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We study the convergence of theM/G/1 Processor-Sharing queue
length process in the heavy traffic regime, in the finite variance case.
To do so, we combine results pertaining to Lévy processes, branching
processes and queueing theory. These results yield the convergence of
long excursions of the queue length processes, towards excursions ob-
tained from those of some reflected Brownian motion with drift, after
taking the image of their local time process by the Lamperti transfor-
mation. We also show, via excursion theoretic arguments, that this
entails the convergence of the entire processes to some (other) re-
flected Brownian motion with drift. Along the way, we prove various
invariance principles for homogeneous, binary Crump–Mode–Jagers
processes. In the last section we discuss potential implications of the
state space collapse property, well-known in the queueing literature,
to branching processes.
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2 A. LAMBERT, F. SIMATOS AND B. ZWART

1. Introduction. The standard machinery to show weak convergence
of stochastic processes consists in proving tightness and characterizing accu-
mulation points. Probably the most common technique to characterize ac-
cumulation points is to show that finite-dimensional distributions converge,
but as Jacod and Shiryaev [16] point out, this is “very often [. . . ] a very
difficult (or simply impossible) task to accomplish”. In the present work,
motivated by the Processor-Sharing (PS) queue length process, we develop
new ideas to characterize limit points of a sequence of regenerative processes.
The basic idea is to show that the convergence of suitably conditioned ex-
cursions implies the convergence of the full processes. Our starting point to
control excursions is the Lamperti transformation that links excursions of
the PS queue to Crump-Mode-Jagers (CMJ) branching processes. Further,
control on CMJ processes comes from a recent result of Lambert [23] that
relates them to Lévy processes via local times.

The Processor-Sharing Queue. The PS queue is a single-server queue
in which the server splits its service capacity equally among all the users
present. For instance, if the server has a service capacity c and if there are
exactly q ≥ 1 customers in the queue during the time interval [t, t + h]
(in particular there is no arrival or departure), then the residual service
requirement of each customer is decreased by ch/q during this time interval
while the total workload is decreased by ch.

Crump-Mode-Jagers Branching Processes. A CMJ process is a stochas-
tic process counting the size of a population where individuals give birth
to independent copies of themselves. It is defined through a pair (V, ξ) of
possibly dependent random variables, where V > 0 is a real valued random
variable and ξ is a point process on (0,∞) (in particular, its atoms have
integer-valued weights). Each individual a of the branching process is given
an independent copy (Va, ξa) of (V, ξ): if the individual a is born at time Ba,
then at time Ba ≤ t ≤ Ba+Va she gives birth to ξa({t−Ba}) i.i.d. copies of
herself, Va therefore being seen as her life length. A CMJ process is called
binary and homogeneous when ξ is a Poisson process independent from V .
Lambert [23] has shown that a binary, homogeneous CMJ process which
is in addition critical or subcritical is the local time process of a suitable
spectrally positive Lévy process.

The Lamperti Transformation. Connections between branching processes
and queues have been known for a long time. Kendall [19] is usually referred
to as one of the earliest publications in this area. Concerning the PS queue,
Kitayev and Yashkov [21] have proved that a busy cycle of the PS queue
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SCALING LIMITS VIA EXCURSION THEORY 3

length process becomes a CMJ process after a suitable time-change. This
time-change transformation is the same one that links continuous-state space
branching processes and Lévy processes and is called Lamperti transforma-
tion in the branching literature, see Lamperti [24] or Caballero et al. [7] for
a more recent treatment. This connection between the PS queue and CMJ
processes has been used to establish results on the stationary behavior of the
PS queue, see for instance Grishechkin [12]. In this paper we make a deeper
use of this connection, since we exploit it to study the entire trajectories of
the processes.

The connections between CMJ processes, Lévy processes and PS queues
lead to a natural proof of the weak convergence of CMJ processes. On the one
hand, we can prove tightness of such processes by transferring, via the Lam-
perti transformation, a result in queueing theory on the departure process
of queues with a symmetric service discipline. On the other hand, exploiting
the fact that subcritical, binary and homogeneous CMJ processes are local
time processes of suitable Lévy processes makes it possible to characterize
accumulation points.

Using continuity properties of the Lamperti transformation, much in the
spirit of those established by Helland [15], and the connection between CMJ
processes and the PS queue, the convergence of suitably renormalized CMJ
processes implies that excursions of the (M/G/1) PS queue length processes
converge. Thus convergence of excursions of the PS queue length process
comes quite naturally by combining different results from queueing theory
and the theory of Lévy and CMJ processes. Besides the original combination
of these various results, the main methodological contribution of the present
work is to show that from there, one can conclude that the whole PS queue
length processes converge.

Weak convergence of CMJ processes. Binary, homogeneous CMJ pro-
cesses considered in the present paper can be seen as branching processes
and also as local time processes. Since Lamperti [25], we have a complete
characterization of the possible asymptotic behaviors of branching processes
in discrete time. Grimvall [11] improved Lamperti’s results by proving tight-
ness and hence weak convergence, see also Chapter 9 in Ethier and Kurtz [9]
for another proof of Grimvall’s results using time-change arguments. In
the continuous-time setting, the Markovian case has been studied by Hel-
land [15]. Outside the Markovian case we are only aware of two papers by
Sagitov [31, 32], that establish convergence of the finite-dimensional distri-
butions for some particular CMJ that are not homogeneous.
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4 A. LAMBERT, F. SIMATOS AND B. ZWART

As for convergence of local time processes, there is a wealth of litera-
ture studying the convergence of local time processes associated to random
walks converging to Brownian motion. One of the earliest publication in
this domain is Knight [22], see also Borodin [4, 5], Perkins [28] and ref-
erences therein. The problem of finding sharp convergence rates has been
the focus of intense activity, see for instance the introduction of Csörgő and
Révész [8] for references. On the other hand, the question of the convergence
of local time processes associated to compound Poisson processes (which is
another natural way to approximate a Brownian motion) has been compar-
atively very little studied. In this context, Khoshnevisan [20] derived sharp
convergence rates using embedding techniques requiring bounded fourth mo-
ments. In that respect, some of the results of the present paper seem to be
new. Under a second moment assumption on lifetimes, Theorem 4.8 shows
the weak convergence of suitably renormalized homogeneous, binary CMJ
processes when started from one individual and conditioned by their total
offspring. Theorem 5.4 states the weak convergence of these CMJ processes
when started with large initial condition to the Feller diffusion. In this last
setting, the choice of the initial condition turns out to be quite subtle, and
is discussed in Section 6.

Heavy-Traffic of the PS Queue. The heavy traffic limit of the PS queue
has been investigated by Gromoll [13]. Extending the state space collapse
framework developed by Bramson [6] and Williams [34], he proved conver-
gence of the measure-valued descriptors of the G/G/1-PS queue, assum-
ing that service requirements have bounded fourth moments, towards some
measure-valued diffusion process. In the present paper we assume Poisson
arrivals, i.e., we study the M/G/1-PS queue, but we relax the moment as-
sumption and prove convergence of the queue length process under a mini-
mal second moment assumption. More specifically, Theorem 4.1 shows the
convergence of these (suitably renormalized) queue length processes to the
regenerative process whose excursions are obtained from those of some re-
flected Brownian motion with drift after taking the image of their local
time process by the Lamperti transformation. Theorem 5.6 shows that this
process actually is another reflected Brownian motion with drift.

We also believe that our method can be used to study the case of service
requirements with infinite variance, where state space collapse cannot be
used since the workload and queue length processes have different orders of
magnitude. To the very least, although so far there was no conjecture to
this open problem, our method clearly suggests a candidate for the heavy
traffic limit of the PS queue length process in the infinite variance case.

imsart-aap ver. 2011/01/24 file: aap-v3.tex date: October 30, 2012



SCALING LIMITS VIA EXCURSION THEORY 5

Following the arguments in the previous paragraphs, this limit should be a
regenerative process whose excursions away from 0 are obtained from those
of some reflected, spectrally positive Lévy process by taking first their local
time process and then applying Lamperti transformation.

