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Abstract

We introduce and investigate a new model of a finite number of particles jumping forward on the real

line. The jump lengths are independent of everything, but the jump rate of each particle depends on the

relative position of the particle compared to the center of mass of the system. The rates are higher for those

left behind, and lower for those ahead of the center of mass, providing an attractive interaction keeping the

particles together. We prove that in the fluid limit, as the number of particles goes to infinity, the evolution

of the system is described by a mean field equation that exhibits traveling wave solutions. A connection to

extreme value statistics is also provided.
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1 Introduction

Interacting particle systems always show interesting behavior and present a challenge for rigorous treatment.
In this paper we introduce and investigate a new type of model which—to the best of our knowledge—has not
emerged in the literature before. The system consists of a finite number of particles moving forward on the
real line R. The center of mass of these particles is computed and, given a configuration, each particle jumps
after an exponential waiting time that depends on its relative position compared to the center of mass. The
more a particle lags behind the center of mass, the less its mean waiting time is; on the other hand, the more
a particle is ahead of the center of mass, the more its mean waiting time is. When the exponential time has
passed, the particle jumps forward a random distance, independent of everything else, drawn from a probability
distribution concentrated on the non-negative half-line. While doing so, it naturally moves the center of mass
forward by 1/n times its jump length as well, where n is the number of particles. Thus the dynamics has an
effect of keeping the particles together, while randomness creates fluctuations in the system.

Several real-life phenomena can be modeled this way: the evolution of prices set by agents trying to sell the
same product in a market, the position of goats in a herd, etc. Mathematical finance is an area of active research,
and many processes arising in finance are modeled with interacting particle systems, see e.g. the monograph on
stochastic portfolio theory by Fernholz [15], Banner, Fernholz and Karatzas [5], and the survey by Fernholz and
Karatzas [16]. Herding behavior has drawn serious interest in the physics literature, a few examples are Vicsek,
Czirók, Ben-Jacob, Cohen and Shochet [32], Czirók, Barabási and Vicsek [11], Ballerini, Cabibbo, Candelier,
Cavagna, Cisbani, Giardina, Lecomte, Orlandi, Parisi, Procaccini, Viale and Zdravkovic [4].

The problem of competing individuals is interesting even without dependence of the dynamics on the actual
position of the particles. A series of papers have been written on models where the competing particles evolve
according to i.i.d. increments: Ruzmaikina and Aizenman [27], Arguin [1], Arguin and Aizenman [2], Shkol-
nikov [28]. The main point of investigation in these papers is characterizing point processes for which the joint
distribution of the gaps between the particles is invariant under the evolution.

Several authors have considered continuous models in which the motion (drift) of the particles depends on
their rank in the spatial ordering; see e.g. Banner, Fernholz and Karatzas [5], Pal and Pitman [25], Chatterjee
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Scholarship of the Hungarian Academy of Sciences.

†Department of Statistics, University of California, Berkeley; racz@stat.berkeley.edu; most of this work was done while the
author was at the Institute of Mathematics, Budapest University of Technology.

‡Institute of Mathematics, Budapest University of Technology; balint@math.bme.hu; research partially supported by the Hun-
garian Scientific Research Fund (OTKA) grant K60708, K100473 and by TÁMOP - 4.2.2.B-10/1-2010-0009.
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and Pal [9], Shkolnikov [29, 31, 30]. These models are central objects of study in modeling capital distributions
in equity markets. Branching diffusion-type models have also been investigated with a linear interaction be-
tween particles, see e.g. Greven and Hollander [19], Engländer [12] and the references therein. Linearity of the
interaction is an important ingredient in these papers making the analysis somewhat easier.

Closer to the present work are jump processes with interaction between the jumping particles. A related
model is introduced in ben-Avraham, Majumdar and Redner [6], where particles compete with a leader who
looks back only at the contestant directly behind him. Interaction between the leader and the followers is realized
via a linear dependence of the mean jump length on the relative position of the leader and the followers. A
process with rank-dependent jump rates is investigated in Greenberg, Malyshev and Popov [18], and one with
similar, but randomized jump rates in Manita and Shcherbakov [24]. Maybe the closest model to our system is
the one featured in Grigorescu and Kang [20], where particles jump in a configuration-dependent manner, and
the authors give special focus to the situation where the dependence of particle advances on the configuration
is via the center of mass of the particles.

In our case, positive jump lengths are independently chosen, and the jump rate of a particle depends on
its position relative to the center of mass. This jump rate function is non-increasing and non-negative, hence
clearly cannot be linear in nontrivial cases. The setting is thus genuinely different from situations in the above
examples. The non-increasing jump rate function creates a monotonicity in the system which keeps the particles
together. This gives rise to a traveling wave-type stationary distribution. We address the following questions.

• The two-particle case is, of course, tractable. We compute the stationary distribution of the gap between
the two particles for several choices of the jump length distribution. However, we cannot handle the
situation even for three particles. (The process is not reversible.)

• As the number of particles goes to infinity, we expect that the motion of the center of mass converges to
a deterministic one. This motion, together with the distribution of the particles, satisfy a deterministic
integro-differential equation in this so-called fluid limit. We call the resulting equation the mean field
equation. We write up this equation by heuristic arguments and, in some cases, we solve it for a traveling
wave form, i.e. the stationary solution as seen from the center of mass. Even finding the traveling wave
solution to this mean field equation is nontrivial.

The reason for expecting a deterministic limiting equation is the averaging property of the dynamics.
We in fact prove this phenomena in this paper later on for some cases. As the motion of the center of
mass becomes deterministic, the particles decouple, each independently following the deterministically
moving center of mass. Therefore in the limit it does not matter if we consider a deterministic cloud of
particles (the limit coming from the empirical distribution of n→ ∞ particles), or a single particle in the
corresponding distribution that is driven by the deterministic center of mass. The evolution of the fluid
limit can therefore be called a mean field dynamics. Of course, the motion of the center of mass must be
chosen appropriately to be consistent with the cloud or distribution of particles. In the traveling wave
case, the distribution, as seen from the center of mass, becomes stationary, and the speed of the center of
mass becomes constant in time.

• Some traveling wave solutions lead us to Gumbel distributions, which naturally pose the question whether
an extreme value theory interpretation can be given to the process. An idea by Attila Rákos shows that
there is indeed such a connection.

• Under restrictive assumptions on the jump rates, we prove that the evolution of the process in the fluid
limit indeed satisfies the deterministic integro-differential equation we formulated by heuristic arguments.
We use weak convergence methods and uniqueness results on the integro-differential equation. Since the
center of mass is not a bounded function of the particle positions, standard weak convergence techniques
need to be extended to our situation.

This last point is the most interesting from a mathematical point of view. Our proof is a standard fluid limit
argument, somewhat similar to those in Manita and Shcherbakov [24] and Grigorescu and Kang [20]: we use
an extended notion of weak convergence, tightness, and martingales to show convergence to the unique solution
of the limiting integro-differential equation. As opposed to Greenberg, Malyshev and Popov [18], asymptotic
independence of the particles (as the number of particles tends to infinity) will be a consequence of the proof,
rather than a method to rely on. This is because our case of dependence through the center of mass does not
seem to provide an easy a priori way of showing asymptotic independence of the particles.

We start by precisely describing the model in Section 2. We formulate our main results in Section 3: first,
we formulate the limiting mean field equation together with some traveling wave solutions, and we also state
the fluid limit theorem. These are the results we believe to be the most important, and additional statements
can be found in subsequent sections. We end this section with a collection of open questions. We proceed by
analyzing the two-particle case in Section 4. The mean field equation is investigated in Section 5. In particular,
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a connection with extreme value statistics is heuristically explained in Section 5.2. Finally, Section 6 contains
our fluid limit argument under some restrictive conditions on the jump rates.

The reader may find an extended version of this paper in [3], where we provide more details on arguments
that are not essential for our main results, particularly in Sections 4 and 5. In addition, see [3, Section 7]
for simulation results which support the idea that the mean field equation holds in the fluid limit in greater
generality.

2 The model

To model the phenomena described in the Introduction, we present the following model. The model consists
of n particles on the real line. Let us denote the position of the particles by x1 (t) , x2 (t) , . . . , xn (t), where t
represents time and xi (t) ∈ R for i = 1, . . . , n. We now describe the dynamics. Given a configuration, the mean
position (center of mass) of the particles is mn (t) =

1
n

∑n
i=1 xi (t). Now let us denote by w : R → R+ the jump

rate function, a positive and monotone decreasing function. The dynamics is a continuous-time Markov jump
process. The ith particle, positioned at xi (t) at time t, jumps with rate w (xi (t)−mn (t)). That is, conditioned
on the configuration of the particles, jumps happen independently after an exponentially distributed time, with
the parameter of the ith particle being w (xi (t)−mn (t)).

When a particle jumps, the length of the jump is a random positive number Z from a specific distribution.
This is independent of time and the position of the particle and all other particles as well. We scale the jump
length so that EZ = 1, and for technical reasons we assume that Z has a finite third moment. If this distribution
is absolutely continuous then its density is denoted by ϕ.

Our focus is on the empirical measure of the n particle process at time t:

µn (t) =
1

n

n
∑

i=1

δxi(t).

More generally, we are interested in the path of the empirical measure, µn (·) = (µn (t))t≥0, with initial condition

µn (0) =
1
n

∑n
i=1 δxi(0).

We introduce the following notation in order to abbreviate formulas, which is also well suited for weak
convergence type arguments. For a function f : R → R and a probability measure P on R let

〈f, P 〉 :=

∞
∫

−∞

f (x)P (dx) .

We also use the following notation: 〈f (x) , P 〉 ≡ 〈f, P 〉. Using this notation, we have mn (t) = 〈x, µn (t)〉.
Now we can present the generator of the process acting on the integrated test functions as above. Let Cb

denote the space of bounded and continuous functions from R to R, and let Id denote the identity from R to
R: Id (x) = x. Define

(2.1) H := {f ∈ Cb : |f | ≤ 1} ∪ {Id} .

This set of functions will be important later on. For a function f ∈ H we have:

L 〈f, µn (t)〉 = 〈(E (f (x+ Z))− f (x))w (x−mn (t)) , µn (t)〉 ,

where L is the generator of the process. The particular choice of H is so that we can apply the generator L to
the center of mass mn (t).

3 Results

Our main contributions and results are (1) introducing the model, (2) formulating via heuristics the limiting
behavior as the number of particles goes to infinity and analyzing this limiting behavior, and (3) showing
rigorously that (under some assumptions on the jump rates) the limiting behavior of the process in the fluid
limit indeed satisfies the deterministic integro-differential equation that we formulated. This section describes
in more detail results describing (2) and (3).

