
A UNIFORM DIMENSION RESULT FOR TWO-DIMENSIONAL

FRACTIONAL MULTIPLICATIVE PROCESSES

XIONG JIN

Abstract. We show that a two-dimensional fractional multiplicative process

has a uniform Hausdorff dimension result if and only if the two parameters of
the process coincide.

1. Introduction

It is well-known that planar Brownian motion doubles the Hausdorff dimension,
in the sense that for any Borel set E ⊂ R+,

(1) P{dimH B(E) = 2 dimH E} = 1,

where B : R+ 7→ R2 is a planar Brownian motion and B(E) = {B(t) : t ∈ E} is the
image of E through B. This result was first proved by McKean [McK55] in 1955,
following the works of Lévy [Lév53] and Taylor [Tay53] regarding the Hausdorff
measure of B(R+), and was extended to α-stable processes by Blumenthal and
Getoor [BG60]. The result cannot be extended to more general Lévy processes, but
one can obtain control such as

(2) P{β′ dimH E ≤ dimH X(E) ≤ β dimH E} = 1

for certain parameters β and β′ depending on the process X (see [BG61,Mil71]). In
[BG61] Blumenthal and Getoor also conjectured that given any Borel set E, there
exists a constant λ(X,E) such that

P{dimH X(E) = λ(X,E)} = 1.

This conjecture is proved by Khoshnevisan and Xiao [KX05] in 2005, in terms of
Lévy exponents.

The relation (1) involves an exceptional null set NE ⊂ Ω for each fixed E, and
it is natural to ask whether there is a null set N such that NE ⊂ N holds for
uncountably many E. In other words, we would hope for a result like

(3) P{dimH B(E) = 2 dimH E for all E ∈ O} = 1

for O as large as possible. In the literature results like (3) are termed as uniform
dimension result, and this was first proved by Kaufman [Kau69] for planar Brownian
motion when O is the set of all Borel sets in R+. This result was extended to
strictly stable Lévy processes by Hawkes and Pruitt [HP73]. For general Lévy
processes the corresponding uniform dimension result may not hold, but for Lévy
subordinators one can obtain either a uniform result as (3) for smaller family O
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(collection of Borel sets whose Hausdorff dimension and packing dimension coincide)
or a looser dimension result as (2) uniformly for all Borel sets (see [HP73]). For
further information regarding the dimension results of stochastic processes, we refer
to the survey papers [Tay86,Xia04].

In this paper we prove a uniform dimension result for two-dimensional frac-
tional multiplicative processes, a class of random continuous functions recently con-
structed by Barral and Mandelbrot [BM09]. These processes and their generalisa-
tion, multiplicative cascade processes [BJM10], are considered as natural extensions
of the classical Mandelbrot measures [KP76] to functions, or in probabilistic terms,
subordinators to general processes. In [Jin12] the author proved a dimension result
for two-dimensional multiplicative cascade processes, motivated by the recent works
in [DS11, BS09, RV11] that proved the Knizhnik-Polyakov-Zamolodchikov formula
from quantum gravity for Gaussian multiplicative chaos and Mandelbrot measures.
The KPZ formula is a quadratic (thus nonlinear) relation between dimensions of
a given Borel set with respect to the Euclidean metric and the random metric ob-
tained from multiplicative chaos. It is natural to ask whether or not this type of
dimension formula holds uniformly for all Borel sets. With the help of multifractal
analysis of multiplicative cascades and their graph and range singularity spectra
(see [BJ10, Jin11] for example), it can be shown that for the dimension result in
[Jin12], as long as the formula is nonlinear, there will be some random sets that
break the formula. Thus the only candidate for which the uniform dimension result
could possibly hold is the multi-dimensional fractional multiplicative processes (in
one-dimensional case there is the level set of the process that breaks the formula),
which leads to the present study.

Recall that as a special case of [Jin12], we have the following dimension result for
the two-dimensional fractional multiplicative process F = (F1, F2) with parameters
1/2 < H1 ≤ H2 < 1 (see section 2 for precise definition): for every Borel set
E ⊂ [0, 1],

(4) P
{

dimH F (E) =
dimH E

H1
∧
(

1 +
dimH E −H1

H2

)}
= 1.

In particular when H1 = H2 = H ∈ (1/2, 1), we have

(5) P
{

dimH F (E) =
1

H
dimH E

}
= 1.