Organization of the Paper. In Section 2 we introduce general notation
and state preliminary results. In Section 3, we explain the connections be-
tween CMJ processes, PS queues and Lévy processes. We also introduce
the processes studied throughout the rest of the paper. Section 4 is devoted
to the proof of the main result of the paper, Theorem 4.1, which states the
convergence of the PS queue length process towards a process that we define
through its excursion measure. In Section 5 we extend this result by explic-
itly identifying the limiting process as being a(nother) reflected Brownian
motion with drift and by considering a general initial condition. Finally, in
Section 6 we make some comments about continuity properties of local time
processes and possible implications of the state-space collapse property to
branching processes.

Acknowledgements. We would like to thank the two anonymous referees
who have contributed to significant improvements both in the presentation
and content of the paper. We are especially grateful to one of the two referees
who suggested the current proofs of Lemma 4.3 and Theorem 4.8 that lead
to substantial simplifications.

2. Notation and preliminary results. Let D, resp. D+, be the set of
càdlàg functions from [0,∞) to R, resp. to [0,∞). For f ∈ D and m ≥ 0 let
‖f‖m = sup[0,m] |f | and ‖f‖∞ = sup |f |. We will endow D with the topology
of uniform convergence on compact sets, i.e., we will write fn → f for func-
tions fn, f ∈ D if ‖fn − f‖m → 0 as n → ∞ for every m ≥ 0. The space D
is more naturally endowed with the Skorohod J1 topology, see for instance
Billingsley [2], but since the Skorohod topology relativized to the space of
continuous functions coincides with the topology of uniform convergence
on compact sets there, this latter topology is enough for the purpose of the
present paper, whenever considering sequences with continuous limit points.

If f ∈ D, we call local time process of f a Borel function (L(a, t), a, t ≥ 0)
which satisfies

(1)

∫ t

0
φ(f(s))ds =

∫ ∞

0
L(a, t)φ(a)da

for any t ≥ 0 and any continuous function φ with compact support included
in [0,∞). The local time process of an arbitrary function f ∈ D may not
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6 A. LAMBERT, F. SIMATOS AND B. ZWART

exist, but when it does it is unique (up to an almost everywhere modifi-
cation). In the sequel we will only consider local time processes associated
to spectrally positive Lévy processes which either have infinite variation or
negative drift. These local time processes are known to exist, see for instance
Bertoin [1].

If f ∈ D we define f , the function f reflected above its past infimum, via

f(t) = f(t)−min

(
0, inf

0≤s≤t
f(s)

)
, t ≥ 1.

It is well-known that this transformation induces a continuous map, i.e.,
if fn, f ∈ D are such that fn → f , then fn → f .

For f ∈ D, let ∆f(t) = f(t) − f(t−) for t > 0, and Tf = inf{t > 0 :
f(t) = 0} be the first time after time 0 at which f visits 0, with Tf = ∞
if f never visits 0 in (0,∞). We see it as a map T : D → [0,∞] and we
sometimes write T (f) for Tf . In general this map is not continuous but we
have the following result.

Lemma 2.1. If fn, f ∈ D, fn → f and f is continuous, then Tf ≤
lim infn Tfn.

Proof. Let τ = lim infn Tfn and (u(n)) such that Tfu(n)
→ τ . Since

fn → f and f is continuous, we obtain fu(n)(Tfu(n)
) → f(τ), hence f(τ) = 0

which proves the result.

From now on ⇒ denotes weak convergence. When considering random
vectors, we consider convergence in the product topology. The previous
lemma has the following consequence.

Corollary 2.2. If Xn, X are stochastic processes such that Xn ⇒ X,

X is continuous and TXn ⇒ TX , then (Xn, TXn) ⇒ (X,TX).

Proof. The sequence (Xn, TXn) is tight: let (X
′, T ′) be any accumulation

point, so that X ′ is equal in distribution to X and T ′ to TX . We show
that T ′ = TX′ , which will show that (X ′, T ′) is equal in distribution to
(X,TX) and will prove the result. Assume without loss of generality that
(Xn, TXn) ⇒ (X ′, T ′): the continuous mapping theorem and Lemma 2.1
imply that TX′ ≤ T ′. But since they are equal in distribution they must be
equal almost surely, hence the result.
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SCALING LIMITS VIA EXCURSION THEORY 7

Stopping and shift operators. For t ≥ 0 let σt and θt be the stopping
and shift operators, respectively: for f ∈ D and t ≥ 0, σtf = f( · ∧ t) and
θtf = f( · + t). Note also for simplicity σ = σT and θ = θT , i.e., σf = σT (f)f
and θf = θT (f)f . Formally, θ is only well-defined if T (f) is finite, and in the
rest of the paper we will only apply the map θ to such functions.

Lemma 2.3. If fn, f ∈ D and tn, t ≥ 0 are such that fn → f , f is

continuous and tn → t, then θtnfn → θtf and σtnfn → σtf .

Proof. Let w be the modulus of continuity of f , defined for m, ε > 0
by wm(ε) = sup{|f(t) − f(s)| : 0 ≤ s, t ≤ m and |t − s| ≤ ε}. Since f is
continuous we have wm(ε) → 0 as ε → 0, for any m ≥ 0. Let t = supn≥1 tn:
for any 0 ≤ s ≤ m, we have

|θtnfn(s)− θtf(s)| ≤ |fn(s+ tn)− f(s+ tn)|+ |f(s+ tn)− f(s+ t)|

≤ ‖fn − f‖m+t + wm+t(|tn − t|)

and similarly, |σtnfn(s)− σtf(s)| ≤ ‖fn − f‖m + wm(|tn − t|). These upper
bounds are uniform in s ≤ m, and since fn → f and tn → t, letting n → +∞
gives the result.

In the sequel we say that a sequence (Xn) is C-tight if it is tight and
any accumulation point is almost surely continuous. We will use several
times that if (Xn) and (Yn) are two C-tight sequences defined on the same
probability space, then the sequence (Xn+Yn) is also C-tight, see for instance
Corollary VI.3.33 in Jacod and Shiryaev [16].

Corollary 2.4. If (Xn) is a C-tight sequence of processes and (κn) is

a tight sequence of positive random variables, then (σκnXn) and (θκnXn) are
C-tight.

Proof. Let (u(n)) be a subsequence, we must find (v(n)) a subsequence
of (u(n)) such that (σκv(n)

Xv(n)) and (θκv(n)
Xv(n)) converge weakly to a

continuous process. The sequence (Xn, κn) being tight, there exists (v(n))
a subsequence of (u(n)) such that (Xv(n), κv(n)) converges weakly to some
(X,κ), with X a continuous process. Thus σκv(n)

Xn ⇒ σκX and θκv(n)
Xn ⇒

θκX by Lemma 2.3 together with the continuous mapping theorem, hence
the result.

Excursions. A function e ∈ D+ will be called an excursion if e(t) = 0
for some t > 0 implies e(u) = 0 for all u ≥ t. Observe that excursions are
allowed to start at 0. Write E for the set of excursions with finite length
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8 A. LAMBERT, F. SIMATOS AND B. ZWART

Te. Let also E ′ ⊂ E be the subset of excursions e ∈ E such that
∫
(1/e) is

finite, where from now on we write
∫ b
a f =

∫ b
a f(t)dt and

∫
f =

∫ Tf

0 f , for
f ∈ D. When dealing with excursions we will use the canonical notation for
stochastic processes and write ǫ for the canonical map.