The case of a fixed number n of particles is difficult to treat. Of course the n = 2 case is doable: in Section 4
we look at two specific cases of the model, and in both we compute the stationary distribution of the gap
between the two particles. At the end of the section we illustrate the difficulties that arise for more than two
particles in Figure 2.
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Our main interest is in the large n limit (so called fluid limit) of the particle system. Let us assume that
the jump length distribution has a density ϕ. Heuristically, in the fluid limit the empirical measure µn (t) of
the particles at time t becomes an absolutely continuous measure with density ̺ (·, t) whose time evolution is
given by the so-called mean field equation

(3.1)
∂̺ (x, t)

∂t
= −w (x−m (t)) ̺ (x, t) +

x
∫

−∞

w (y −m (t)) ̺ (y, t)ϕ (x− y) dy,

where

(3.2) m (t) =

∞
∫

−∞

x̺ (x, t) dx

is the mean of the probability density ̺ (·, t). A priori we assume nothing of the density ̺ (·, t) other than it
having a finite mean. The first term on the right hand side of (3.1) accounts for the particles hopping forward
from position x at time t: at time t there is a density of ̺ (x, t) particles at x, who jump forward with rate
w (x−m (t)). The second, integral term on the right hand side of (3.1) accounts for the particles who are at
position y < x jumping forward at time t to position x: at time t there is a density of ̺ (y, t) particles at y, who
jump forward with rate w (y −m (t)), and need to jump forward exactly x− y to land at x, the probability of
this being proportional to ϕ (x− y).

Our first results concern solutions to the mean field equation (3.1) in the form of a traveling wave

(3.3) ̺(x, t) = ρ(x− ct),

where c is the constant velocity of the wave and ρ is centered, i.e.
∫

xρ (x) dx = 0. Traveling waves of this form
represent stationary distributions as seen from the center of mass, which travels at a constant speed c. Substi-
tuting (3.3) into the mean field equation (3.1), and then writing x instead of x − ct for simplicity everywhere,
we arrive at the following equation:

(3.4) − cρ′ (x) = −w (x) ρ (x) +

x
∫

−∞

w (y) ρ (y)ϕ (x− y) dy.

Recall that the jump rate function w is a non-increasing function; any non-constant w gives a strong enough
attraction to keep the particles together, i.e. there is a probability density traveling wave solution ρ. This is
formulated in the following theorem for exponentially distributed jump lengths.

Theorem 3.1. Consider the specific case when the jump length distribution is exponential with mean one, and
assume that w is non-constant. Let c0 be the unique solution of

(3.5)

∞
∫

−∞

xe

x
∫

0

(

1
c0
w(s)−1

)

ds
dx = 0.

Equation (3.4) has a centered probability density solution ρ if and only if c = c0. In this case it is given by

(3.6) ρ (x) = Ke

x
∫

0
( 1
c
w(s)−1)ds

,

where K is an appropriate normalizing constant. It is immediate that the probability density ρ of (3.6) has at
least exponentially decreasing tails.

There are several specific jump rate functions w for which the resulting stationary distribution is of interest.
In particular, the case of w (x) = e−βx, where β > 0, leads to the generalized Gumbel distribution:

Corollary 3.2. If w (x) = e−βx, where β > 0, then from Theorem 3.1 we obtain for the stationary density

(3.7) ρβ (x) =
β

Γ
(

1
β

)e
−

(

x−
ψ( 1

β )
β

)

−e

−β






x−

ψ( 1
β )
β







,

where ψ is the digamma function:

ψ (x) =
Γ′ (x)

Γ (x)
.
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Specifically for β = 1 the stationary distribution is the centered standard Gumbel distribution. The velocity of
the wave is

c =
1

β
e−ψ(

1
β ).

The Gumbel distribution often arises in extreme value theory (Gumbel [21]), e.g. this is the limiting distribu-
tion of the rescaled maximum of a large number of independent identically distributed random variables drawn
from a distribution that has no upper bound and decays faster than any power law at infinity (e.g. exponential
or Gaussian distributions). More generally, the kth largest value, once rescaled, follows the generalized Gumbel
distribution (Bertin [7], Clusel and Bertin [10], Gumbel [21]). Therefore the question arises whether there is an
underlying extremal process in the dynamics. It turns out that there is a connection between the mean field
model and extreme value theory: this is discussed in Section 5.2.

The validity of the mean field equation is strongly supported by simulation results for various special cases
of the model, see [3, Section 7]. We expect this to be true in quite some generality (for fairly general jump rate
functions and jump length distributions).

The main result of the paper is to rigorously validate this approximation. That is, our goal is to show that in
the fluid limit—when the number of particles tends to infinity—the mean field equation (3.1) holds. However,
when trying to rigorously prove this, technical difficulties may arise. Therefore we impose some restrictions on
the jump rate function and the jump length distribution. Our main restriction is that we suppose that w is
bounded: w (x) ≤ a. We also impose some additional (smoothness) restrictions on w, but boundedness is the
main restriction. Our restrictions on the jump length distribution are light: we assume that it has a finite third
moment.

In order to precisely state our main theorem, some preparations are needed. First notice that the mean
field equation (3.1) can be rewritten as the evolution of a probability measure µ (·) using test functions from H.
Moreover, we do not have to assume that the jump length distribution has a density either. Define

(3.8)

At,f (µ (·)) : = 〈f, µ (t)〉 − 〈f, µ (0)〉 −

t
∫

0

〈(E (f (x+ Z))− f (x))w (x−m (s)) , µ (s)〉 ds

= 〈f, µ (t)〉 − 〈f, µ (0)〉 −

t
∫

0

L 〈f, µ (s)〉 ds

where
m (t) = 〈x, µ (t)〉 .

We say that µ (·) satisfies the mean field equation if

(3.9) At,f (µ (·)) = 0

for every t ≥ 0 and f ∈ H.
The position of the center of mass of the particles plays an important role in our model, and therefore we

always assume it exists (and is finite). Consequently, it is natural to look at µn (t) as an element of P1 (R), the
space of probability measures on R having a finite first (absolute) moment. In order to talk about convergence
in P1 (R) we need to define a metric on P1 (R). We use the so-called 1-Wasserstein metric. For µ, ν ∈ P1 (R)
define the set of coupling measures

Π (µ, ν) := {π ∈M1 (R× R) : π (· × R) = µ, π (R× ·) = ν} ,

where M1 (R× R) denotes the space of probability measures on R×R. The 1-Wasserstein metric on the space
P1 (R) is defined as

(3.10) d1 (µ, ν) := inf







∫

R×R

|x− y|π (dx, dy) : π ∈ Π(µ, ν)







for µ, ν ∈ P1 (R). Much is known about the metric space (P1 (R) , d1); we will state what we need later.
The natural space in which to consider µn (·) is the Skorohod space D ([0,∞),P1 (R)): we know that µn (·) is

a piece-wise constant function in P1 (R), having jumps whenever a particle jumps. Similarly, for any test function
f (for instance f ∈ H), the natural space in which to consider 〈f, µn (·)〉 is the Skorohod space D ([0,∞),R).

Let S be a metric space and let Pn and P be probability measures on S. We say that Pn converges weakly
to P , denoted by Pn ⇒n P , if

∫

S
fdPn →

∫

S
fdP for every bounded, continuous real function f on S. If Xn

and X are random elements of S, with Xn distributed according to Pn and X distributed according to P , then
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we say that Xn converges weakly to X in S, denoted by Xn ⇒n X, if Pn ⇒n P . For more on weak convergence,
see [8].

In order to prove weak convergence of {µn (·)}n≥1 in the appropriate Skorohod space, we have to make the
following assumptions on the initial distribution of the particles.

Assumption 1. Our first assumption is that

(3.11) lim
L→∞

lim sup
n→∞

P

(

1

n

n
∑

i=1

|xi (0)| > L

)

= 0.

Assumption 2. Our second assumption is that there exists a constant ĉ such that for every ε > 0

sup
n

P

(

1

n

n
∑

i=1

1
[

|xi (0)| > ĉε−2/3
]

≥ ε/4

)

≤ ε/3.

(Note: the exponent 2/3 has no special significance. This is simply because we assume E
(

Z3
)

<∞ for simplicity.

We could assume E
(

Z2+ǫ
)

<∞ for some small ǫ > 0, in which case we could replace the exponent 2/3 with an
exponent of 2/ (2 + ǫ) in Assumption 2.)

A sufficient and simple condition for both Assumption 1 and 2 to hold is that

sup
n

E

(

1

n

n
∑

i=1

|xi (0)|
3

)

<∞.

Assumption 3. Our third assumption is that

(3.12) µn (0) ⇒n ν

in P1 (R), where ν ∈ P1 (R) is a deterministic initial profile.
We are now ready to state our main theorem.

Theorem 3.3. Suppose that the non-increasing jump rate function w is bounded, and that it is differentiable
with bounded derivative. Suppose the jump length Z is scaled such that EZ = 1 and that it has a finite third
moment. Suppose that Assumptions 1, 2 and 3 from above hold. Then

(3.13) µn (·) ⇒n µ (·)

in D ([0,∞),P1 (R)), where µ (·) is the unique deterministic solution to the mean field equation (3.9) with initial
condition ν.

The proof of this theorem is in Section 6. The argument follows the standard method for proving weak
convergence results. Namely, based on Prohorov’s theorem, we need to do three things:

• Prove tightness of {µn (·)}n≥1 in the Skorohod space D ([0,∞),P1 (R)).

• Identify the limit of {µn (·)}n≥1: here we essentially have to show that the limit solves the deterministic
mean field equation.

• Prove uniqueness of the solution to the mean field equation with a given initial condition.

3.1 Open questions

We end this section with some open questions.

• Theorem 3.3 is a law of large numbers type result, so it is natural to ask about the fluctuations around
this first order limit. In particular, how does the variance of the empirical mean mn (t) scale with n and
t? Preliminary simulations suggest that this variance grows linearly in t, and for fixed t decays in n as
n−α for some α > 0. (The simulations are inconclusive of what the exponent α should be.)

• Once the order of fluctuations of the empirical mean mn (t) is known, can we determine the limiting
distribution of mn (t) with appropriate scaling?

• Going back to the finite particle system: can we really not deal with a fixed number (n ≥ 3) of particles
and determine the stationary distribution viewed from the center of mass in this case?

• In Theorem 3.3 we make assumptions on the jump rate function w, the jump length distribution, and the
initial distribution of the particles. Most of the assumptions are fairly weak, except for the assumption
that w is bounded, which is the main restrictive assumption. We believe that these assumptions can be
weakened, and in particular we are interested in removing the assumption that w is bounded. Currently
all three steps of the proof (tightness, identifying the limit, uniqueness of the limit) use estimates which
involve the bound on w. One crucial thing that would be needed is control over the probability of a
particle “falling behind” by a lot. Can one prove the same result for unbounded w, e.g. w (x) = e−x?
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4 Two-particle system

As an introduction to the model, we look at the simplest case: when n = 2, i.e. when there are two competing
particles. In particular, we look at two specific cases of the model, and in each case we compute the stationary
distribution of the gap between the two particles. At the end of the section we illustrate the difficulties that
arise in the case of n ≥ 3 particles.