The result (4) has exactly the same form as in [Xia95] for Gaussian vector fields,
which is shown in [WX09] to be uniform if and only if the parameters of Gaussian
vector fields coincide. In this paper we show that the same phenomenon occurs for
two-dimensional fractional multiplicative processes:

Theorem 1.1. If H1 = H2 = H ∈ (1/2, 1), then (5) is uniform, that is

(6) P
{

dimH F (E) =
1

H
dimH E for all sets E ⊂ [0, 1]

}
= 1.

If H1 < H2, then the result (4) cannot hold almost surely for all Borel sets.

The proof of (6) relies on a stopping time technique used in [Haw70] for sta-
ble Markov processes, with certain non-trivial modifications due to the fact that
fractional multiplicative processes are neither stable nor Markovian. To show that
result (4) cannot be uniform when H1 6= H2, we use the same trick as in [WX09]
to show that the level set of F1 breaks the formula.
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2. Two-dimensional fractional multiplicative processes

2.1. 2-d fractional multiplicative processes. Fix two parameters 1/2 < H1 ≤
H2 < 1. Let ε = (ε1, ε2) be a random vector such that for j = 1, 2,

εj =

{
+1, with probability (1 + 2Hj−1)/2;
−1, with probability (1− 2Hj−1)/2.

Denote by {0, 1}∗ =
⋃
n≥1{0, 1}n the set of finite dyadic words. Let

{ε(w) = (ε1(w), ε2(w)) : w ∈ {0, 1}∗}

be a sequence of independent copies of ε encoded by {0, 1}∗.
Let j ∈ {1, 2}. For each w = w1 · · ·wn ∈ {0, 1}∗ let

tw =

n∑
m=1

wm2−m

be the corresponding dyadic point in [0, 1), and let

Iw = [tw, tw + 2−n)

be the corresponding dyadic interval. Then let

ε̄j(w) =

n∏
m=1

εj(w1 · · ·wm)

be the random weight on Iw.
For x ∈ [0, 1) and n ≥ 1 let x|n = x1 · · ·xn ∈ {0, 1}n be the unique word such

that x ∈ Ix|n . For n ≥ 1 define the piecewise linear function

Fj,n : t ∈ [0, 1] 7→ 2n(1−Hj)

∫ t

0

ε̄j(x|n) dx.

From Theorem 1.1 in [BM09] one has that almost surely {Fj,n}n≥1 converges uni-
formly to a limit Fj , and Fj is α-Hölder continuous for any α ∈ (0, Hj). Then
the two dimensional fractional multiplicative process considered in this paper is the
mapping

F = (F1, F2) : t ∈ [0, 1] 7→ (F1(t), F2(t)) ∈ R2.

We shall always assume that P{ε1 = ε2} < 1, to ensure that the process F does not
degenerate to one-dimensional case.

Remark 2.1. If we take the parameter Hj ∈ (−∞, 1/2], then the corresponding
sequence {Fj,n}n≥1 is not bounded in L2-norm. Moreover it is shown in [BM09]
that the normalised sequence

Xj,n =

{
Fj,n/

(
2n(1/2−Hj)

√
1 + (22−2Hj − 2)−1

)
, if H < 1/2,

Fj,n/
√
n/2, if H = 1/2

converges, as n→∞, in law to standard Brownian motion restricted on [0, 1].
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2.2. Statistical self-similarity. For any w ∈ {0, 1}∗ we can similarly define

F
[w]
j,n : t ∈ [0, 1] 7→ 2n(1−Hj)

∫ t

0

n∏
m=1

εj(w · x|m) dx.

Denote by |w| the length of w and

gw : t 7→ 2|w|(t− tw)

the canonical mapping from Iw to [0, 1). Then by definition for any s, t ∈ Iw and
n ≥ |w| one has

(7) Fj,n(t)− Fj,n(s) = 2−|w|Hj · ε̄j(w) ·
[
F

[w]
j,n−|w|(gw(t))− F [w]

j,n−|w|(gw(s))
]
.

Let F
[w]
j be the limit of {F [w]

j,n }n≥1. It certainly has the same law as Fj , and it is

independent of ε̄j(w). Moreover for any s, t ∈ Iw one gets from (7) that

(8) Fj(t)− Fj(s) = 2−|w|Hj · ε̄j(w) ·
[
F

[w]
j (gw(t))− F [w]

j (gw(s))
]
.