For f ∈ D and ε > 0, let eε(f) be the first excursion e of f away from 0
that satisfies Te > ε, and let gε(f) < dε(f) be its left and right endpoints.
Note that there need not be such an excursion, but in the rest of the paper
we will only apply the maps eε to functions f such that eε(f) is well-defined
for every ε > 0. Also, note that by definition, we have eε = σ ◦ θgε in the
sense that for any f ∈ D,

eε(f) =
(
σ ◦ θgε(f)

)
(f) =

(
σdε(f)−gε(f) ◦ θgε(f)

)
(f).

Lamperti transformation. We will call Lamperti transformation the map
L : E → E that to an excursion f ∈ E associates the excursion h ∈ E defined
by h(

∫ t
0 f) = f(t) for all t ≥ 0. More specifically, if κ is the inverse of the

strictly increasing, continuous function t 7→
∫ t
0 f on [0,

∫
f ], then L(f) = f◦κ

on [0,
∫
f ] and 0 elsewhere. In particular, (T ◦ L)(f) =

∫
f .

The inverse Lamperti transformation L−1 also plays a crucial role. By
definition, L−1(f) is the solution in E , when it exists and is unique, to the
equation h(t) = f(

∫ t
0 h), t ≥ 0, where h is the unknown function. Existence

and uniqueness to such equations are studied in Chapter 6 of Ethier and
Kurtz [9]. Because we consider excursions which may start at 0, we cannot
directly invoke Theorem 1.1 there, but an inspection of the proof reveals
that it can be adapted to show that L−1(f) is well-defined for f ∈ E ′. In
this case, we have L−1(f) = f ◦ π on [0,

∫
(1/f)], and 0 otherwise, with π

the inverse of the strictly increasing, continuous function t 7→
∫ t
0 (1/f) on

[0,
∫
(1/f)]. In particular, (T ◦ L−1)(f) =

∫
(1/f).

We will need the following results on L and L−1, which are closely related
to results by Helland [15] or Ethier and Kurtz [9, Chapter 6]. There are
nonetheless significant differences and for completeness, we provide the proof
of the following lemma in the appendix.

Lemma 2.5. Let Xn, X be random elements of E such that the sequence

(Xn) is C-tight and the sequence (TXn) is tight.

If Xn ⇒ X then L(Xn) ⇒ L(X).
If P(Xn ∈ E ′) = 1, then the sequence (L−1(Xn)) is C-tight.

If Xn ⇒ X and P(Xn ∈ E ′) = P(X ∈ E ′) = 1, then L−1(Xn) ⇒ L−1(X).

3. CMJ branching processes, PS queues and Lévy processes.

Recall from the introduction that a Crump-Mode-Jagers (CMJ) process is
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SCALING LIMITS VIA EXCURSION THEORY 9

a stochastic process with non-negative integer values counting the size of a
population where individuals give birth to independent copies of themselves,
and that Processor-Sharing (PS) is the service discipline where the server
splits its service capacity equally among all users present in the queue at
any time.

In the sequel, we will only consider homogeneous and binary CMJ pro-

cesses, where individuals give birth to a single offspring at times of a Poisson
process independent of their life length. With the notation of the introduc-
tion, ξ is a Poisson process independent of V . Similarly, we will only consider

M/G/1-PS queues, i.e., PS queues with Poisson arrivals and i.i.d. service re-
quirements. Henceforth, CMJ will stand for homogeneous and binary CMJ,
and PS for M/G/1-PS.

In particular, thanks to the memoryless property of the exponential ran-
dom variable, both a CMJ process and a PS queue can be described by a
Markov process living in the state space S =

⋃
n≥0(0,∞)n, the set of finite

sequences of positive real numbers. For a CMJ process the Markovian de-
scriptor keeps track of the residual life lengths of the individuals alive; for
a PS queue, it keeps track of the residual service requirements of the cus-
tomers present in the queue. Although for the PS queue we will sometimes
refer to this Markov process, we will actually only consider marginals of it,
namely the workload process (corresponding to its total mass) and the queue
length process (corresponding to the cardinal of its support). Thus although
studying non-Markovian processes, we avoid the framework of measure val-
ued processes.

Simple Facts about the PS Queue. Let q be the queue length process of a
PS queue with unit service capacity, arrival rate λ and service distribution S.
The workload process is the process keeping track of the total amount of
work in the system, defined as the sum over all the customers of their residual
service requirements. Since we assume Poisson arrivals, the workload process
is a compensated compound Poisson process with drift −1 and Lévy measure
λP(S ∈ · ), reflected above its past infimum.

Set ρ := λE(S) the load and assume ρ < 1 (subcritical case). Let S∗ be the
random variable with density P(S ≥ · )/E(S) with respect to Lebesgue mea-
sure. It is sometimes called the forward recurrence time of S and has mean
E(S∗) = E(S2)/(2E(S)). The assumption ρ < 1 is equivalent to assuming
that the Markov process describing the PS queue has a unique invariant dis-
tribution ν∗ on S. In that case, the invariant distribution is characterized by
a geometrically distributed number of customers with parameter ρ, and i.i.d.
residual service times with common distribution S∗, see, e.g., Robert [30,

imsart-aap ver. 2011/01/24 file: aap-v3.tex date: October 30, 2012



10 A. LAMBERT, F. SIMATOS AND B. ZWART

Proposition 7.13].

Connection between PS Queues, CMJ Processes and Lévy processes. In
the following statement, q is the above PS queue and P

χ is its law started at
χ ∈ S. The following result is known since at least Kitayev and Yashkov [21],
see also Chapter 7.3 in Robert [30].

Theorem 3.1 (Connection between PS Queues and CMJ Processes).
Let χ = (χi, 1 ≤ i ≤ k) ∈ S. The process L−1(q) under P

χ is a CMJ process

starting with k ancestors, with birth rate λ and life length distribution S,
except for the ancestors who have deterministic life lengths given by χ.

Thus we can see σq as the time change of a CMJ process, since σq = L(z)
with z = L−1(q) which by the above is a CMJ process. Further, since 0 is a
regeneration point of q, every excursion of q away from 0 can be seen as the
time change of a CMJ process started with one individual with life length
distributed as S.

The following result can be found in Lambert [23]. The jumping contour
process of a homogeneous, binary CMJ tree starting from one progenitor is
the key object underlying this result. It is defined in Lambert [23], to which
the reader is referred for more details.

In the following statement, x denotes a spectrally positive Lévy process
starting from δ > 0, with drift −1, Lévy measure λP(S ∈ ·) and local time
process (ℓ(a, t), a, t ≥ 0), as defined in (1). Note that in this case, ℓ(a, t) is
also the number of times when x has taken the value a before time t.

Theorem 3.2 (Connection between CMJ and Lévy Processes). The pro-

cess (ℓ(a, Tx), a ≥ 0) is a CMJ process with birth rate λ and life length

distribution S, started with one progenitor with life length δ.

Scaling Near the Critical Point. For each integer n ≥ 1, consider some
λn > 0 and a positive random variable Sn, with forward recurrence time S∗

n.
Let qn denote the queue length process of a PS queue with arrival rate λn

and service distribution Sn. Let zn = L−1(qn), which according to Theo-
rem 3.1 is a CMJ process with birth rate λn and life length distribution Sn.
Last, let xn be a compensated compound Poisson process with drift −1 and
Lévy measure λnP(Sn ∈ · ). Let (ℓn(a, t), a, t ≥ 0) be its local time process,
so that by Theorem 3.2, zn is equal in distribution to (ℓn(a, Txn), a ≥ 0).
Also, xn is equal in distribution to the workload process corresponding to
qn (with suitable initial conditions); in particular, the zero sets of qn and xn
have the same distribution.
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SCALING LIMITS VIA EXCURSION THEORY 11

We restrict our attention to the subcritical case, namely, we assume that
for each n ≥ 1 the load ρn := λnE(Sn) satisfies ρn < 1. This assumption
means that all hitting times of 0 by qn, zn and xn with deterministic initial
states (xn starting in (0,∞)) are almost surely finite and have finite ex-
pectations. We consider the following scaling near the critical point: in the
sequel we assume that there exist finite and strictly positive real numbers
λ, β and α such that

(2) lim
n→+∞

λn = λ, lim
n→+∞

λn

2
E(S2

n) = β and lim
n→+∞

n(1− ρn) = α.