4.1 Deterministic jumps

First, let us look at the model when the length of the jumps is not random but a deterministic positive number.
We always have the freedom to scale the system so that this length is equal to unity. So, in this subsection, we
look at the model with deterministic jumps of length 1.

In the case of two particles, x1 (t) and x2 (t), we are interested in how far away they move from each other,
thus in the gap g (t) = |x1 (t)− x2 (t)|. For simplicity let us suppose that x1 (0)− x2 (0) ∈ Z, so that g (t) ∈ N
for all t ≥ 0. In this case g (t) is a continuous-time Markov process on N, with infinitesimal generator Q given
by the model in the following way. Since the gap can only change by 1, Q is a tridiagonal matrix. If the gap is
0, i.e. x1 (t) = x2 (t), then both particles jump with rate w (0) and whichever one does, the gap changes to 1.
Therefore the rate at which the gap changes from 0 to 1 is 2w (0) and thus

Q0,0 = −2w (0) , Q0,1 = 2w (0) .

If the gap between the particles is k > 0, then the one in the lead jumps with rate w
(

k
2

)

, while the one which

is behind jumps with rate w
(

−k
2

)

. This means that the gap increases by 1 with rate w
(

k
2

)

and decreases by 1

with rate w
(

−k
2

)

and so

Qk,k−1 = w

(

−
k

2

)

, Qk,k = −

(

w

(

−
k

2

)

+ w

(

k

2

))

, Qk,k+1 = w

(

k

2

)

.

When the jump rate function w is a monotone decreasing, non-constant function, then g (t) is a positive
recurrent birth-and-death process with stationary distribution π = (π0, π1, π2, . . . ) given by

π0 =
1

1 + 2
∞
∑

k=1

∏k−1
i=0 w( i2 )

∏

k
i=1 w(− i

2 )

πk = 2π0

∏k−1
i=0 w

(

i
2

)

∏k
i=1 w

(

− i
2

)
, for k ≥ 1.

In particular, if the jump rate function is exponential, i.e. w (x) = e−βx, where β > 0, then the stationary
distribution shows Gaussian decay, while if the jump rate function is a step function,

w (x) =

{

a if x < 0,

b if 0 ≤ x,

where a > b > 0, then the stationary distribution shows exponential decay; see [3, Section 4.1].

4.2 Jump length distribution having a density

Consider again the case of two particles, but now let us suppose that the distribution of the length of the
jumps has a density, and denote this by ϕ as mentioned in Section 2. As before, we are interested in the gap
g (t) = |x1 (t)− x2 (t)| between the two particles. Denote by p (g, t) the probability density of the gap g at time
t, which is concentrated on [0,∞). The time evolution of the gap is completely described by the time evolution
of p, which is described by the master equation

ṗ (g) =− p (g) (w (−g/2) + w (g/2)) +

g
∫

0

p (y)w (y/2)ϕ (g − y) dy

+

∞
∫

g

p (y)w (−y/2)ϕ (y − g) dy +

∞
∫

0

p (y)w (−y/2)ϕ (y + g) dy,

where the overdot denotes time derivative. The first term on the right hand side accounts for the case when
the gap length is g and one of the two particles jumps (Fig. 1a and 1b). The second term accounts for the
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Figure 1: Events that change the gap length.

case when a gap of length g is created from a previous gap of length y < g due to the leader jumping forward
(Fig. 1c). The third term accounts for the case when a gap of length g is created from a previous gap of length
y > g due to the laggard jumping forward, but still remaining the laggard (Fig. 1d). The fourth term accounts
for the case when a gap of length g is created from a previous gap of length y > 0 due to the laggard jumping
forward and overtaking the leader (Fig. 1e). It is easy to check that this conserves the total probability, i.e.
∫∞

0
ṗ (g) dg = 0.
Our goal is to compute the stationary density, i.e. p such that ṗ (g) = 0. It is unlikely to be able to find a

closed formula for the stationary density in full generality (for general ϕ and w), and so we restrict ourselves to
the special case when ϕ(x) = e−x1[x ≥ 0] and w (x) = e−βx, where β > 0.

In this case it can be shown (see [3, Section 4.2] for a detailed calculation) that the stationary density of the
gap is

p (g) = c
1

(

cosh
(

βg
2

))1+2/β
, for g > 0,

with c being the normalizing constant. In particular, in the special case of β = 2, the stationary density is

p (g) =
1

cosh2 (g)
, for g > 0.

4.3 Many-particle case

In the n ≥ 3 case with deterministic jumps, the particles x1 (t) , . . . , xn (t) form a continuous-time Markov
process on an n dimensional lattice. Viewed from the mean position of the particles, this becomes a Markov
process on an n − 1 dimensional lattice. However, even in the n = 3 case the combinatorics of the problem
becomes too difficult to find a closed form for the stationary distribution (see Figure 2). The model with the
jump length distribution having a density presents similar difficulties in the n ≥ 3 case. (As we have seen, the
problem is not completely solved even in the n = 2 case.) Understanding the finite particle case is the subject
of future work.

5 Mean field

We now turn our attention to the mean field approximation of the model and study the solutions of the mean
field equation (3.1). First of all, using the fact that ϕ is a probability density function, we can check that the

mean field equation (3.1) conserves the total probability, i.e.
∫∞

−∞
∂̺(x,t)
∂t dx = 0.

An important quantity is the speed of the mean of the density. This speed can be expressed as a simple
integral by differentiating equation (3.2) with respect to time and using the mean field equation (3.1):

ṁ (t) =

∞
∫

−∞

x
∂̺ (x, t)

∂t
dx

= −

∞
∫

−∞

xw (x−m (t)) ̺ (x, t) dx+

∞
∫

−∞

x
∫

−∞

xw (y −m (t)) ̺ (y, t)ϕ (x− y) dydx

= −

∞
∫

−∞

xw (x−m (t)) ̺ (x, t) dx+

∞
∫

−∞

w (y −m (t)) ̺ (y, t)

∞
∫

y

xϕ (x− y) dxdy

= −

∞
∫

−∞

xw (x−m (t)) ̺ (x, t) dx+

∞
∫

−∞

w (y −m (t)) ̺ (y, t) dy +

∞
∫

−∞

yw (y −m (t)) ̺ (y, t) dy
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w(−1)w(−1)

w(−1)
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w(−1)

w(−4)
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w(−3)

w(2)w(−3)w(1)w(−4)

w(1)

w(−3)
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w(1)
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w(−3)
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w(−2)w(0)

w(0)

w(−2)

w(−2)

w(0)

w(0) w(−2)
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Figure 2: In the n = 3 case with deterministic jumps the particles viewed from the mean position form a
continuous-time Markov process on a 2 dimensional lattice with directed edges, as seen above. The coordinates
in the nodes show (3 (x1 (t)−mn (t)) , 3 (x2 (t)−mn (t)) , 3 (x3 (t)−mn (t))). (We multiply by 3 only so that
we need not write fractions in the figure.) The rate of going from one node to another on a particular edge is
indicated on the edge itself, however, once again the argument of the jump rate function w (·) is multiplied by
3 so that we do not need to write fractions in the figure. The edges going outward from the origin are colored
in blue, the ones which are going inward toward the origin are colored in red, while the remaining edges are
colored green. Since the rates on the incoming red arrows are larger than those on the outgoing blue arrows, one
can see that there is a drift towards the origin, and therefore one expects there to be a stationary distribution
on this lattice. However, there can be no detailed balance since there are directed cycles in this graph, and
therefore calculating the stationary distribution becomes difficult.
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=

∞
∫

−∞

w (y −m (t)) ̺ (y, t) dy,(5.1)

where we used that
∫∞

0
xϕ (x) dx = 1, as assumed in the model. When m (t) = ct and ̺ (y, t) = ρ (y − ct),

equation (5.1) becomes

(5.2) c =

∞
∫

−∞

w (x) ρ (x) dx.

We now turn to proving Theorem 3.1.

Proof of Theorem 3.1. Substituting ϕ(x) = e−x1[x ≥ 0] into (3.4) we get

(5.3) − cρ′ (x) = −w (x) ρ (x) +

x
∫

−∞

w (y) ρ (y) e−(x−y)dy.

First, we take the derivative of the integral term in (5.3). Using the property of the exponential function, that
its derivative is itself, we get

d

dx





x
∫

−∞

w (y) ρ (y) e−(x−y)dy



 = w (x) ρ (x)−

x
∫

−∞

w (y) ρ (y) e−(x−y)dy

= w (x) ρ (x)− w (x) ρ (x) + cρ′ (x) = cρ′ (x) ,

where we used (5.3) in the second line. It follows that for some constant D we have

x
∫

−∞

w (y) ρ (y) e−(x−y)dy = cρ (x) +D.

Plugging this into (5.3) we arrive at

(5.4) − cρ′ (x) + w (x) ρ (x) = cρ (x) +D.

To show that D = 0, let us integrate both sides of the equation with respect to x from −∞ to ∞ (by integrating
from −R to R and taking the limit as R → ∞). The integral of the first term on the left hand side is 0 since
the total probability is conserved by the mean field equation, and the integral of the second term on the left
hand side is c according to (5.2). Since ρ is a density we also have that the integral of the first term on the
right hand side is c as well, therefore

lim
R→∞

R
∫

−R

Ddx = 0,

and thus D = 0. Now rearranging (5.4) we get

ρ′ (x) =

(

1

c
w (x)− 1

)

ρ (x) ,

from which we arrive at (3.6).

We refer to [3, Section 5] for an alternative proof of Theorem 3.1 by I.P. Tóth.

5.1 Specific examples

In this subsection we look at the stationary distribution ρ of (3.6) in the case of two specific jump rate functions.
In both cases we also determine the speed of the traveling wave from Theorem 3.1. Details of calculations are
given only in the case of Example 5.1, the calculation in the other example is quite simple from Theorem 3.1.

Example 5.1 Exponential jump rate function
If w (x) = e−βx, where β > 0, then from Theorem 3.1 we obtain

ρβ (x) = Ke−x−e
−β(x+ log (cβ)

β )
,
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where K is an appropriate normalizing constant. Integrating this over R gives us the value for K and thus the
density becomes

ρβ (x) =
β

Γ
(

1
β

)e−(x+
log (cβ)

β )−e
−β(x+ log (cβ)

β )
.