2.3. Boundary values and oscillations. Let Zj = Fj(1) and Zj(w) = F
[w]
j (1)

for w ∈ {0, 1}∗. Clearly they have the same law. Also from (8) one has

Fj(tw + 2−|w|)− Fj(tw) = 2−|w|Hj · ε̄j(w) · Zj(w),

where ε̄j(w) and Zj(w) are independent. Let

ϕ(u, v) = E
(
ei(uZ1+vZ2)

)
and ϕj(u) = E

(
eiuZj

)
be the characteristic functions of (Z1, Z2) and Zj respectively. The following lemma
(see Lemma 2 in [Jin12]) is essential to our proof:

Lemma 2.1. One has ϕ ∈ L1(R2) if P{ε1 = ε2} < 1 and ϕj ∈ L1(R). Conse-
quently, (Z1, Z2) has a bounded joint density function f with

‖f‖∞ ≤ ‖ϕ‖1 =

∫∫
R2

|ϕ(u, v)| dudv <∞,

provided P{ε1 = ε2} < 1, and Zj has a bounded density function f1 with

‖fj‖∞ ≤ ‖ϕj‖1 =

∫
R
|ϕj(u)| du <∞.

Let Xj = sups,t∈[0,1 |Fj(t)−Fj(s)| and Xj(w) = sups,t∈[0,1 |F
[w]
j (t)−F [w]

j (s)| for

w ∈ {0, 1}∗. They have the same law, and from (8) one has

sup
s,t∈Iw

|Fj(t)− Fj(s)| = 2−|w|Hj ·Xj(w).

Moreover, from Lemma 3.1 in [BJM10] one has that for all q ∈ R,

(9) E(Xq
j ) <∞.
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3. Proof of Theorem 1.1

3.1. Proof of (6). The idea of the proof is to show that for all n large enough,
the number of w ∈ {0, 1}bn/Hc that the image F (Iw) intersects with a given dyadic
square of side length 2−n is bounded above uniformly for all dyadic squares. This
will imply the uniform dimension result (6). In order to do so we need to control
the probability of F (tw) ∈ S, given that F (tw1

), · · · , F (twk
) ∈ S for wj 6= w, then

pass this information to F (Iw) ∩ S 6= ∅ by using the control of the oscillation of F
on Iw.

Preliminaries. Let H1 = H2 = H ∈ (1/2, 1) and fix an integer p > 1/(2H − 1) so
that (1 + 1/p)/H < 2.

For n ≥ 1 denote by Tn the set of dyadic numbers of generation n, that is

Tn =
{
tw =

n∑
j=1

wj2
−j : w = w1 · · ·wn ∈ {0, 1}n

}
∪ {1}.

Let Sn be the collection of all dyadic squares in R2 with side length 2−n.
Fix n ≥ 1 and S ∈ Sn. Let m = bn(1− 1/p)/Hc. Define

N(S) := #{w ∈ {0, 1}m : F (tw) ∈ S}

and

Ñ(S) := #{w ∈ {0, 1}m : F (Iw) ∩ S 6= ∅}.
In the following we shall estimate a uniform control of N(S) for all S ∈ Sn, and

use it to get a uniform control of Ñ(S), then show that this uniform control gives
the uniform dimension result.

Uniform control of N(S). First we rewrite the set Tm as

Tm = {0 = s0 < s1 < · · · < s2m = 1}.

For k = 1, · · · , 2m one can easily get

(10) P(N(S) ≥ k) ≤ E(Hk(S)),

where

Hk(S) :=
∑

s1<s2<···<sk∈Tm

k∏
l=1

1{F (sl)∈S}.