These three assumptions imply that E(S∗
n) → β. We are interested in the

rescaled processes Qn, Zn and Xn defined by

Qn(t) =
qn(n

2t)

n
, Zn(t) =

zn(nt)

n
and Xn(t) =

xn(n
2t)

n
, n ≥ 1, t ≥ 0.

Let also

Ln(a, t) =
ℓn(na, n

2t)

n
, n ≥ 1, a, t ≥ 0.

Then Ln is the local time process of Xn, i.e., it satisfies

∫ t

0
φ(Xn(s))ds =

∫ ∞

0
φ(a)Ln(a, t)da.

By the Lévy-Khintchine formula, Xn is a Lévy process with Laplace expo-
nent Ψn(u) = nu−n2λnE(1− e−uSn/n). In view of (2), standard arguments
show that Ψn(u) → αu + βu2 for any u ≥ 0. As a consequence, see for in-
stance Kallenberg [17], (Xn) converges in distribution to a drifted Brownian
motion with drift −α and Gaussian coefficient 2β, which we write in the
sequel X and whose local time process is denoted (L(a, t), a, t ≥ 0).

Notation for the Initial Condition. For any χ = (χ1, . . . , χk) ∈ S, when
qn and zn are started with k ≥ 1 customers/individuals with residual service
times/life lengths given by χ, the probability measure is denoted P

χ
n. The

law of the PS queue started empty will be denoted P
∅
n. We will use the

following notation for random initial conditions.
When qn and zn are started with one individual with residual life length

distributed as Sn, the law will simply be denoted Pn. When there are ini-
tially ζn individuals with i.i.d. residual life lengths distributed as S∗

n, we will
use the symbol Pζn∗

n . When the initial condition is ν∗n (a geometric number
with parameter ρn of individuals with i.i.d. life lengths distributed as S∗

n),
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12 A. LAMBERT, F. SIMATOS AND B. ZWART

we will merely use the symbol P∗
n. Note that Qn under P

∗
n is a stationary

process.
The probability measure for the Lévy processes is denoted Pa

n when Xn

itself is started at a ∈ R. When Xn starts at a random initial value dis-
tributed as Sn/n we write Pn. Finally, P

a denotes the law of X started at a.

The scalings in time and space leading to Qn, Zn andXn have been chosen
in order to preserve the defining relationships between qn, zn and xn.

Lemma 3.3. We have Zn = L−1(Qn) and σQn = L(Zn), in particular

TQn =
∫
Zn. Moreover, for any δ > 0, Zn under P

χ
n with χ = (nδ) ∈ S is

equal in distribution to (Ln(a, TXn), a ≥ 0) under Pδ
n.

Excursion measures. In the sequel, three distinct excursion measures will
be considered. First, N is the excursion measure of X away from 0, where
in this case, the excursion measure is normalized so that the local time of X
at 0 at time t is taken equal to −min(0, inf0≤s≤tX(t)). This normalization
will always be considered for processes reflected above their past infimum.

Second, M the push-forward of N by the map L( · , T ) = (L(a, T ), a ≥ 0),
where from now on we will also denote by (L(a, t), a, t ≥ 0) the local time
process of the canonical excursion ǫ. In other words, for any measurable
function f : E → [0,∞), we have

M (f) = N (f ◦ L( · , T )) .

Third, we define N ′ as the push-forward of M by L, i.e., for any measur-
able function f : E → [0,∞), we have

N ′ (f) = M (f ◦ L) .

Then the measures obtained by taking the push-forward of N and N ′ by
T coincide, i.e., for any Borel set A ⊂ [0,∞) we have

(3) N (T ∈ A) = N ′(T ∈ A).

Indeed, we have by definition of N ′, M and L:

N ′ (T ∈ A) = M

(∫
ǫ ∈ A

)
= N

(∫ ∞

0
L(a, T )da ∈ A

)
= N (T ∈ A)

since
∫∞
0 L(a, T )da = T . As a side remark, note that it could be proved that

M(1∧T ) = +∞ and so there is no regenerative process admitting M as its
excursion measure.
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SCALING LIMITS VIA EXCURSION THEORY 13

4. Heavy traffic of PS via excursion theory. The goal of this sec-
tion is to prove forthcoming Theorem 4.1. Roughly speaking, it states that
the sequence (Qn) of PS queue-length processes started empty converge
weakly to the regenerative process with excursion measure away from 0
equal to N ′. Recall that N ′ is the push-forward of the excursion measure N
of X by the successive application of L(·, T ) (local time process at the first
hitting time of 0) and L (Lamperti transformation).

The push-forward M of N by the mere application of L(·, T ) is not an
excursion measure (in the above mentioned sense that M(1∧T ) = +∞), but
we expect nonetheless that the distributions of the CMJ processes Zn will
converge in some sense to M. This intuition is made precise in Theorem 4.8,
where Zn starts with one initial individual and is suitable conditioned, and
Theorem 5.4, where Zn starts from a large initial condition.

We also specify that N ′ will be identified in Theorem 5.1 as the excursion
measure away from 0 of β−1X, which is the reflected Brownian motion
with drift −α/β and Gaussian coefficient 2/β. This will ensure that the
sequence (Qn) actually converges weakly to this reflected process (see also
Theorem 5.6 for general initial condition).

Theorem 4.1. Let Q∞ be the process obtained by applying Itô’s con-

struction to the excursion measure N ′. Then the sequence (Qn) under P
∅
n

converges weakly to Q∞.

To avoid any ambiguity, let us explain what we mean by Itô’s construc-
tion, see Blumenthal [3] for instance. Let ∂ be some cemetery point and
e = (et, t ≥ 0) be an E ∪ {∂}-valued Poisson point process with intensity
measure N ′. Define

L̃(t) =
∑

0≤s≤t

T (es)

with the convention T (∂) = 0. Since N ′(1 ∧ T ) < +∞ by (3), L̃ is a sub-
ordinator with Lévy measure N ′(T ∈ · ). Let L̃−1 be the right-continuous
inverse of L̃, then the process Q∞ is defined via the following formula:

Q∞(t) = e
L̃−1(t−)

(
t− L̃(L̃−1(t)−)

)
1

∆L̃(L̃−1(t)) 6=0
, t ≥ 0.

We first prove in Section 4.1 preliminary results on Lévy processes. Sec-
tion 4.2 is devoted to tightness, Section 4.3 proves a result of independent
interest on CMJ processes and Section 4.4 provides the proof of Theorem 4.1.

4.1. Preliminary results on Lévy processes. We will need the following
results on Lévy processes.
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14 A. LAMBERT, F. SIMATOS AND B. ZWART

Lemma 4.2. For any a > 0, the sequence (Xn, TXn) under P
a
n converges

weakly to (X,TX) under Pa.

Proof. Since Pa(∀ε > 0, inf [0,ε] θX < 0) = 1, the result follows directly
from Proposition VI.2.11 in Jacod and Shiryaev [16].

Lemma 4.3. For any ε > 0, the sequence (gε(Xn), dε(Xn)) under P0
n

converges weakly to (gε(X), dε(X)) under P0.

Proof. Remember that Ψn is the Laplace exponent of Xn. Since Xn

drifts to −∞, Ψn is continuous and strictly increasing and we denote Φn

its inverse. Let similarly Ψ be the Laplace exponent of X and Φ its inverse.
Since Xn ⇒ X it is not hard to show that Φn(u) → Φ(u) for every u ≥ 0.
Moreover, for t ≥ 0 let

γn(t) = inf {s ≥ 0 : Xn(s) = −t} and γ(t) = inf {s ≥ 0 : X(s) = −t} .