To check this let us calculate the integral:

∞
∫

−∞

ρβ (x) dx =

∞
∫

−∞

β

Γ
(

1
β

)e−(x+
log (cβ)

β )−e
−β(x+ log (cβ)

β )
dx

=
β

Γ
(

1
β

)

∞
∫

−∞

e−y−e
−βy

dy =
β

Γ
(

1
β

)

0
∫

∞

z
1
β e−z

(

−
dz

βz

)

=
1

Γ
(

1
β

)

∞
∫

0

z
1
β
−1e−zdz = 1,

using the substitutions y = x+ log (cβ)
β and z = e−βy. From Theorem 3.1 the speed of the wave c is determined

by the fact that ρβ is centered, so to compute c we must compute the mean of the density. Using similar
substitutions as before we get:

∞
∫

−∞

xρβ (x) dx = −
log (cβ)

β
+

∞
∫

−∞

(

x+
log (cβ)

β

)

ρβ (x) dx = −
log (cβ)

β
+

β

Γ
(

1
β

)

∞
∫

−∞

ye−y−e
−βy

dy

= −
log (cβ)

β
+

β

Γ
(

1
β

)

0
∫

∞

−
log (z)

β
z

1
β e−z

(

−
dz

βz

)

= −
log (cβ)

β
−

1

βΓ
(

1
β

)

∞
∫

0

log (z)z
1
β
−1e−zdz

= −
1

β



log (cβ) +
Γ′
(

1
β

)

Γ
(

1
β

)



 ,

which is zero when

c =
1

β
e−ψ(

1
β ),

where ψ is the digamma function:

ψ (x) =
Γ′ (x)

Γ (x)
.

Therefore the stationary distribution in this case is given by (3.7). Note the exponential tail of ρβ on one side,
and the double-exponential tail on the other side. Specifically, in the case of β = 1 the stationary distribution
is the centered standard Gumbel distribution:

ρ1 (x) = e−(x+γ)−e−(x+γ)

,

where γ is Euler’s constant. Moreover, it can be seen that ρβ is a rescaled generalized Gumbel distribution with
parameter 1/β (Bertin [7], Clusel and Bertin [10], Gumbel [21]). As mentioned in Section 3, the (generalized)
Gumbel distribution often arises in extreme value theory, so it is natural to ask whether there is an underlying
extremal process in the dynamics. It turns out that there is a connection between the mean field model and
extreme value theory when k = 1/β is an integer: this is discussed in Section 5.2.

Example 5.2 Jump rate function is a step function
Let

w (x) =

{

a if x < 0,

b if 0 ≤ x,

where a > b > 0. Then from Theorem 3.1 the solution to (5.3) is

ρa,b (x) =

{

Ke(
a
c
−1)x if x < 0,

Ke(
b
c
−1)x if 0 ≤ x,

where the normalizing constant is

K =
(a− c) (c− b)

c (a− b)
.
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The speed of the wave follows from Theorem 3.1:

c =
a+ b

2
,

and thus the stationary distribution is

(5.5) ρa,b (x) =
a− b

2 (a+ b)
e−

a−b
a+b |x|,

which is a Laplace distribution.

For two further examples, see [3, Section 5.1].

5.2 Connection with extreme value theory

In the previous subsection we have seen that when ϕ(x) = e−x1[x ≥ 0] and w (x) = e−βx then the (rescaled
generalized) Gumbel distribution arises as the stationary distribution of the mean field system. This is inter-
esting, because at first sight there is no extremeness in the model. In this section we discuss the connection
between the model and extreme value theory. (Here we occasionally neglect mathematical precision for the sake
of clarity of the argument.)

Let us start with the standard Gumbel case, i.e. β = 1. Recall that according to our observation in the
introduction, we can assume that the center of mass moves with a constant velocity c, and we consider a single
mean field particle X(t) that jumps with rate ect−X(t), so

P (X (t) changes between t and t+ dt) = ect−X(t)dt+ o (dt) .

When this jump occurs, X(t) increases by a random number drawn from an exponential distribution with
parameter 1 (denoted by Exp(1) in the sequel).

How can we view this as an extreme process? The answer to this question was given by Attila Rákos,
whose idea is the following. As time goes forward, let us take gradually more and more new independent and
identically distributed Exp(1) random variables, and let us look at the distribution of the maximum of these
random variables, which we denote by Y (t). Specifically, at time t let there be N (t) = ect/c random variables
altogether, so Y (t) is the maximum of N (t) i.i.d. random variables. There are N ′ (t) dt = ectdt new random
variables trying to “break the record” between t and t+ dt, and thus

P (Y (t) changes between t and t+ dt) = 1−
(

1− e−Y (t)
)N ′(t)dt

= N ′ (t) dte−Y (t) + o
(

N ′ (t) dte−Y (t)
)

= ect−Y (t)dt+ o
(

ect−Y (t)dt
)

,

and if Y (t) changes, then it jumps according to Exp(1). Here we use the memoryless property of the exponential
distribution, i.e. the fact that if T is exponentially distributed then

P (T > s+ t | T > s) = P (T > t) .

Thus we can conclude that the two processes are basically the same. Furthermore, we know that Y (t) −
logN (t) follows the standard Gumbel distribution for large t (see, for example, Gumbel [21] or the excellent
survey by Clusel and Bertin [10]):

lim
t→∞

P (Y (t)− logN (t) < x) = e−e
−x

,

and therefore since logN (t) = ct− log c, it follows that

lim
t→∞

P (Y (t)− ct < x) = e−e
−(x+log c)

.

Thus by the connection we have

lim
t→∞

P (X (t)− ct < x) = e−e
−(x+log c)

,

and since the distribution of X (t)− ct is centered, it follows that

c = e−γ ,
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where γ = 0.5772 . . . is Euler’s constant.
The idea above extends to the general case when k = 1/β is a fixed positive integer, with an appropriate

definition of Y (t). In the following we use k and 1/β interchangeably.
We define Y (t) as follows. Once again, as time goes forward, let us take gradually more and more new

independent and identically distributed Exp(1) random variables. Specifically, at time t let there be N (t) =
eβct/βc random variables altogether. Denote by Yk (t) the kth largest value among these random variables at
time t, and define Y (t) := kYk (t). With this definition, the rest of the calculation is done in a similar way to
the standard Gumbel case. For a more detailed calculation, see [3, Section 5.2].

Thus we have rediscovered the results of the previous subsection through extreme value theory arguments.

6 Fluid limit

In this section we prove Theorem 3.3. The section is organized as follows. In order to present and prove our
results, we need to introduce notation, terminology, definitions and previously known results. This necessary
background is introduced in Section 6.1. Then in Section 6.2 we formulate as separate theorems several in-
termediate steps that lead to the main result and we prove Theorem 3.3 using these steps. In the following
subsections we then provide proofs of the intermediate steps stated in Section 6.2.

6.1 Preliminaries

Recall that our goal is to show that—given some assumptions—the path of the empirical measure process
{µn (·)}n≥1 converges weakly in the Skorohod space D ([0,∞),P1 (R)) to µ (·), which solves the mean field
equation (3.9). The goal of this subsection is to provide all the necessary preliminaries that we need during the
proof.

We present important results from the theory of weak convergence that we use later; in particular, we focus
on tightness results in Skorohod spaces. For an excellent introduction to weak convergence, we refer the reader
to Billingsley [8]. Many results that we use are taken from Ethier and Kurtz [13], and Jacod and Shiryaev [22]
is also a valuable source of information concerning convergence of processes.

As in Theorem 3.3, from now on we assume that the jump rate function w is bounded, and we denote its
lowest upper bound by a. To put it another way: a := limx→−∞ w (x) = supx w (x). We also assume that w is
differentiable and has a bounded derivative. Furthermore, in the following Z always denotes a random variable
from the jump length distribution. As before, we assume that E (Z) = 1 and that Z has a finite third moment.

6.1.1 Probability metrics

Recall the definition (3.10) of the 1-Wasserstein metric. The following lemma (from Feng and Kurtz [14,
Appendix D]) summarizes what we need to know about the metric space (P1 (R) , d1). More can be found in
e.g. Feng and Kurtz [14, Appendix D].

Lemma 6.1. (P1 (R) , d1) is a complete and separable metric space. For µn, µ ∈ P1 (R), the following are
equivalent:

(1) limn→∞ d1 (µn, µ) = 0.

(2) For all continuous functions ϕ on R satisfying |ϕ (x)| ≤ C (1 + |x|) for some C > 0,

lim
n→∞

〈ϕ, µn〉 = 〈ϕ, µ〉 .

We introduce another probability metric that we use later on. For P,Q ∈ P1 (R) and a set H of functions
define

(6.1) dH (P,Q) = sup
f∈H

|〈f, P 〉 − 〈f,Q〉| .

It is immediate that dH is a pseudometric on P1 (R): dH (P, P ) = 0, dH (P,Q) = dH (Q,P ), and the triangle
inequality also holds. The only thing that does not necessarily hold is that dH (P,Q) = 0 implies P = Q. In
order for this to hold, H has to be a large enough set of functions to be able to distinguish between different
probability measures. There are various choices of H that give rise to notable metrics. For instance, if H is the
set of indicator functions of measurable sets, then dH is the total variation metric. If H is the set of half-line
indicator functions then dH is the Kolmogorov (uniform) metric. The choice of H = {f ∈ Cb : |f | ≤ 1} gives
the Radon metric (that this is a metric follows from e.g. Billingsley [8, Theorem 1.2.]). Consequently the choice
H = H (see (2.1)) also yields a metric. This is what we use in the following: dH denotes the metric on P1 (R)
given by (6.1) with H = H. This metric is used in Theorem 6.14, Corollary 6.15 and their proofs in Section 6.5.
For more on probability metrics we refer the reader to Gibbs and Su [17] for an excellent review.

13



6.1.2 Skorohod spaces

Let (E, r) be a general metric space. Denote by C ([0,∞), E) the space of continuous E-valued paths with the
uniform topology. The Skorohod space D ([0,∞), E) consists of E-valued paths that are right-continuous and
have left limits. We do not go into details about the topology on D ([0,∞), E), but we note that there exists a
metric under which D ([0,∞), E) is a complete and separable metric space if (E, r) is complete and separable
(Ethier and Kurtz [13, Chapter 3]). The topology generated by this metric is called the Skorohod topology on
D ([0,∞), E). Note that C ([0,∞), E) is a subset of D ([0,∞), E) and it can be seen that the Skorohod topology
relativized to C ([0,∞), E) coincides with the uniform topology there. For more on the Skorohod space we refer
the reader to Billingsley [8, Chapter 3] and Ethier and Kurtz [13, Chapter 3].

The reason we introduced the Skorohod space in general is because the natural space in which to consider
µn (·) is D ([0,∞),P1 (R)): we know that µn (·) is a piece-wise constant function in P1 (R), having jumps
whenever a particle jumps. (We can define µn (·) to be right-continuous at its discontinuities.) Since P1 (R) is
complete and separable under the Wasserstein metric, D ([0,∞),P1 (R)) is also complete and separable under
an appropriate metric. Similarly, for any test function f (for instance f ∈ H), the natural space in which to
consider 〈f, µn (·)〉 is the Skorohod space D ([0,∞),R).

6.1.3 Tightness in Skorohod spaces

Recall our plan of action from the end of Section 3:

• Prove tightness of {µn (·)}n≥1 in the Skorohod space D ([0,∞),P1 (R)).

• Identify the limit of {µn (·)}n≥1: here we essentially have to show that the limit solves the deterministic
mean field equation.