We shall control E(Hk(S)) by iterating.
Denote by |S| the diameter of S. One has

Hk+1(S)

=
∑

s1<s2<···<sk∈Tm, sk 6=1

( k∏
l=1

1{F (sl)∈S}

)
·
∑

sk<t∈Tm

1{F (t)∈S}

≤
∑

s1<s2<···<sk∈Tm, sk 6=1

( k∏
l=1

1{F (sl)∈S}

)
·
∑

sk<t∈Tm

1{
|F (t)−F (sk)|≤|S|

}.(11)

Fix s1 < · · · < sk < t ∈ Tm, let N be the smallest integer such that there exists a
dyadic word w = w1 · · ·wN such that Iw ⊂ (sk, t). This gives

2−N ≤ t− sk ≤ 4 · 2−N .
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From (8) we may write

(12) |F (t)− F (sk)| =
( ∑
j=1,2

|Aj(w)Zj(w) +Bj(w)|2
)1/2

,

where Aj(w) = 2−NH ε̄j(w) and Bj(w) = Fj(t)− Fj(tw + 2−N ) + Fj(tw)− Fj(sk).
Denote by

(13) F(w) = σ (ε(u) : u ∈ {0, 1}∗ \ {w · u : u ∈ {0, 1}∗}) .

It is easy to check that the random variables A1(w), A2(w), B1(w), B2(w) and∏k
l=1 1{F (sl)∈S} are measurable with respect to F(w). Also notice that

1{
|F (t)−F (sk)|≤|S|

} ≤ |F (t)− F (sk)|−(1+1/p)/H · |S|(1+1/p)/H .

Recall in Lemma 2.1 the joint density function f of (Z1, Z2), which is bounded by
‖ϕ‖1 <∞. One gets

E
(
|F (t)− F (sk)|−(1+1/p)/H

∣∣∣F(w)
)

=

∫∫
R2

f(x, y) dxdy

(|A1(w)x+B1(w)|2 + |A2(w)y +B2(w)|2)(1+1/p)/2H

≤ 2N(1+1/p)

∫∫
R2

f
(
u−B1(w)2NH

ε̄1(w) , u−B1(w)2NH

ε̄1(w)

)
(u2 + v2)(1+1/p)/2H

dudv

≤ 2N(1+1/p) ·

(
1 + ‖ϕ‖1 ·

∫∫
u2+v2<1

dudv

(u2 + v2)(1+1/p)/2H

)
:= 2N(1+1/p) · C(1+1/p)/H .

The finiteness of C(1+1/p)/H comes from the fact that we already choose p large
enough such that (1 + 1/p)/H < 2. This gives

E

(
k∏
l=1

1{F (sl)∈S} · 1{|F (t)−F (sk)|≤|S|
}∣∣∣F(w)

)

≤ |S|(1+1/p)/H ·
k∏
l=1

1{F (sl)∈S} · E
(
|F (t)− F (sk)|−(1+1/p)/H

∣∣∣F(w)
)

≤ C(1+1/p)/H |S|(1+1/p)/H ·
k∏
l=1

1{F (sl)∈S} · 2
N(1+1/p)

≤ 41+1/pC(1+1/p)/H |S|(1+1/p)/H ·
k∏
l=1

1{F (sl)∈S} · |t− sk|
−(1+1/p).(14)

For any sk ∈ Tm we have∑
sk<t∈Tm

|t− sk|−(1+1/p) ≤ 2m(1+1/p)
∞∑
l=1

l−(1+1/p)

≤ 2n(1−1/p)(1+1/p)/H
∞∑
l=1

l−(1+1/p).(15)
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Thus by combining (11), (14) and (15) we get

(16) E(Hk+1(S)) ≤ C · 2−n(1/p−1/p2)/H · E(H ′k(S)),

where C = 41+1/pC(1+1/p)/H2(1+1/p)/2H
∑∞
l=1 l

−(1+1/p) <∞ and

H ′k(S) =
∑

s1<s2<···<sk∈Tm, sk 6=1

k∏
l=1

1{F (sl)∈S}.

Obviously H ′k(S) ≤ Hk(S), thus from (16) we get

E(Hk+1(S)) ≤ C · 2−n(1/p−1/p2)/H · E(H ′k(S))

≤ C · 2−n(1/p−1/p2)/H · E(Hk(S))

≤ Ck · 2−nk(1/p−1/p2)/H · E(H1(S)).

Together with (10) this gives

P
(

sup
S∈Sn

N(S) ≥ k + 1

)
≤ Ck · 2−nk(1/p−1/p2)/H ·

∑
S∈Sn

E
( 2m∑
j=0

1{F (tj)∈S}

)

= Ck · 2−nk(1/p−1/p2)/H · E
( 2m∑
j=0

∑
S∈Sn

1{F (tj)∈S}

)
= Ck · 2−nk(1/p−1/p2)/H · (2m + 1)

≤ 2Ck · 2−nk(1/p−1/p2)/H · 2n(1−1/p)/H

= 2Ck · 2−n(1−1/p)(k/p−1)/H .