Then it is well-known, see for instance Bertoin [1, Theorem VII.1], that
γn and γ are subordinators with Laplace exponent Φn and Φ, respectively.
Since Φn(u) → Φ(u) for every u ≥ 0, standard arguments imply that γn ⇒ γ.
Moreover, since γn and γ are the right-continuous inverses of the local time
processes of Xn and X at 0, we have the identities gε(Xn) = γn(t

1
ε(γn)−)

and dε(Xn) = γn(t
1
ε(γn)) and similarly without the subscript n, where in the

rest of the proof we define t1ε(f) = inf{t ≥ 0 : |∆f(t)| > ε} for any f ∈ D
and ε > 0.

Proposition 2.7 in Jacod and Shiryaev [16] shows that if fn, f ∈ D are such
that fn → f , t1ε(f) < +∞ and ε /∈ {|∆f(t)| : t ≥ 0}, then fn(t

1
ε(fn)−) →

f(t1ε(f)−) as well as fn(t
1
ε(fn)) → f(t1ε(f)). The desired result therefore

follows from an application of the continuous mapping theorem, together
with the fact that P0(t1ε(γ) < +∞, ε /∈ {|∆γ(t)| : t ≥ 0}) = 1 for every
ε > 0.

Lemma 4.4. For any ε > 0, the sequence (σXn, TXn) considered under

Pn( · |TXn > ε) converges weakly to (ǫ, Tǫ) under N ( · |T > ε).

Proof. From now on and unless otherwise specified, we implicitly con-
sider Xn under P0

n and X under P0. Since by definition the process σXn

under Pn( · |TXn > ε) is equal in distribution to eε(Xn) and N ( · |T > ε) is
the law of eε(X), the result is equivalent to showing that (eε, T ◦ eε)(Xn) ⇒
(eε, T ◦ eε)(X).

For f ∈ D let J (f) = (f, gε(f), dε(f)). In view of Lemma 2.3 and the con-
tinuous mapping theorem, to prove that (eε, T ◦eε)(Xn) ⇒ (eε, T ◦eε)(X) it
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SCALING LIMITS VIA EXCURSION THEORY 15

is enough to show that J (Xn) ⇒ J (X). We haveXn ⇒ X, while Lemma 4.3
shows that (gε, dε)(Xn) ⇒ (gε, dε)(X). Hence the sequence (J (Xn)) is tight
and we only need to identify accumulation points. Let (X ′, g′, d′) be any
accumulation point and assume without loss of generality using Skorohod’s
representation theorem that J (Xn) → (X ′, g′, d′): then X ′ is equal in dis-
tribution to X and (g′, d′) to (gε, dε)(X), and we only have to show that
(g′, d′) = (gε, dε)(X

′).
Since Xn and Xn have the same generator in (0,∞) and the functional

T is P-a.s. continuous (see Lemma 4.2), it can be proved that T (θtnXn) →
T (θtX

′) for any tn, t ≥ 0 such that tn → t.
Let t < g′: since gε(Xn) → g′ we have t < gε(Xn) for n large enough,

and for those n it holds by definition of gε(Xn) that T (θtXn) ≤ ε. Since
T (θtXn) → T (θtX

′) we obtain that T (θtX
′) ≤ ε. Since t < g′ is arbitrary,

this proves that gε(X
′) ≥ g′ and since they are equal in distribution they

must be equal almost surely. Since T (θgε(Xn)
Xn) = dε(Xn)−gε(Xn), letting

n → +∞ shows that T (θg′X
′) = d′− g′ and so d′ = gε(X

′)+T (θgε(X′)X
′) =

dε(X
′). The proof is complete.

4.2. Tightness. Although tightness is usually a technical issue, it comes
here from a simple queueing argument. Theorem 4.5 may look naive to an ex-
perienced reader, but to the best of our knowledge its implications in terms of
tightness have never been used before; similar arguments could for instance
have been used in Limic [26]. Since Processor-Sharing is a symmetric ser-
vice discipline, the following result is a direct consequence of Theorems 3.10
and 3.6 in Kelly [18].

Theorem 4.5. The departure process of the queue length process qn un-

der P
∗
n is a Poisson process with parameter λn.

Corollary 4.6. The sequence of processes (Qn) under P
∗
n is C-tight.

Proof. Writing an and dn for the arrival and departure processes re-
spectively, we can write Qn(t) = Qn(0) + An(t) − Dn(t) for t ≥ 0 with
An(t) = (an(n

2t) − n2λnt)/n and Dn(t) = (dn(n
2t) − n2λnt)/n. By Theo-

rem 4.5, an and dn under P
∗
n are two Poisson processes with intensity λn.

Since λn → λ, both (An) and (Dn) converge in distribution to a Brown-
ian motion and so are C-tight, hence so is the difference (An − Dn). Since
(Qn(0)) under P

∗
n converges to an exponential random variable, this shows

that (Qn) under P
∗
n is C-tight.

Corollary 4.6 encompasses all the tightness results we need. To be more
specific, by considering Qn under P

∗
n and shifting it at time TQn we can
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16 A. LAMBERT, F. SIMATOS AND B. ZWART

get the tightness of (Qn) under P
∅
n. Also, we can get the tightness of CMJ

processes by suitably selecting excursions of Qn and applying L−1. The ele-
mentary operations that we need to perform preserve C-tightness by Corol-
lary 2.4 and Lemma 2.5, and so we get the following result.

Corollary 4.7. The sequence (Qn) under P
∅
n is C-tight and for any

ε > 0, the sequence (Zn) under Pn( · |
∫
Zn > ε) is C-tight.

Proof. By regeneration of Qn, Qn under P
∅
n is equal in distribution to

θQn under P∗
n. Since TQn is equal in distribution to TXn , Lemma 4.2 shows

that (TQn) under P
∗
n is tight. Combining Corollaries 4.6 and 2.4 shows the

C-tightness of (Qn) under P
∅
n.

For Zn, since Zn = L−1(Qn) and
∫
Zn = TQn by Lemma 3.3, one sees

that Zn under Pn( · |
∫
Zn > ε) is equal in distribution to L−1(eε(Qn)) under

P
∅
n. Since the zero set of Qn is equal in distribution to the zero set of Xn,

(gε, dε)(Qn) under P
∅
n is equal in distribution to (gε, dε)(Xn) under P

0
n. Thus

Lemma 4.3 implies that the sequence (gε, dε)(Qn) under P
∅
n is tight. Since by

definition eε(Qn) = (σdε(Qn)−gε(Qn) ◦ θgε(Qn))(Qn), combining the results of

Corollary 2.4 and Lemma 2.5 and using also that (Qn) under P
∅
n is C-tight,

we obtain the C-tightness of (Zn) under Pn( · |
∫
Zn > ε).

4.3. Weak convergence of CMJ processes. The following result is of inde-
pendent interest in the area of branching processes. Using similar techniques
and ideas, the conditionings {

∫
Zn > ε} and {

∫
ǫ > ε} in the next statement

could be replaced by {TZn > ε} and {Tǫ > ε}, respectively. Theorem 5.4 in
the following section gives another result with a large initial condition.

Theorem 4.8. For any ε > 0, the sequence (Zn) under Pn( · |
∫
Zn > ε)

converges weakly to M( · |
∫
ǫ > ε).

Proof. In the remainder of the proof we implicitly consider Zn under
Pn( · |

∫
Zn > ε) and Xn under Pn( · |TXn > ε) and we denote by L0

n the pro-
cess (Ln(a, TXn), a ≥ 0). Lemma 3.3 shows that Zn is equal in distribution
to L0

n, so we only have to show that L0
n ⇒ M( · |

∫
ǫ > ε).