• Prove uniqueness of the solution to the mean field equation with a given initial condition.

In view of the first point, our goal here is to find checkable sufficient conditions for tightness in Skorohod spaces.
Since all metric spaces we deal with are complete and separable, by Prohorov’s theorem the concepts of tightness
and relative compactness are equivalent in our setting, and therefore we use these two notions interchangeably.
Following Perkins [26], we say that a sequence is C-relatively compact if it is relatively compact and all weak
limit points are a.s. continuous.

Tightness in D ([0,∞),R)

First, we state conditions for tightness in D ([0,∞),R). For y (·) ∈ D ([0,∞),R) define

(6.2) JT (y (·)) = sup
0≤t≤T

|y (t)− y (t−)| ,

the largest (absolute) jump in y (·) until T . Let {Yn (·)}n≥1 be a sequence of random variables in D ([0,∞),R).
The following theorem, which is a combination of Billingsley [8, Theorem 16.8.] and the corollary thereafter,
characterizes tightness in D ([0,∞),R).

Theorem 6.2. The sequence {Yn (·)}n≥1 is tight in D ([0,∞),R) if and only if the following three conditions
hold:

(i)

(6.3) lim
L→∞

lim sup
n→∞

P (|Yn (0)| ≥ L) = 0.

(ii) For each T ≥ 0,

(6.4) lim
L→∞

lim sup
n→∞

P (JT (Yn (·)) ≥ L) = 0.

(iii) For each T ≥ 0 and ε > 0,

(6.5) lim
δ→0

lim sup
n→∞

P

(

inf
{ti}

max
1≤i≤v

sup
s,t∈[ti−1,ti)

|Yn (t)− Yn (s)| ≥ ε

)

= 0,

where the infimum extends over all decompositions [ti−1, ti), 1 ≤ i ≤ v, of [0, T ) such that ti− ti−1 > δ for
1 ≤ i < v.
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We now look at a condition which implies that any limit point is continuous, i.e. is in C ([0,∞),R). Following
Ethier and Kurtz [13, p. 147], for y (·) ∈ D ([0,∞),R) define

(6.6) J (y (·)) =

∞
∫

0

e−umin {Ju (y (·)) , 1} du,

where Ju (y (·)) is defined as in (6.2). The following theorem characterizes continuity of a weak limit point
(Ethier and Kurtz [13, Theorem 3.10.2.]).

Theorem 6.3. Suppose Yn (·) ⇒n Y (·) in D ([0,∞),R). Then Y (·) is almost surely continuous if and only if
J (Yn (·)) ⇒n 0.

We now give sufficient conditions for a sequence to be C-relatively compact.

Theorem 6.4. Suppose the following two conditions hold.

(i)

(6.7) lim
L→∞

lim sup
n→∞

P (|Yn (0)| ≥ L) = 0.

(ii) For each T ≥ 0 and ε > 0,

(6.8) lim
δ→0

lim sup
n→∞

P



 sup
0<t−s<δ
0≤s≤t≤T

|Yn (t)− Yn (s)| ≥ ε



 = 0.

Then {Yn (·)}n≥1 is C-relatively compact in D ([0,∞),R).

This theorem is stated in Grigorescu and Kang [20, Section 3], but without a proof, and so for completeness
we provide a short proof.

Proof. Let us check tightness first: according to Theorem 6.2 we need to check that (6.3), (6.4), and (6.5)
hold. Our first condition is exactly (6.3). From (6.8) it follows that for every T > 0, JT (Yn (·)) ⇒n 0, and
consequently (6.4) holds. To show that (6.5) follows from (6.8), note that

inf
{ti}

max
1≤i≤v

sup
s,t∈[ti−1,ti)

|Yn (t)− Yn (s)| ≤ sup
0<t−s<2δ
0≤s≤t≤T

|Yn (t)− Yn (s)| ,

where the infimum extends over the same range as in Theorem 6.2.
Now let us check that any weak limit point is a.s. continuous. According to Theorem 6.3, we need to check

that J (Yn (·)) ⇒n 0. From (6.8) we know that for every T > 0, JT (Yn (·)) ⇒n 0. For any fixed ε > 0 there
exists a T such that e−T < ε/2. From (6.6) it follows that J (Yn (·)) ≤ TJT (Yn (·)) + e−T , and consequently:

lim
n→∞

P (J (Yn (·)) > ε) ≤ lim
n→∞

P (JT (Yn (·)) > ε/2T ) = 0.

Tightness in Skorohod spaces containing measure-valued paths

Now let us turn to conditions that imply tightness in the Skorohod space of time-indexed measure-valued
paths D ([0,∞),P1 (R)). Our main tool is a slight modification of a theorem of Perkins [26, Theorem II.4.1].
Perkins’ theorem basically states that if we can check an extra condition, then C-relative compactness in
D ([0,∞),MF (E)) (where MF (E) is the space of finite measures on the metric space E, with the topol-
ogy of weak convergence) can be checked by checking the C-relative compactness of appropriate integrals in
D ([0,∞),R).

Our modification of Perkins’ theorem is the following.

Theorem 6.5. A sequence of cadlag P1 (R)-valued processes {Pn (·)}n≥1 is C-relatively compact in
D ([0,∞),P1 (R)) if the following conditions hold:

(i) For every T > 0 there exists a c = c (T ) and a τ = τ (T ) ∈ (0, 1) such that for every ε > 0 there exists a
K = KT,ε ∈ R such that K ≤ c/ε1−τ and

sup
n

P

(

sup
0≤t≤T

Pn (t, (−∞,−K) ∪ (K,∞)) > ε

)

< ε.
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(ii) For every f ∈ Cb, {〈f, Pn (·)〉}n≥1 is C-relatively compact in D ([0,∞),R).

If one looks at the proof of Perkins’ original theorem [26, Theorem II.4.1], then one can see that it holds
true if one replaces MF (E) with M1 (E), the space of probability measures on E with the topology of weak
convergence. However, our measure-valued process lives in a different space, namely µn (·) ∈ D ([0,∞),P1 (R)),
where the Wasserstein space P1 (R) is endowed with the metric d1. It turns out that we cannot simply replace
MF (E) with P1 (R) in the theorem. Convergence in (P1 (R) , d1) is stronger than weak convergence: it is weak
convergence and the convergence of the first absolute moment of the measure. It is this that causes the original
proof of the theorem to break down.

The proof of Theorem 6.5 is essentially the same as that of Perkins’ theorem, but with a slight modification
at one point, which requires that our condition (i) is stronger than in Perkins’ original version. For completeness,
we reproduce the whole proof, following the lines of Perkins [26, Section II.4.]: this can be found in Section 6.6.

We use Theorem 6.5 in order to prove tightness of the empirical measure process {µn (·)}n≥1 in Corollary 6.10.

6.1.4 A few more facts that are used

Before we move on to our results, let us finish the preliminaries with a few more things that we use later in the
proofs (in particular in Section 6.4). We rely on the continuous mapping theorem (Billingsley [8, Section 2]).
We do not need the theorem in full generality, only the following:

Theorem 6.6. Suppose h is a continuous function from the metric space (S, d) to the metric space (S′, d′). If
Xn ⇒n X in (S, d), then h (Xn) ⇒n h (X) in (S′, d′).

Finally, we need the following two lemmas, which can be found as exercises in Ethier and Kurtz [13,
Chapter 3].

Lemma 6.7. Let E and F be metric spaces, and let f : E → F be continuous. Then the mapping x → f ◦ x
from D ([0,∞), E) to D ([0,∞), F ) is continuous.

Lemma 6.8. The function

f (x) (·) =

·
∫

0

x (s) ds

from D ([0,∞),R) to D ([0,∞),R) is continuous.

6.2 Main steps of the fluid limit procedure

In this subsection we collect the intermediate steps that build up the proof of the main theorem, Theorem 3.3,
leaving the proofs of these results to later subsections. We complete the proof of Theorem 3.3 at the end of
the subsection. Recall our assumptions on the jump rate function w and the jump length Z which we assume
throughout this section.

Our first results deal with showing the tightness of {µn (·)}n≥1 in the Skorohod space D ([0,∞),P1 (R)).

Theorem 6.9. Suppose Assumption 1 from Section 3 holds. Then for any f ∈ Cb the sequence {〈f, µn (·)〉}n≥1

is C-relatively compact in D ([0,∞),R).

We remark that although we only need the above result for continuous and bounded functions in the corollary
below, continuity is not used in our proof, and with a slight modification in the proof the same can be proven
for Lipschitz continuous functions.

Corollary 6.10. Suppose Assumptions 1 and 2 from Section 3 hold. Then {µn (·)}n≥1 is C-relatively compact
in D ([0,∞),P1 (R)).

Theorem 6.9 and Corollary 6.10 are proved in Section 6.3.
We remark that tightness can be proved in other ways as well, using the techniques of Ethier and Kurtz [13,

Chapter 3]. In particular, Thomas G. Kurtz communicated to us a different way of checking tightness, and we
have included a sketch of his proof at the end of Section 6.3.

Our next group of results is concerned with identifying the limit of the sequence {µn (·)}n≥1. In particular,
our goal is to show that any weak limit point of {µn (·)}n≥1 solves the mean field equation. We prove this in
two steps. Recall the definition (2.1) of H.

Theorem 6.11. For every t ≥ 0 and every f ∈ H,

(6.9) sup
0≤s≤t

|As,f (µn (·))|
P

−−−−→
n→∞

0

where
P

−−−−→
n→∞

0 denotes convergence in probability.
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Theorem 6.12. If µn (·) ⇒n µ (·) in D ([0,∞),P1 (R)), then for every t ≥ 0 and every f ∈ H,

(6.10) At,f (µn (·)) ⇒n At,f (µ (·))

in R.

An immediate corollary of these two theorems is the following.

Corollary 6.13. Any weak limit point µ (·) of {µn (·)}n≥1 in the Skorohod space D ([0,∞),P1 (R)) solves the
mean field equation almost surely. That is, if µn (·) ⇒n µ (·) in D ([0,∞),P1 (R)), then for every t ≥ 0 and
every f ∈ H, At,f (µ (·)) = 0 almost surely.

The proofs of Theorem 6.11, Theorem 6.12, and Corollary 6.13 can be found in Section 6.4.
Our final result concerns the mean field equation: the solution with a given initial condition is unique.

Theorem 6.14. Suppose µ1 (·) and µ2 (·) are solutions to the mean field equation with initial conditions µ1
0 and

µ2
0 respectively. Denote by dH (t) the distance dH

(

µ1 (t) , µ2 (t)
)

of the two measures at time t according to the
metric defined by (6.1) with H = H. Then there exists a constant c such that

(6.11) dH (t) ≤ dH (0) ect.

Corollary 6.15. Suppose µ1 (·) and µ2 (·) are solutions to the mean field equation with the same initial condi-
tion. Then µ1 (·) = µ2 (·), i.e. the solution to the mean field equation with a given initial condition is unique.