We may choose k = p + 1. Then by the Borel-Cantelli lemma one gets for P-
almost every ω ∈ Ω that there exists a integer np(ω) such that for any n ≥ np(ω),

(17) sup
S∈Sn

N(S) ≤ p+ 2.

Uniform control of Ñ(S). Now we want to pass the information of F (tw) ∈ S to
that of F (Iw) ∩ S 6= ∅. We start with the oscillation

X(w) = sup
s,t∈[0,1]

( ∑
j=1,2

∣∣∣F [w]
j (s)− F [w]

j (t)
∣∣∣2 )1/2

, w ∈ {0, 1}∗.

Clearly X(w) has the same law as X = sups,t∈[0,1] |F (s) − F (t)|. Then for any
n ≥ 1,

P
(

sup
w∈{0,1}n

X(w) ≥ 2n/p
)
≤

∑
w∈{0,1}n

P
(
X(w) ≥ 2n/p

)
≤ 2n · 2−n(1+1/p) · E(Xp+1).

From (9) it is easy to deduce that E(Xp+1) < ∞. Then by the Borel-Cantelli
lemma one gets for P-almost every ω ∈ Ω that there exists a integer n′p(ω) such
that for any n ≥ n′p(ω) and w ∈ {0, 1}n,

(18) X(w) ≤ 2n/p.
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To combine (17) and (18), let

Ω′ =
⋂

p>1/(2H−1)

{
ω ∈ Ω : np(ω) ∨ n′p(ω) <∞

}
.

So P(Ω′) = 1.
Fix ω ∈ Ω′, p > 1/(2H − 1) and n ≥ np(ω) ∨ n′p(ω) large enough such that

bn(1− 1/p)/Hc > n(1− 2/p)/H.

We are going to control the number

Ñ(S) := {w ∈ {0, 1}bn(1−1/p)/Hc : F (Iw) ∩ S 6= ∅}.

First for any w ∈ {0, 1}bn(1−1/p)/Hc one has

sup
s,t∈Iw

|F (s)− F (t)| = 2−|w|H ·X(w) ≤ 2−bn(1−1/p)/Hc(H−1/p).

For S ∈ Sn let

U(S) =
{
z ∈ R2 : dist(z, S) ≤ 2−bn(1−1/p)/Hc(H−1/p)

}
.

Then for any w ∈ {0, 1}bn(1−1/p)/Hc we have

(19) F (Iw) ∩ S 6= ∅ ⇒ F (Iw) ⊂ U(S)⇒ F (tw) ∈ U(S).

On the other hand, there are at most

area
{
z ∈ R2 : dist(z, S) ≤ 2−bn(1−1/p)/Hc(H−1/p) +

√
2 · 2−n

}/
2−2n

≤ π ·
(

2−bn(1−1/p)/Hc(H−1/p) + 2
√

2 · 2−n
)2

· 22n

≤ π · (1 + 2
√

2)2 · (2−bn(1−1/p)/Hc)2(H−1/p)−(2n/bn(1−1/p)/Hc)

≤ π · (1 + 2
√

2)2 · (2−bn(1−1/p)/Hc)2(H−1/p)−2H/(1−2/p)

= π · (1 + 2
√

2)2 · (2−bn(1−1/p)/Hc)−2(2H/(1−2/p)+1)/p

many S ∈ Sn that intersect U(S), and for each S ∈ Sn there are at most p + 2
words w ∈ {0, 1}bn(1−1/p)/Hc such that F (tw) ∈ S. Together with (19), this implies
that for n large enough,

(20) sup
S∈Sn

Ñ(S) ≤ C ′ · (2−bn(1−1/p)/Hc)−2(2H/(1−2/p)+1)/p,

where C ′ = (p+ 2) · π · (1 + 2
√

2)2.

Lower bound of dimH F (E). For any set E ⊂ [0, 1], let CN be any dyadic square
covering of F (E) such that∑

S∈CN

|S|dimH F (E)+1/p ≤ 2−N .