Lemma 4.7 shows that the sequence (L0
n) is C-tight, so we only have

to identify accumulation points. Let Z be any accumulation point and
assume without loss of generality that L0

n ⇒ Z. Lemma 4.4 shows that
(σXn, TXn) converges weakly to (ǫ, Tǫ) under N ( · |T > ε). Then the se-
quence (σXn, TXn , L

0
n) is tight, let (e, τ, Z ′) be any accumulation point, so

that (e, τ) is equal in distribution to (ǫ, Tǫ) under N ( · |T > ε) and Z ′ to
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SCALING LIMITS VIA EXCURSION THEORY 17

Z. Assume without loss of generality by Skorohod’s representation theorem
that (σXn, TXn , L

0
n) → (e, τ, Z ′). By definition we have

∫ TXn

0
φ(σXn(t))dt =

∫ ∞

0
φ(a)L0

n(a)da

for all continuous function φ with a compact support. Thus passing to the
limit, the dominated convergence theorem (or uniform convergence argu-
ments) shows that

∫ τ

0
φ(e(t))dt =

∫ ∞

0
φ(a)Z ′(a)da

which shows that Z ′ is the local time process of e up to time τ . The result
is proved.

4.4. Proof of Theorem 4.1. We begin with a preliminary result.

Lemma 4.9. For any ε > 0, the sequence (σQn, TQn) considered under

Pn( · |TQn > ε) converges weakly to (ǫ, Tǫ) under N ′( · |T > ε).

Proof. Until the end of this step, we consider implicitly the process Qn,
and hence Zn, under Pn( · |TQn > ε) = Pn( · |

∫
Zn > ε). By Theorem 4.8,

we know that Zn ⇒ M( · |
∫
ǫ > ε). Moreover, Lemma 3.3 implies that TZn

is equal in distribution to ‖Xn‖TXn
under Pn( · |TXn > ε) which converges,

in view of Lemma 4.4 and using the continuous mapping theorem, to ‖ǫ‖∞
under N ( · |T > ε). In particular, the sequence (TZn) is tight, so Lemma 2.5
implies that the sequence (L(Zn)) converges weakly to the push-forward of
M( · |

∫
ǫ > ε) by L. Since L(Zn) = σQn by Lemma 3.3 and the push-

forward of M( · |
∫
ǫ > ε) by L is by definition equal to N ′( · |T > ε) we

obtain the convergence of the sequence (σQn) towards N
′( · |T > ε).

On the other hand, since the workload associated to Qn is equal in dis-
tribution to Xn, we obtain that TQn is equal in distribution to TXn under
Pn( · |TXn > ε), hence (TQn) converges weakly to T under N ( · |T > ε) in
view of Lemma 4.4. Since T under N ( · |T > ε) is equal in distribution to
T under N ′( · |T > ε) by (3) we obtain the convergence of (TQn) towards T
under N ′( · |T > ε). To conclude that the joint convergence holds we invoke
Corollary 2.2.

We now prove Theorem 4.1. Since the sequence (Qn) under P
∅
n is C-tight

by Corollary 4.7, we only have to identify accumulation points. So let Q be
any accumulation point and assume without loss of generality that Qn ⇒ Q:
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18 A. LAMBERT, F. SIMATOS AND B. ZWART

we must prove that Q is equal in distribution to Q∞. In the rest of this sec-
tion, for ε > 0 let Aε : D → E × [0,∞) × [0,∞) be the map given by
Aε = (eε, gε, dε) and let Φε : D → D the map that truncates excursions
with length smaller than ε, i.e., for f ∈ D and t ≥ 0 we put Φε(f)(t) = f(t)
if f(t) 6= 0 and the excursion e of f straddling t satisfies Te > ε; otherwise
we put Φε(f)(t) = 0. We prove that Q is equal in distribution to Q∞ in two
steps.

First step. Let ε > 0: we first prove that (Qn, Aε(Qn)) ⇒ (Q,Aε(Q)). First,
note that dε − gε = T ◦ eε and so Lemma 4.9 implies, by definition of Q∞,
that (eε, dε − gε)(Qn) ⇒ (eε, dε − gε)(Q∞). Moreover, gε(Qn) is equal in
distribution to gε(Xn) under P0

n and so Lemma 4.3 shows that gε(Qn) ⇒
gε(X). By (3) and the definition of Q∞, gε(Q∞) and gε(X) are equal in
distribution and so Aε(Qn) ⇒ Aε(Q∞).

Let (Q′, A′) be any accumulation point of the tight sequence (Qn, Aε(Qn)),
so that Q′ is equal in distribution to Q and A′ to Aε(Q∞). Assume without
loss of generality, using Skorohod’s representation theorem, that the almost
sure convergence (Qn, Aε(Qn)) → (Q′, A′) holds: we show that A′ = Aε(Q

′)
which will prove that (Q′, A′) is equal in distribution to (Q,Aε(Q)).

Note A′ = (e′, g′, d′): the convergence (Qn, Aε(Qn)) → (Q′, A′) implies
in view of Lemma 2.3 and the definition of eε that e′ = (σd′−g′ ◦ θg′)(Q

′).
Since e′ is equal in distribution to eε(Q∞), we see that e′ is the excursion
of Q′ with endpoints g′ < d′, and that it satisfies Te′ > ε. To show that
e′ = eε(Q

′) it remains to show that this is the first such excursion. Since Q′

is continuous it is enough to show that inf [a,a+ε]Q
′ = 0 for any a < g′. So

let a < g′: since gε(Qn) → g′ we must have a < gε(Qn) for n large enough,
and for those n, by definition of gε we must have inf [a,a+ε]Qn = 0. Since
inf [a,a+ε]Qn → inf [a,a+ε]Q

′ by continuity, we obtain inf [a,a+ε]Q
′ = 0 which

proves that (Qn, Aε(Qn)) ⇒ (Q,Aε(Q)). Note in particular that since we
have argued that Aε(Qn) ⇒ Aε(Q∞) we also have Aε(Q) = Aε(Q∞).

Second step. Since Qn regenerates at 0, we have for any measurable functions
f, h, i : D → [0,∞)

E
∅
n

(
f(σgε(Qn)Qn)h(eε(Qn))i(θdε(Qn)Qn)

)

= E
∅
n

(
f(σgε(Qn)Qn)

)
E
∅
n (h(eε(Qn)))E

∅
n (i(Qn)) .

Consider now f, h and i continuous and bounded and let n → +∞ in
both sides of the previous display. Since (Qn, Aε(Qn)) ⇒ (Q,Aε(Q)) by the

imsart-aap ver. 2011/01/24 file: aap-v3.tex date: October 30, 2012



SCALING LIMITS VIA EXCURSION THEORY 19

first step, Lemma 2.3 together with the continuous mapping theorem gives

E
(
f(σgε(Q)Q)h(eε(Q))i(θdε(Q)Q)

)
= E

(
f(σgε(Q)Q)

)
E (h(eε(Q)))E (i(Q)) .

This implies that σgε(Q)Q, eε(Q) and θdε(Q)Q are independent and that
θdε(Q)Q is equal in distribution to Q. Since in addition Aε(Q) is equal in
distribution to Aε(Q∞) by the previous step we obtain that Φε(Q) and
Φε(Q∞) are equal in distribution. For any f ∈ D and any t ≥ 0, one easily
sees that Φε(f)(t) → f(t) as ε → 0. In particular, Φε(Q) converges in
the sense of finite-dimensional distributions to Q, and Φε(Q∞) to Q∞, as
ε → 0. Hence Q and Q∞ are equal in distribution which achieves the proof
of Theorem 4.1.