Let us now prove our main result.

Proof of Theorem 3.3. The sequence {µn (·)}n≥1 is tight in D ([0,∞),P1 (R)) due to Corollary 6.10. Corol-
lary 6.13 shows that any limit point satisfies the mean field equation. Due to Assumption 3, any limit point
satisfies the mean field equation with deterministic initial condition ν. We know that the solution to the mean
field equation with a given initial condition is unique (Corollary 6.15). Consequently, due to Prohorov’s theorem,
µn (·) ⇒n µ (·), since we have proved tightness and the uniqueness of any limit point.

6.3 Tightness

In this subsection we prove Theorem 6.9 and Corollary 6.10.
Before starting the proof, let us introduce a particle system {x̃i (·)}

n
i=1, related to {xi (·)}

n
i=1, which we

use in the proof. Initially, the two particle systems have the same configurations: x̃i (0) = xi (0) for each
i. Let {x̃i (·)}

n
i=1 be a particle system in which all the particles are independent from each other, all of the

particles jump with rate a (recall that a = limx→−∞ w (x) = supx w (x)), and whenever they jump, the jump
length is a random variable from the same jump length distribution of the original system, independently of
everything else. In other words, let Si (·) be independent Poisson processes with rate a for each i , let ξi1, ξ

i
2, . . .

be i.i.d. random variables from the jump length distribution, and define x̃i (t) = xi (0) +
∑Si(t)
k=1 ξ

i
k. Moreover,

{xi (·)}
n
i=1 and {x̃i (·)}

n
i=1 can be constructed jointly on the same probability space in the following way. Define

{x̃i (·)}
n
i=1 exactly as above, and whenever a particle x̃i jumps, let xi jump the same jump length with probability

w (xi (t)−mn (t)) /a; with the remaining probability let xi stay in place. This joint construction leads to two
advantageous monotonicity properties: first,

x̃i (t) ≥ xi (t)

for any i and t ≥ 0, and second,

(6.12) x̃i (t)− x̃i (s) ≥ xi (t)− xi (s)

for any i and t ≥ s ≥ 0.

Proof of Theorem 6.9. Let f ∈ Cb, and denote by K the upper bound of |f |, i.e. |f (x)| ≤ K for all x. Define
In (·) := 〈f, µn (·)〉 =

1
n

∑n
i=1 f (xi (·)). Clearly |In (t)| ≤ K for any t. In order to prove tightness inD ([0,∞),R)

we need to show that (6.7) and (6.8) hold with Yn replaced with In. Since f is bounded it is immediate that (6.7)
holds. Now let us show that (6.8) holds. Our basic observation is that

|In (t)− In (s)| =
1

n

∣

∣

∣

∣

∣

n
∑

i=1

(f (xi (t))− f (xi (s)))

∣

∣

∣

∣

∣

≤
1

n

n
∑

i=1

|f (xi (t))− f (xi (s))| ≤
2K

n

n
∑

i=1

1 [xi (t) > xi (s)] .
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By monotonicity of xi (·) and using (6.12) we have

P



 sup
0<t−s<δ
0≤s≤t≤T

|In (t)− In (s)| > ε



 ≤ P



 sup
0<t−s<δ
0≤s≤t≤T

2K

n

n
∑

i=1

1 [xi (t) > xi (s)] > ε





≤ P

(

sup
0≤s≤T

2K

n

n
∑

i=1

1 [xi (s+ 2δ) > xi (s)] > ε

)

≤ P

(

sup
0≤s≤T

2K

n

n
∑

i=1

1 [x̃i (s+ 2δ) > x̃i (s)] > ε

)

.

To abbreviate notation, define Yn,δ (s) :=
2K
n

∑n
i=1 1 [x̃i (s+ δ) > x̃i (s)]. Now if sup0≤s≤T Yn,2δ (s) > ε, then

there exists an integer k, 0 ≤ k ≤ ⌈T/δ⌉ − 1, such that Yn,δ (kδ) ≥ ε/4. Suppose the contrary, that for every k
the above expression is less than ε/4; then since an interval of length 2δ can intersect at most three neighboring
intervals of length δ, it follows that sup0≤s≤T Yn,2δ (s) < 3ε/4. Therefore

P

(

sup
0≤s≤T

Yn,2δ (s) > ε

)

≤ P (∃k, 0 ≤ k ≤ ⌈T/δ⌉ − 1 : Yn,δ (kδ) ≥ ε/4)

= 1− P (∀k, 0 ≤ k ≤ ⌈T/δ⌉ − 1 : Yn,δ (kδ) < ε/4)

= 1− (P (Yn,δ (0) < ε/4))
⌈T/δ⌉

= 1− (1− P (Yn,δ (0) ≥ ǫ/4))
⌈T/δ⌉

,

where we used that for every i, x̃i (·) has independent and stationary increments. We bound the probability in
the last line using Markov’s inequality:

P

(

n
∑

i=1

1 [x̃i (δ) > x̃i (0)] >
nε

8K

)

≤ E





(

n
∑

i=1

1 [x̃i (δ) > x̃i (0)]

)2


 /
n2ε2

64K2
,

where

E





(

n
∑

i=1

1 [x̃i (δ) > x̃i (0)]

)2


 = nP (x̃1 (δ) > x̃1 (0)) +
(

n2 − n
)

P (x̃1 (δ) > x̃1 (0) and x̃2 (δ) > x̃2 (0))

= n
(

1− e−aδ
)

+
(

n2 − n
) (

1− e−aδ
)2

≈ naδ +
(

n2 − n
)

(aδ)
2
,

from which (6.8) follows immediately.

Proof of Corollary 6.10. In order to prove this corollary we need to check the two conditions of Theorem 6.5. The
second condition follows immediately from Theorem 6.9. It remains to show the first condition of Theorem 6.5.
Due to monotonicity of the xi (t) in t, we have

sup
0≤t≤T

µn (t, (−∞,−K) ∪ (K,∞)) ≤ sup
0≤t≤T

µn (t, (−∞,−K)) + sup
0≤t≤T

µn (t, (K,∞))

= µn (0, (−∞,−K)) + µn (T, (K,∞)) ,

and consequently

sup
n

P

(

sup
0≤t≤T

µn (t, (−∞,−K) ∪ (K,∞)) > ε

)

≤ sup
n

P (µn (0, (−∞,−K)) + µn (T, (K,∞)) > ε)

≤ sup
n

P (µn (0, (−∞,−K)) > ε/2) + sup
n

P (µn (T, (K,∞)) > ε/2) .

Let us look at the second term:

µn (T, (K,∞)) =
1

n

n
∑

i=1

1 [xi (T ) > K]

≤
1

n

n
∑

i=1

1 [xi (0) > K/2] +
1

n

n
∑

i=1

1 [xi (T )− xi (0) > K/2]

≤
1

n

n
∑

i=1

1 [xi (0) > K/2] +
1

n

n
∑

i=1

1 [x̃i (T )− x̃i (0) > K/2] ,
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and so consequently

sup
n

P (µn (T, (K,∞)) > ε/2) ≤ sup
n

P (µn (0, (K/2,∞)) > ε/4)

+ sup
n

P

(

1

n

n
∑

i=1

1 [x̃i (T )− x̃i (0) > K/2] > ε/4

)

.

Let us look at the second term on the right hand side. Using Markov’s inequality and the fact that the x̃i’s are
identically distributed, we have

P

(

1

n

n
∑

i=1

1 [x̃i (T )− x̃i (0) > K/2] > ε/4

)

≤
4

ε
P (x̃1 (T )− x̃1 (0) > K/2) .

Now using Markov’s inequality again, we get that

4

ε
P (x̃1 (T )− x̃1 (0) > K/2) =

4

ε
P
(

(x̃1 (T )− x̃1 (0))
3
> K3/8

)

≤
32

K3ε
E
(

(x̃1 (T )− x̃1 (0))
3
)

=:
c̃ (T )

K3ε
.

Now putting everything together we get

sup
n

P

(

sup
0≤t≤T

µn (t, (−∞,−K) ∪ (K,∞)) > ε

)

≤ sup
n

P (µn (0, (−∞,−K)) > ε/2)

+ sup
n

P (µn (0, (K/2,∞)) > ε/4) +
c̃ (T )

K3ε
,

and we need the left hand side to be at most ε, for which it is enough that the right hand side is at most ε.
So let T > 0 and ε > 0 be fixed, and let us choose c = c (T ), τ = τ (T ), and K = KT,ε as follows:

c (T ) := max
{

3c̃ (T ) , 8ĉ3
}

τ (T ) := 1/3

KT,ε := c (T )
1/3

ε−2/3,

where ĉ is given by Assumption 2. Then K3 ≥ 3c̃ (T ) ε−2, and so c̃ (T ) /
(

K3ε
)

≤ ε/3. On the other hand

K ≥ 2ĉε−2/3, and so using Assumption 2 we have

sup
n

P (µn (0, (−∞,−K)) > ε/2) ≤ ε/3

sup
n

P (µn (0, (K/2,∞)) > ε/4) ≤ ε/3.

Putting all these together concludes the proof.

As mentioned before, there are other ways to check tightness, and here we sketch Thomas G. Kurtz’s proof
(see also Kotelenez and Kurtz [23, Appendix]). First note that

d1 (µ, ν) ≤ E |X − Y | ,

where X and Y are any random variables with distributions µ and ν respectively. The paths of our particles

{xi (·)}
n
i=1 are exchangeable, and so for any

{

F
µn(·)
t

}

-stopping time τ we have

(6.13) E (d1 (µn (τ) , µn (τ + u))) ≤ E (x1 (τ + u)− x1 (τ)) .

For each T > 0, let Sn (T ) be the collection of
{

F
µn(·)
t

}

-stopping times τ satisfying τ ≤ T . Then by (6.13) and

Aldous’s criterion (see e.g. Ethier and Kurtz [13, Theorem 8.6]), {µn (·)}n≥1 is tight in D ([0,∞),P1 (R)) if for
each T > 0,

lim
u→0

lim sup
n→∞

sup
τ∈Sn(T )

E (x1 (τ + u)− x1 (τ)) = 0,

and also condition (a) of [13, Theorem 7.2] holds. In our case, for a bounded jump rate function w, these
conditions can be checked just like before, in the previous way of showing tightness.
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6.4 Identifying the limit

In this section we prove Theorem 6.11, Theorem 6.12, and Corollary 6.13.

Proof of Theorem 6.11. Let Ft denote the filtration generated by the n particles at time t. If X (t) is measurable
with respect to Ft then let

LX (t) := lim
dt→0

1

dt
E (X (t+ dt)−X (t) | Ft) .