Denote by n(S) = b−(log2 |S|) · (1− 1/p)/Hc. For N large enough one has that⋃
S∈CN

{
Iw : w ∈ {0, 1}n(S), F (Iw) ∩ S 6= ∅

}
forms a covering of E. Moreover, due to (20), for

s = (dimH F (E) + 1/p) · H

1− 1/p
+ 2

(
2H

1− 2/p
+ 1

)/
p
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one has∑
S∈CN

∑
w∈{0,1}n(S), F (Iw)∩S 6=∅

|Iw|s ≤ C ′
∑
S∈CN

|S|dimH F (E)+1/p ≤ C ′ · 2−N ,

which implies

dimH E ≤ (dimH F (E) + 1/p) · H

1− 1/p
+ 2

(
2H

1− 2/p
+ 1

)/
p.

Since this holds for all p > 1/(2H − 1), we get dimH E ≤ H dimH F (E).

Upper bound of dimH F (E). Now consider any dyadic interval covering IN of E
such that ∑

I∈IN

|I|dimH E+1/p ≤ 2−N .

For N large enough one gets from (18) that

sup
s,t∈Iw

|F (s)− F (t)| = |Iw|H ·X(w) ≤ |Iw|H−1/p

for any Iw ∈ IN , thus for each I one can use a square of side length 2|I|H−1/p to
cover F (I). We have∑

I∈IN

(2|I|H−1/p)(dimH E+1/p)/(H−1/p) = C ′′
∑
I∈IN

|I|dimH E+1/p ≤ C ′′2−N ,

where C ′′ = 2(dimH E+1/p)/(H−1/p). This gives

dimH F (E) ≤ dimH E + 1/p

H − 1/p
.

Since this holds for all p > 1/(2H − 1), we get dimH E ≥ H dimH F (E).

3.2. Proof of the fact that a uniform result cannot hold when H1 < H2.
We shall use the following result.

Proposition 3.1. For j = 1, 2 almost surely there exists a Borel set R ⊂ Fj([0, 1])
with positive Lebesgue measure such that for each y ∈ R,

dimH Lj(y) = 1−Hj ,

where Lj(y) = {x ∈ [0, 1] : Fj(x) = y} is the level set of Fj at level y.

From Proposition 3.1 one has that almost surely

dimH L1(y) = 1−H1 > 0

for some y ∈ F1([0, 1]). On the other hand, since F2 is α-Hölder continuous for all
α ∈ (0, H2), and F (L1(y)) = {y} × F2(L1(y)), so

dimH F (L1(y)) = dimH F2(L1(y)) ≤ dimH L1(y)

H2
<

dimH L1(y)

H1
.

This shows that the relation in (4) cannot hold almost surely for all Borel sets.
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Proof of Proposition 3.1. It is enough to prove the result for F1. We will use the
same method as used for constructing the local time of fractional Brownian motion
to compute the Hausdorff dimension of its level sets, see [Kah85] for example.

Let ν be the occupation measure of F1 with respect to the Lebesgue measure on
[0, 1], that is the Borel measure defined as

ν(B) =

∫ 1

0

1{
F1(t)∈B

} dt for any Borel set B ⊂ R.

First we show that almost surely ν is absolutely continuous with respect to the
Lebesgue measure. We consider the Fourier transform of ν:

ν̂(u) =

∫ 1

0

eiuF1(t) dt.

We will show that

E
(∫

R

∣∣ν̂(u)
∣∣2 du

)
<∞.

This will imply that almost surely ν̂ is in L2(R). Therefore almost surely ν is
absolutely continuous with respect to the Lebesgue measure on R and its density
function belongs to L2(R).

By using Fubini’s theorem one has

E
(∫

R

∣∣ν̂(u)
∣∣2 du

)
= E

(∫∫
s,t∈[0,1]

∫
R
eiu·(F1(t)−F1(s)) dudsdt

)
.

Fix 0 ≤ s < t ≤ 1. Let N ≥ 1 be the smallest integer such that there exists a
dyadic word w = w1 · · ·wN such that Iw ⊂ (s, t), thus

2−N ≤ |t− s| ≤ 4 · 2−N .

From (8) we may write

(21) F1(t)− F1(s) = A1(w) · Z1(w) +B1(w),

where A1(w) = 2−NH1 ε̄1(w) and B1(w) = F1(t)− F1(tw + 2−N ) + F1(tw)− F1(s).
Recall that Z1(w) is independent of A1(w) and B1(w).