5. Identification of the limit and general initial condition. The-
orem 4.1 is the most important result of the paper, where the convergence
of (Qn) under P

∅
n is shown based on the convergence of its long excursions.

The formulation of Theorem 4.1 reflects this approach, where the limiting
process is defined through its excursion measure. In general, it is not clear
whether a more explicit definition of Q∞ can be given. For instance, in the
infinite variance case we expect a similar statement to hold, where N is the
excursion measure of a reflected, spectrally positive Lévy process; in this
case we do not know whether Q∞ can be described in another way. How-
ever, here N ′ turns out to be the excursion measure of β−1X, which is a
reflected Brownian motion with drift −α/β and Gaussian coefficient 2/β.
This allows us to identify Q∞ as β−1X (see also forthcoming Theorem 5.6
for a general initial condition).

Theorem 5.1. N ′ is the excursion measure of the process β−1X. In

particular, Q∞ is equal in distribution to β−1X under P0.

Proof. As a variation of the original Ray-Knight theorems [22, 29], it is
known that M, the push-forward of N by the local time process, is the ex-
cursion measure of Feller diffusion, where we think here of the Feller diffusion
as the solution Y to the stochastic differential equation

dYt = −(α/β)Yt dt+
√
(1/β)Yt dBt,

with B the standard Brownian motion; see for instance Pardoux and Wakol-
binger [27]. It remains to show that the push-forward of M by L gives N ′′,
where N ′′ stands for the excursion measure of β−1X (recall that the local
time of a reflected process is chosen equal to the past infimum of the initial
process).
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For ε > 0 and f ∈ D, let T ε(f) = inf{t ≥ 0 : f(t) ≥ ε}: then θT ε(ǫ)(ǫ), the
canonical excursion shifted at time T ε(ǫ), under N ′′( · |T ε < +∞) is equal in
distribution to σ(β−1X) under Pβε. The Lamperti representation theorem,
see Lamperti [24], asserts that σ(β−1X) under Pβε is the image by L of the
Feller diffusion started at ε, i.e., of θT ε(ǫ)(ǫ) under M( · |T ε < +∞). Hence
the relation

N ′′ (f ◦ θT ε |T ε < +∞) = M (f ◦ θT ε◦L ◦ L |T ε ◦ L < +∞)

holds for any non-negative, measurable function f : E → [0,∞). But by
definition of N ′ the right hand side is precisely N ′ (f ◦ θT ε |T ε < +∞) and
so

N ′′ (f ◦ θT ε |T ε < +∞) = N ′ (f ◦ θT ε |T ε < +∞)

which can be rewritten as

N ′′
(
f ◦ θT ε

1{T ε<+∞}

)
=

N ′′ (T ε < +∞)

N ′ (T ε < +∞)
N ′

(
f ◦ θT ε

1{T ε<+∞}

)
.

Applying this for f = 1{T 1<+∞} and ε < 1 we obtain

N ′′ (T ε < +∞)

N ′ (T ε < +∞)
=

N ′′
(
T 1 < +∞

)

N ′ (T 1 < +∞)

and so for ε < 1 we have

N ′′
(
f ◦ θT ε

1{T ε<+∞}

)
=

N ′′
(
T 1 < +∞

)

N ′ (T 1 < +∞)
N ′

(
f ◦ θT ε

1{T ε<+∞}

)
.

Because f ◦ θT ε
1{T ε<+∞} converges to f as ε → 0, we get that N ′ and

N ′′ are proportional. Moreover, since N ′′ is the excursion measure of β−1X
and N is that of X, we have N ′′(T ∈ ·) = N (T ∈ ·), and so (3) shows that
the multiplicative constant must be equal to one. This proves the result.

In view of this result, it is consistent, and convenient, to redefine Q∞ as
Q∞ = β−1X. In the rest of this section, ζ > 0 is some positive real number,
(ζn) is an integer-valued sequence such that ζn/n → ζ and we define

τn = inf{t ≥ 0 : Ln(0, t) > ζn/n} and τ = inf{t ≥ 0 : L(0, t) = ζ}.

The goal of this section is to prove that the sequence (Qn) under P
ζn∗
n con-

verges weakly to β−1X under Pζβ. To do so, we first prove that (σQn, TQn)

under P
ζ∗n
n converges weakly to (σQ∞, TQ∞) under Pζβ through a series of

steps similar to those performed in Section 4. In the sequel, we will use the
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fact that S∗
n/n is the distribution of Xn(ηn) under P0

n( · | ηn < +∞) where
ηn = inf{t ≥ 0 : Xn(t) > 0}, see Theorem VII.17 in Bertoin [1]; we will in-
formally call Xn(ηn) the overshoot of Xn. The following result can be proved
using standard arguments on Lévy processes, and so we omit the proof.

Lemma 5.2. The sequence (Xn, τn) under P0
n( · | τn < +∞) converges

weakly to (X, τ) under P0( · | τ < +∞).

Lemma 5.3. The sequence (Zn) under P
ζn∗
n is C-tight.

Proof. By Lemma 3.3, Zn = L−1(Qn) and so the sequence (Zn) under
P
∗
n is C-tight, as can be seen by combining Corollary 4.6 and Lemma 2.5.
Let Z ′

n be a process defined on the same probability space as Zn, inde-
pendent of Zn and with the same law as Zn under P

∗
n. Now let Z ′′

n be the
(rescaled) CMJ process defined as Z ′′

n := Z ′
n + Zn. Because of the lack-of-

memory property of the geometric random variable, Z ′′
n under Pζn∗

n has the
same law as Zn under P∗

n( · |Zn(0) ≥ ζn/n).
Since (Zn) under P

∗
n is C-tight and (Zn(0)) under P

∗
n converges weakly

to an exponential random variable, it is easy to show that (Zn) under
P
∗
n( · |Zn(0) ≥ ζn/n) is C-tight. In particular, the two sequences (Z ′′

n) and

(Z ′
n) under P

ζn∗
n are C-tight. Since the difference of two C-tight sequences is

also C-tight we obtain the C-tightness of (Zn) under P
ζn∗
n which was to be

proved.

Theorem 5.4. The sequence (Zn) considered under P
ζn∗
n converges weakly

to (L(a, τ), a ≥ 0) under P0( · | τ < +∞). In particular, the sequence (Zn)

under P
ζn∗
n converges weakly to L−1(Q∞) under Pβζ , which is the solution

Y to the stochastic differential equation

dYt = −(α/β)Yt dt+
√
(1/β)Yt dBt,

with initial condition Y0 = ζ.

Proof. From Lemma 3.3 and the branching property, one gets that Zn

under P
ζn∗
n is equal in distribution to (Ln(a, τn), a ≥ 0) considered under

P0
n( · | τn < +∞): then the proof follows analogously as for Theorem 4.8

using Lemma 5.2 instead of Lemma 4.4. The identification of the limit as
being L(Q∞) comes as in the proof of Theorem 5.1 from a combination of
Ray-Knight theorem together with the Lamperti representation theorem.
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Lemma 5.5. The sequence (σQn, TQn) under P
ζn∗
n converges weakly to

(σQ∞, TQ∞) under Pβζ .

Proof. Unless otherwise specified we consider implicitly Zn and Qn un-
der Pζn∗

n and Q∞ under Pβζ . Thanks to Corollary 2.2, we only have to show
that σQn ⇒ Q∞ and TQn ⇒ TQ∞ .

By Theorem 5.4, we know that Zn ⇒ L(Q∞). By the branching property
and the fact that the overshoot of Xn is distributed like S∗

n/n, TZn is equal
in distribution to ‖Xn‖τn under P0

n( · | τn < +∞). In view of Lemma 5.2
combined with the continuous mapping theorem we get weak convergence,
and in particular tightness, of (TZn). Thus Lemma 2.5 implies that L(Zn) ⇒
L(L−1(Q∞)). Since L(Zn) = σQn and L(L−1(Q∞)) = σQ∞ this proves that
σQn ⇒ σQ∞.