We know that X (t) −X (0) −
t
∫

0

LX (s) ds is a martingale. Let t > 0 and f ∈ H be fixed from now on. As in

the previous section, define In (·) := 〈f, µn (·)〉 =
1
n

∑n
i=1 f (xi (·)). Calculation shows that

LIn (t) = 〈(E (f (x+ Z))− f (x))w (x−mn (t)) , µn (t)〉 ,

which means that Mn (t) := At,f (µn (·)) is a martingale in t with Mn (0) = 0. Therefore by Doob’s inequality
(see e.g. Jacod and Shiryaev [22, p. 11]) we have that for any c > 0,

P

(

sup
0≤s≤t

|Mn (s)| ≥ c

)

≤

E

(

sup
0≤s≤t

M2
n (s)

)

c2
≤

4E
(

M2
n (t)

)

c2
.

So in order to show (6.9) we need to show that

(6.14) lim
n→∞

E
(

M2
n (t)

)

= 0.

We know that

Nn (t) :=M2
n (t)−

t
∫

0

LM2
n (s) ds

is a martingale with Nn (0) = 0, and therefore

(6.15) E
(

M2
n (t)

)

= E





t
∫

0

LM2
n (s) ds



 =

t
∫

0

E
(

LM2
n (s)

)

ds.

The order of the expectation and the integral can be switched due to the Fubini-Tonelli theorem, because
LM2

n (s) ≥ 0 as we will see shortly. Let us calculate LM2
n (t):

LM2
n (t) = lim

dt→0

1

dt
E
(

M2
n (t+ dt)−M2

n (t)
∣

∣Ft
)

= lim
dt→0

1

dt
E
(

(Mn (t+ dt)−Mn (t))
2
∣

∣

∣Ft

)

,

where we used that Mn (t) is a martingale. Since LIn (s) is bounded, we have

Mn (t+ dt)−Mn (t) = (In (t+ dt)− In (t))−

t+dt
∫

t

LIn (s) ds

= (In (t+ dt)− In (t)) +O (dt)

and so consequently

LM2
n (t) = lim

dt→0

1

dt
E
(

(Mn (t+ dt)−Mn (t))
2
∣

∣

∣Ft

)

= lim
dt→0

1

dt
E
(

(In (t+ dt)− In (t))
2
∣

∣

∣Ft

)

=
1

n2
lim
dt→0

1

dt
E





(

n
∑

i=1

(f (xi (t+ dt))− f (xi (t)))

)2
∣

∣

∣

∣

∣

∣

Ft





=
1

n2

n
∑

i=1

w (xi (t)−mn (t))E
(

(f (xi (t) + Z)− f (xi (t)))
2
)

.

Now if f ∈ Cb, |f | ≤ 1, then LM2
n (t) ≤ 4a/n. If f = Id, then LM2

n (t) ≤ aE
(

Z2
)

/n. In both cases this shows,
via (6.15), that (6.14) holds.
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Proof of Theorem 6.12. Recall that w ≤ a and that |w′| ≤ a′.
We first show that for every t ≥ 0 and every f ∈ H,

(6.16) 〈f, µn (t)〉 ⇒n 〈f, µ (t)〉

in R. First of all, we know that the projection πt : D ([0,∞),P1 (R)) → P1 (R), given by πt (ν (·)) = ν (t), is
continuous at ν (·) if and only if ν (·) is continuous at t. Since µ (·) ∈ C ([0,∞),P1 (R)) a.s. (by Corollary 6.10),
the continuous mapping theorem and the fact that µn (·) ⇒n µ (·) in D ([0,∞),P1 (R)) together imply that for
every t ≥ 0,

µn (t) ⇒n µ (t)

in P1 (R). Now for any f ∈ H, the function hf : P1 (R) → R, given by hf (ν) = 〈f, ν〉, is continuous. (This
follows easily from the equivalence of (1) and (2) in Lemma 6.1.) Using the continuous mapping theorem, this
shows (6.16).

We introduce gf (x) := (E (f (x+ Z))− f (x)) in order to abbreviate notation. What remains to be shown
is that for every t ≥ 0 and every f ∈ H,

(6.17)

t
∫

0

〈gf (x)w (x−mn (s)) , µn (s)〉 ds⇒n

t
∫

0

〈gf (x)w (x−m (s)) , µ (s)〉 ds

in R. First, let us show that for any function f ∈ H, the function hf : P1 (R) → R, given by
hf (ν) = 〈gf (x)w (x−M) , ν〉, is continuous, where M =

∫

xν (dx). So suppose limn→∞ d1 (νn, ν) = 0, and
denote by Mn the mean of νn, i.e. Mn =

∫

xνn (dx). We need to show that in this case

lim
n→∞

|〈gf (x)w (x−Mn) , νn〉 − 〈gf (x)w (x−M) , ν〉| = 0.

We use the triangle inequality to arrive at

|〈gf (x)w (x−Mn) , νn〉 − 〈gf (x)w (x−M) , ν〉| ≤ |〈gf (x) [w (x−Mn)− w (x−M)] , νn〉|

+ |〈gf (x)w (x−M) , νn〉 − 〈gf (x)w (x−M) , ν〉| .

The first term on the right hand side can be bounded above by 2a′ |Mn −M |. This term goes to zero as
n → ∞, due to limn→∞ d1 (νn, ν) = 0 and the equivalence of (1) and (2) in Lemma 6.1. For every f ∈ H,
gf (x)w (x−M) is a bounded and continuous function, and consequently the second term goes to zero as n→ ∞
as well, due to limn→∞ d1 (νn, ν) = 0 and the equivalence of (1) and (2) in Lemma 6.1. Thus hf is continuous
for every f ∈ H.

Consequently the continuous mapping theorem and Lemma 6.7 together imply that

〈gf (x)w (x−mn (·)) , µn (·)〉 ⇒n 〈gf (x)w (x−m (·)) , µ (·)〉

in D ([0,∞),R). Lemma 6.8 then implies that

·
∫

0

〈gf (x)w (x−mn (s)) , µn (s)〉 ds⇒n

·
∫

0

〈gf (x)w (x−m (s)) , µ (s)〉 ds

in D ([0,∞),R). The integral function on the right hand side is continuous, which implies that the one-
dimensional distributions converge weakly in R, i.e. (6.17) holds.

Proof of Corollary 6.13. Fix t ≥ 0 and f ∈ H. Theorem 6.11 implies that

At,f (µn (·)) ⇒n 0

in R. On the other hand, Theorem 6.12 implies that

At,f (µn (·)) ⇒n At,f (µ (·))

in R. However, we know that a sequence cannot converge weakly to two different limits (Billingsley [8, Section
2]), and hence At,f (µ (·)) = 0 almost surely.
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6.5 Uniqueness of the solution to the mean field equation

In this subsection we prove Theorem 6.14 and Corollary 6.15.

Proof of Theorem 6.14. We have to show that there exists a constant c such that (6.11) holds. In order to do
this we prove that there exists a constant c such that

(6.18) dH (t) ≤ dH (0) + c

t
∫

0

dH (s) ds,

from which (6.11) follows using Grönwall’s lemma.
So let us now prove (6.18). Denote by m1 (t) and m2 (t) the mean of µ1 (t) and µ2 (t) respectively: mi (t) =

∫

xµi (t, dx) for i = 1, 2. We know that µ1 (·) and µ2 (·) are solutions to the mean field equation, with initial
conditions µ1

0 and µ2
0 respectively, and so

At,f
(

µi (·)
)

= 0

holds for all f ∈ H, for i = 1, 2 (recall (3.8)). Using this, the definition of the metric dH , and simple inequalities,
we have

dH (t) = sup
f∈H

∣

∣

〈

f, µ1 (t)
〉

−
〈

f, µ2 (t)
〉∣

∣

≤ sup
f∈H

∣

∣

〈

f, µ1
0

〉

−
〈

f, µ2
0

〉∣

∣

+

t
∫

0

sup
f∈H

∣

∣

〈

(E (f (x+ Z))− f (x))w
(

x−m1 (s)
)

, µ1 (s)
〉

−
〈

(E (f (x+ Z))− f (x))w
(

x−m2 (s)
)

, µ2 (s)
〉∣

∣ ds.

The first term on the right hand side is exactly dH (0), and so what we have to show is that the supremum
inside the integral is at most a constant multiple of dH (s). As in the proof of Theorem 6.12, define

gf (x) := (E (f (x+ Z))− f (x))

in order to abbreviate notation. We know that gId = E (Z) = 1 and that for every f ∈ Cb, |f | ≤ 1, gf is
continuous and |gf | ≤ 2. First we use the triangle inequality:

sup
f∈H

∣

∣

〈

gf (x)w
(

x−m1 (s)
)

, µ1 (s)
〉

−
〈

gf (x)w
(

x−m2 (s)
)

, µ2 (s)
〉∣

∣

≤ sup
f∈H

∣

∣

〈

gf (x)w
(

x−m1 (s)
)

, µ1 (s)
〉

−
〈

gf (x)w
(

x−m1 (s)
)

, µ2 (s)
〉∣

∣

+ sup
f∈H

∣

∣

〈

gf (x)w
(

x−m1 (s)
)

, µ2 (s)
〉

−
〈

gf (x)w
(

x−m2 (s)
)

, µ2 (s)
〉∣

∣ .

We bound the two terms separately by a constant multiple of dH (s). Let us start with the first term. If f ∈ Cb,
|f | ≤ 1, then gf (x)w

(

x−m1 (s)
)

is continuous in x and its absolute value is at most 2a, so consequently
the expression in the supremum is at most 2adH (s). If f = Id, then the expression in the supremum is
∣

∣

〈

w
(

x−m1 (s)
)

, µ2 (s)
〉

−
〈

w
(

x−m1 (s)
)

, µ1 (s)
〉∣

∣ which is at most adH (s) since w
(

x−m1 (s)
)

is continuous
in x and |w| ≤ a. Thus the first term is at most 2adH (s).

Now let us look at the second term. Using the fact that w′ is bounded we have
∣

∣w
(

x−m1 (s)
)

− w
(

x−m2 (s)
)∣

∣ ≤ a′
∣

∣m1 (s)−m2 (s)
∣

∣ ≤ a′dH (s) ,

and since |gf | ≤ 2 for all f ∈ H, it follows that the second term is at most 2a′dH (s). Therefore this shows (6.18)
with c := 2a+ 2a′.

Proof of Corollary 6.15. If dH (0) = 0 then, due to Theorem 6.14, dH (t) = 0 for all t ≥ 0, and consequently
µ1 (t) = µ2 (t) for all t ≥ 0, so µ1 (·) = µ2 (·).

6.6 Proof of Theorem 6.5

Before proving Theorem 6.5, let us present a result for general Polish space state spaces that we use during
the proof. Suppose E is a Polish space and d is a complete metric on E. For x (·) ∈ D ([0,∞), E), T > 0, and
δ > 0, let

w (x (·) , δ, T ) := sup
0≤s,t≤T,|s−t|≤δ

d (x (t) , x (s)) .