Recall (13) and ϕ1(u) = E(eiuZ1) the characteristic function of Z1. One has

E
(∫

R
eiu·(F1(t)−F1(s)) du

∣∣F(w)
)

=

∫
R
eiuB1(w) · ϕ1(A1(w) · u) du.

Thus ∣∣∣E(∫
R
eiu·(F1(t)−F1(s)) du

)∣∣∣ ≤ E
(∫

R
|ϕ1(A1(w) · u)|du

)
= E

(
|A1(w)|−1

)
·
∫
R
|ϕ1(u)|du

= 2NH1 · ‖ϕ1‖1
≤ 4H1 · |s− t|−H1 · ‖ϕ1‖1.(22)

From Lemma 2.1 we get ‖ϕ1‖1 <∞, thus

E
(∫

R

∣∣ν̂(u)
∣∣2 du

)
≤ 4H1 · ‖ϕ1‖1 ·

∫∫
s,t∈[0,1]

|s− t|−H1 dsdt <∞.
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We have proved that almost surely ν is absolutely continuous with respect to the
Lebesgue measure. This implies that almost surely for ν-almost every y ∈ F1([0, 1])
the following limit

lim
r→0

1

r

∫ 1

0

1{
|F1(t)−y|≤r

} dt

exists and belongs to (0,∞), thus yielding a positive finite Borel measure νy carried
by L1(y) = {t ∈ [0, 1] : F1(t) = y}, defined as∫ 1

0

g(t) dνy(t) = lim
r→0+

1

r

∫ 1

0

1{
|F1(t)−y|≤r

}g(t) dt, ∀ g ∈ C([0, 1]).

Moreover, for any Borel measurable function G : [0, 1]× R 7→ R+ one has∫
y∈F1([0,1])

∫
[0,1]

G(t, y) dνy(t) dy =

∫ 1

0

G(t, F1(t)) dt.

Let γ > 0. By Fatou’s lemma and Fubini’s theorem we have∫
y∈F1([0,1])

∫ 1

0

∫ 1

0

|s− t|−γ dνy(s)dνy(t) dy

=

∫
y∈F1([0,1])

∫ 1

0

[
lim
r→0

1

r

∫ 1

0

1{
|F1(s)−y|≤r

}|s− t|−γ ds
]

dνy(t) dy

≤ lim inf
r→0

1

r

∫ 1

0

∫
y∈F1([0,1])

∫ 1

0

1{
|F1(s)−y|≤r

}|s− t|−γ dνy(t) dy ds

= lim inf
r→0

1

r

∫ 1

0

∫ 1

0

1{
|F1(s)−F1(t)|≤r

}|s− t|−γ dtds.(23)

Fix 0 ≤ s < t ≤ 1. Recall (21) and the fact that Z1(w) has a bounded density
function f1 with ‖f1‖∞ ≤ ‖ϕ1‖1, so

E
(
1{
|F1(s)−F1(t)|≤r

}∣∣F(w)

)
=

∫
R
1{∣∣x+

B1(w)

A1(w)

∣∣≤ r
|A1(w)|

}f1(x) dx

=

∫
R
1{
|z|≤ r

|A1(w)|

}f1

(
z − B1(w)

A1(w)

)
dz

≤ ‖ϕ1‖1 ·
2r

|A1(w)|
= 2‖ϕ1‖1 · r · 2NH1 .(24)

Again using Fatou’s lemma and Fubini’s theorem we get from (23) and (24) that

E
(∫

y∈F1([0,1])

∫ 1

0

∫ 1

0

|s− t|−γ dνy(s)dνy(t) dy
)
≤ C

∫ 1

0

∫ 1

0

|s− t|−(γ+H1) dsdt,

where C = 2‖ϕ1‖14H1 . Due to the mass distribution principle we get that for any
γ < 1−H1, almost surely for ν-almost every y ∈ F1([0, 1]),

dimH L1(y) ≥ γ.

This gives us the desired lower bound.
For the upper bound, we use the fact that almost surely the Hausdorff dimension

of the graph of F1, defined as {(t, F1(t)) : t ∈ [0, 1]}, is equal to 2 −H1 (Theorem
1.1 in [BM09]). Then from Corollary 7.12 in [Fal03] we know that there cannot
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exist a subset R ⊂ F1([0, 1]) with positive Lebesgue measure such that for every
y ∈ R, dimH L1(y) > 1−H1. �
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