derived generalizing the proof Lemma 2 of [F'SS]. The proof
of part (i) uses some arguments taken from the proof of Lemma 1 (i) in [FSS]. We
give some more details. Without loss of generality we can assume that f > 0. We
define F'(§) = >, f(2,€) and G(§) = >, f(—2,7€). Note that, given u € &, it
holds F(7u8) = > cc [y — u, ) and G(1u§) = 3o ¢ flu — y,7€). In particular,
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taking L > 0 and setting A;, = [~L/2,L/2]¢, by the Campbell identity we can write
Eo[F] = A(L) + B(L) and Eo[G] = A(L) + C(L) where

AL =B XY f-wnd] = gE) XS s,

Tu€ENAL yEENAL yEENAL ueénAy

B(L):p;dE_ > f(y—u,rui):,

“u€fNAL ye\AL

) =B X fu-prg)].

“u€fNAL ye\AL

Z Z fly —u,m8) < Z Z fz,m8), (B.3)

u€ENAL yet\AL u€ENAL z€Tué\A2r
Yoo flu—ynd< Y Y f-rmml), (B.4)
u€ENAL yeE\A L u€ENAL zeTué\Aar

by Campbell’s identity we can bound B(L) and C(L) from above by Eo| Yvee\ns, (@, 9)]
and Eg [ erg\AM f(—=z, Txf)] , respectively. Suppose for the moment that f(x, ) is bounded
and f(z,€) = 0 if |z|ec > ¢ for some positive £. This assures that all the above expecta-
tions are bounded (we invoke part (ii) and the assumption py < c0). In particular, by the
Dominated Convergence Theorem, we conclude that B(L) and C(L) go to zero as L — oo.
As a consequence, it holds E¢[F] = Ey[G], which is simply the thesis in point (i). On the
other hand, given a general nonnegative function f and a constant £ > 0, we can define
the cutoff

folo.) = {f(a:,a if 2o <0, flz,6) <€

0 otherwise .

Then the thesis holds for f, (by what was proved above) and extends to f by the Monotone
Convergence Theorem. O

Lemma B.2. Given a measurable subset Ay C Ny, define A C N as
A={eN : 7,6 € Ay Yz €}
Then Po(Ag) =1 if and only if P(A) =
Proof. Given L > 0 we set Ay, = [~L, L]? and we apply the Campbell identity (2.1) to the
function f(z,€) :=1I(z € Ar; £ € Ao):
(21)" = (2L)"Po(Ao) = p'E[ 3 Wt € Ap)| < p7'E[g(A)] = (2L)".
Y

Hence, all members in the above expression must be equal. In particular, P-a.s. it holds
€ € Ag for all x € £ N Ap. Using the arbitrariness of L, we conclude. O

Lemma B.3. Suppose that P is the law of a stationary ergodic marked simple point process
with finite second moment, or a marked diluted lattice. Then, both for P and for Py—a.a.
w, the DTRW and the CTRW are well defined for any starting point xg € &.
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Proof. First, we point out that Lemma B.2 holds also in the marked case and the proof is
very similar. By the assumption of finite second moment (recall that diluted lattices have
finite moments of all orders) it holds Eg[w(0)] < co. This implies that for Pp—a.a. w and
for all 2 € £ it holds w(x) < co. By Lemma B.2, the same property is fulfilled P-a.e. As
a consequence, the DTRW is well defined. The claim for the CTRW follows from [FSS,
Prop. 10] and Lemma B.2 (diluted lattices can be treated apart since due to the uniform
density bounds the proof becomes trivial). O
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