(We note that this w should not be confused with our jump rate function w—the distinction will be obvious
from the context.) Then:
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Theorem 6.16. Suppose {Xn (·)}n≥1 is a sequence of cadlag E-valued processes, where E is Polish. {Xn (·)}n≥1

is C-relatively compact in D ([0,∞), E) if and only if the following two conditions hold:

(a) For every T > 0 and every ε > 0 there exists a compact set K0 = K0
T,ε ⊂ E such that

sup
n

P
(

Xn (t) /∈ K0 for some t ≤ T
)

≤ ε.

(b) For every T > 0 and every ε > 0 there exists a δ > 0 such that

lim sup
n→∞

P (w (Xn (·) , δ, T ) ≥ ε) ≤ ε.

This theorem follows from Corollary 3.7.4, Remark 3.7.3, and Theorem 3.10.2 of Ethier and Kurtz [13].
Note: (a) is called the compact containment condition.

Proof of Theorem 6.5. To prove that {Pn (·)}n≥1 is C-relatively compact in D ([0,∞),P1 (R)) we need to show
that conditions (a) and (b) of Theorem 6.16 follow from conditions (i) and (ii) of Theorem 6.5. Notice that it is
enough to demonstrate this for small ε’s. First, let us start with the compact containment condition. Let T > 0
and ε ∈

(

0, 13
)

be fixed. To this T > 0, there exists a c = c (T ) and a τ = τ (T ) ∈ (0, 1) given by condition (i).

For every m ≥ 1, let εm := c̃ε/m2/τ , where c̃−1 =
∑

m≥1m
−2/τ so that

∑

m≥1 εm = ε. Now by condition (i),
to the fixed T and εm there exists a Km := KT,εm ∈ R such that

Km ≤
c

ε1−τm

=
c

(c̃ε)
1−τm

2/τ−2

and

sup
n

P

(

sup
0≤t≤T

Pn (t, (−∞,−Km) ∪ (Km,∞)) > εm

)

< εm.

This implies that

sup
n

P

(

sup
0≤t≤T

Pn (t, (−∞,−Km) ∪ (Km,∞)) > 1/m2/τ

)

< εm,

since εm < 1/m2/τ . Now given the Km’s, we define the following set of probability measures:

C0 :=
{

µ ∈ P1 (R) : µ ((−∞,−Km) ∪ (Km,∞)) ≤ 1/m2/τ for every m ≥ 1
}

.

(Of course C0 = C0
T,ε.) The choice of the Km’s implies that

sup
n

P
(

Pn (t) /∈ C0 for some t ≤ T
)

≤ ε,

since

P
(

Pn (t) /∈ C0 for some t ≤ T
)

= P
(

∃m ≥ 1, ∃t ≥ T : Pn (t, (−∞,−Km) ∪ (Km,∞)) > 1/m2/τ
)

= P

(

∃m ≥ 1 : sup
0≤t≤T

Pn (t, (−∞,−Km) ∪ (Km,∞)) > 1/m2/τ

)

≤

∞
∑

m=1

P

(

sup
0≤t≤T

Pn (t, (−∞,−Km) ∪ (Km,∞)) > 1/m2/τ

)

≤
∞
∑

m=1

εm = ε.

Consequently,
sup
n

P
(

Pn (t) /∈ K0 for some t ≤ T
)

≤ ε,

for K0 := C0. This K0 will be good as the compact set needed in condition (a)—what is left to show is that
K0 is compact in P1 (R). For this, it is enough to show that C0 is relatively compact in P1 (R). We know (see,
for instance, Feng and Kurtz [14, Appendix D]) that C0 ⊂ P1 (R) is relatively compact if and only if

(6.19) lim
N→∞

sup
µ∈C0

∫

|x|>N

|x|µ (dx) = 0.
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So let us now check (6.19). Note that this is where the original form of Perkins’ theorem [26, Theorem II.4.1]
is not enough and we have to use our modified version, Theorem 6.5. If N > Km, then

sup
µ∈C0

∫

|x|>N

|x|µ (dx) ≤ sup
µ∈C0

∞
∑

l=m

∫

[−Kl+1,−Kl)∪(Kl,Kl+1]

|x|µ (dx)

≤ sup
µ∈C0

∞
∑

l=m

Kl+1µ ((−∞,−Kl) ∪ (Kl,∞))

≤
∞
∑

l=m

c

(c̃ε)
1−τ (l + 1)

2/τ−2 1

l2/τ
.

This last expression goes to 0 as m→ ∞, which shows (6.19), and consequently we have shown that condition
(i) implies condition (a).

Now let us show that conditions (i) and (ii) imply condition (b). First we show that for every f ∈ Cb (P1 (R)),
{f ◦ Pn (·)}n≥1 is C-relatively compact in D ([0,∞),R). By the characterization of C-relatively compactness
we need to check conditions (a) and (b) of Theorem 6.16. Due to the boundedness of f , (a) is immediate. Now
let us show (b). Fix f ∈ Cb (P1 (R)), T > 0, and ε > 0. Choose K0 = K0

T,ε as in (a). Define

A =
{

h : P1 (R) → R
∣

∣

∣h (µ) =

k
∑

i=1

ai

mi
∏

j=1

〈fi,j , µ〉 , ai ∈ R, fi,j ∈ Cb, k,mi ∈ Z+

}

⊂ Cb (P1 (R)) .

Then A is an algebra containing the constant functions and separating points in P1 (R). So by the Stone-
Weierstrass theorem (see for instance Willard [33]) there exists an h ∈ A such that

sup
µ∈K0

|h (µ)− f (µ)| < ε.

If {Yn (·)}n≥1 and {Zn (·)}n≥1 are C-relatively compact in D ([0,∞),R) then so are {aYn (·) + bZn (·)}n≥1 and
{Yn (·)Zn (·)}n≥1 for any a, b ∈ R (see the characterization of Theorem 6.16). Therefore condition (ii) of the
theorem implies that {h ◦ Pn (·)}n≥1 is C-relatively compact in D ([0,∞),R). Now using the characterization
of Theorem 6.16 again, there exists a δ > 0 such that

lim sup
n→∞

P (w (h ◦ Pn (·) , δ, T ) ≥ ε) ≤ ε.

To abbreviate notation, we introduce Pn ([0, T ]) := {Pn (t) : t ∈ [0, T )}. If s, t ≤ T , then

|f (Pn (t))− f (Pn (s))| = |f (Pn (t))− f (Pn (s))|1
[

Pn ([0, T ]) ⊆ K0
]

+ |f (Pn (t))− f (Pn (s))|1
[

Pn ([0, T ]) * K0
]

≤ 2 sup
µ∈K0

|h (µ)− f (µ)|+ |h (Pn (t))− h (Pn (s))|

+ 2 ‖f‖∞ 1
[

Pn ([0, T ]) * K0
]

and so by the definition of w (f ◦ Pn (·) , δ, T ) we have

w (f ◦ Pn (·) , δ, T ) ≤ 2ε+ w (h ◦ Pn (·) , δ, T ) + 2 ‖f‖∞ 1
[

Pn ([0, T ]) * K0
]

.

Therefore

lim sup
n→∞

P (w (f ◦ Pn (·) , δ, T ) ≥ 3ε) ≤ lim sup
n→∞

P
(

Pn ([0, T ]) * K0
)

+ lim sup
n→∞

P (w (h ◦ Pn (·) , δ, T ) ≥ ε)

≤ ε+ ε = 2ε < 3ε,

by the choice of K0 and the fact that {h ◦ Pn (·)}n≥1 is C-relatively compact in D ([0,∞),R).
So let us recap what we have done up until now: we have shown that (i) implies the compact containment

condition and that (i) and (ii) imply that for every f ∈ Cb (P1 (R)), {f ◦ Pn (·)}n≥1 is C-relatively compact in
D ([0,∞),R). These imply that {Pn (·)}n≥1 is relatively compact in D ([0,∞),R) (see Theorem 3.9.1 of Ethier
and Kurtz [13]). What remains is to show that it is not only relatively compact, but also C-relatively compact.

We now show that (i) and (ii) imply (b). Let us define the metric d := min {d1, 1} and let

wd (Pn (·) , δ, T ) := sup
0≤s,t≤T,|s−t|≤δ

d (Pn (t) , Pn (s)) .
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Let T > 0 and ε > 0 be fixed, and choose K0 as in (a) again. Since K0 is compact, we can choose µi ∈ K0,
i = 1, . . . ,M , so that K0 ⊆ ∪Mi=1B (µi, ε), where

B (µ, ε) = {ν ∈ P1 (R) : d1 (µ, ν) < ε} .

Since ε < 1,
B (µ, ε) = {ν ∈ P1 (R) : d (µ, ν) < ε} .

Now let fi (µ) := d (µi, µ). Clearly fi ∈ Cb (P1 (R)). We have proved that for every f ∈ Cb (P1 (R)),
{f ◦ Pn (·)}n≥1 is C-relatively compact in D ([0,∞),R), which implies that there exists a δ > 0 such that

(6.20)
M
∑

i=1

lim sup
n→∞

P (w (fi ◦ Pn (·) , δ, T ) ≥ ε) ≤ ε.

If µ, ν ∈ K0, choose µj so that d (ν, µj) ≤ ε. Then

d (µ, ν) ≤ d (µ, µj) + d (µj , ν) ≤ |d (µ, µj)− d (µj , ν)|+ 2d (µj , ν) ≤ max
i

|fi (µ)− fi (ν)|+ 2ε.

Now let s, t ≤ T ; the above inequality implies

d (Pn (t) , Pn (s)) = d (Pn (t) , Pn (s))1
[

Pn ([0, T ]) ⊆ K0
]

+ d (Pn (t) , Pn (s))1
[

Pn ([0, T ]) * K0
]

≤ max
i

|fi ◦ Pn (t)− fi ◦ Pn (s)|+ 2ε+ 1
[

Pn ([0, T ]) * K0
]

,

where we used that d ≤ 1. Consequently

wd (Pn (·) , δ, T ) ≤ max
i
w (fi ◦ Pn (·) , δ, T ) + 2ε+ 1

[

Pn ([0, T ]) * K0
]

.

Now note that {w (Pn (·) , δ, T ) ≥ 3ε} and {wd (Pn (·) , δ, T ) ≥ 3ε} are exactly the same events, and consequently

lim sup
n→∞

P (w (Pn (·) , δ, T ) ≥ 3ε) = lim sup
n→∞

P (wd (Pn (·) , δ, T ) ≥ 3ε)

≤ lim sup
n→∞

P
(

max
i
w (fi ◦ Pn (·) , δ, T ) ≥ ε

)

+ lim sup
n→∞

P
(

Pn ([0, T ]) * K0
)

≤ lim sup
n→∞

M
∑

i=1

P (w (fi ◦ Pn (·) , δ, T ) ≥ ε) + lim sup
n→∞

P
(

Pn ([0, T ]) * K0
)

≤ ε+ ε = 2ε < 3ε,

using (6.20) and the choice of K0. This shows condition (b), and therefore completes the proof.
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