Since the workload process has the same law as Xn, TQn is equal in
distribution to TXn with the initial condition Xn(0) = An, where An is
equal to the sum of ζn independent copies of S∗

n/n. In particular, since
E(S∗

n) → β by (2), the strong law of large number implies that An → ζβ.
Thus Lemma 5.2 implies that TQn ⇒ TQ∞ which concludes the proof.

Proposition 5.6. The sequence (Qn) under P
ζn∗
n converges weakly to

β−1X under Pζβ.

Proof. Let C : D × [0,∞) ×D → D be the concatenation map defined
for f, h ∈ D and s, t ≥ 0 by

C(f, t, h)(s) =

{
f(s) if s < t,

h(t− s) if s ≥ t.

Imagine for a moment that we knew that C was continuous in the following
sense: if fn, hn, f, h ∈ D and tn, t > 0 are such that fn → f , hn → h, f
and h are continuous with f(t) = h(t) and tn → t, then C(fn, tn, hn) →
C(f, t, h). Then the result would follow from this result and the continuous
mapping theorem, since Qn = C(σQn, TQn , θQn) and (σQn, TQn , θQn) under

P
ζn∗
n converges weakly to (σQ∞, TQ∞ , θQ∞) under Pβζ by Lemmas 5.5 and

Theorem 4.1 (using that (σQn, TQn) and θQn are independent).
Hence we only have to prove continuity of C. Let (µn) be any sequence

of functions such that supt≥0 |µn(t) − t| → 0 and such that for each n ≥ 1,
µn is continuous, strictly increasing and satisfies µn(0) = 0 and µn(t) = tn.
Then for any s ≥ 0 one has

|C(fn, tn, hn)(µn(s))− C(f, t, h)(s)| =

{
|fn(µn(s))− f(s)| if s < t,

|hn(µn(s)− tn)− h(s− t)| if s ≥ t.
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Since fn → f , hn → h, f and h are continuous and supt≥0 |µn(t)− t| → 0
this implies that C(fn, tn, hn) ◦ µn → C(f, t, h). This means precisely that
(C(fn, tn, hn)) converges in the Skorohod J1 topology to C(f, t, h) and since
C(f, t, h) is continuous by choice of f and h this means that C(fn, tn, hn) →
C(f, t, h). The result is proved.

6. Discussion. From a branching perspective, the result of Theorem 5.4
is quite surprising: for the sequence (Zn) to converge, one would naively
think that the initial individuals should start with the “normal” life length
distribution Sn instead of its forward recurrence time S∗

n. This subtlety does
not seem to appear in previous works on scaling limits of continuous-time
branching processes. Although surprising from a branching perspective, this
phenomenon is well-known in the folklore of queueing theory. In the rest of
this discussion, fix an integer sequence (ζn) such that ζn/n → ζ > 0.

Discontinuity of Local Times. Given some random variable Vn, let Y
Vn
n

be the process obtained as follows:

• Y Vn
n (0) is distributed like Vn/n;

• Y Vn
n has the same generator as Xn in (0,∞);

• when Y Vn
n hits 0, it stays there for an exponential duration with pa-

rameter nλn and then jumps according to Vn/n;
• Y Vn

n is stopped at the time of its ζnth visit to 0.

Note also LVn
n the local time process of Y Vn

n : the branching property to-
gether with Lemma 3.3 show that LVn

n is equal in distribution to Zn started
with ζn individuals with i.i.d. life lengths with common distribution Vn.

Under the conditions that we imposed, it can be proved that Y Vn
n ⇒ X for

both Vn = Sn and Vn = S∗
n. Nonetheless, their local time processes (LSn

n ) and

(L
S∗
n

n ) have different asymptotic behavior. On the one hand, (L
S∗
n

n ) converges
in view of Theorem 5.4 to the Feller diffusion with drift −α/β and Gaussian
coefficient 2/β, started at ζ. On the other hand, it can be proved that (LSn

n )
converges in the sense of finite-dimensional distributions to a discontinuous
process with value ζ at time 0, but distributed for nonzero times as the
same Feller diffusion started at ζ/(βλ). In particular, the sequence (L

S∗
n

n )

cannot be tight, although for each ε > 0 the sequence (θεL
S∗
n

n ) is tight. We
now provide an interpretation of this phenomenon in terms of state-space
collapse, a well-known property in queueing theory.

State Space Collapse. Consider a sequence (S′
n) of positive random vari-

ables such that En(S
′
n) → β′ ∈ (0,∞), so taking for example S′

n = S∗
n

yields β′ = β by (2). Denote by P
′
n the law of the PS queue started with
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ζn customers with i.i.d. service requirements distributed as S′
n. Let wn the

workload process associated to qn and Wn the rescaled process Wn(t) =
wn(n

2t)/n. Then Wn is equal in distribution to Xn and so converges weakly
to X, which we write W for clarity.

The state space collapse property states that the sequence (Qn,Wn) un-

der Pζn∗
n converges to (Q,W) which satisfy Q = cW for some constant c > 0.

By the law of large numbers, Wn(0) under P
ζn∗
n converges to ζβ while Qn(0)

converges to ζ, which shows that c = β−1. To understand the behavior of
the processes under P′

n, one needs to zoom in around time 0.

Define the fluid limits (qn) and (wn) of (qn) and (wn) as the rescaled pro-
cesses qn(t) = qn(nt)/n and wn(t) = wn(nt)/n. Fluid limits can be thought
of as functional law of large numbers (whereas heavy-traffic approximations
can be thought of as functional central limit theorems). By definition, at
the critical point the amount of work that enters the queue is equal to the
amount of work that exits it. Hence it is not surprising that (wn) under
P
′
n converges to the deterministic function w with constant value w0 = ζβ′.

Note that the workload process does not fluctuate on the fluid time scale n,
while it does on the diffusion time scale n2.

Let q be the limit of (qn) under P
′
n, so that q(0) = ζ (see Gromoll et

al. [14]). Moreover it is known that as t goes to infinity, q(t) converges to
an equilibrium point q∞. In steady state the residual service requirement
of each customer has mean β, which suggests thanks to the law of large
numbers that q∞ must satisfy q∞β = w0.

So it takes a time of order of n for the (scaled) queue length process to go
from ζ to q∞ = w0/β = ζβ′/β. Since the time scale n2 of the heavy traffic
approximation is orders of magnitude larger, this happens instantaneously
on the diffusion time scale and causes a discontinuity when β 6= β′.

Once the process has reached the equilibrium point of the fluid limit,
the state space collapse property applies. In particular, this show that (Qn)
under P

′
n should converge to a process Q such that Q(0) = ζ and Q(t) =

β−1W(t) for t > 0. In particular, Q(0+) = ζβ/β′ is different from Q(0)
when β′ 6= β, which provides yet another interpretation of the discontinuity
of local times mentioned above. This separation of fluid and diffusion time
scales is at the heart of state space collapse, see for instance Bramson [6].

It would be interesting to understand to what extent the above reasoning
can be carried over to branching processes. In particular, the state space
collapse is quite robust in the finite variance case and makes it possible to
derive the heavy traffic limit of the PS queue with general inter-arrival times,
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see Gromoll [13]. This suggests an approach to generalize the branching
results of this paper to the case where the offspring process is a general
renewal process.

APPENDIX A: PROOF OF LEMMA 2.5

In the sequel we say that a sequence of càdlàg functions (fn) is C-relatively
compact if it is relatively compact and any of its accumulation points is con-
tinuous. A straightforward adaptation of Proposition VI.3.26 in Jacod and
Shiryaev [16], which gives a criterion for C-tightness, shows that a sequence
(fn) is C-relatively compact if and only if for every m ≥ 0, supn≥1‖fn‖m is
finite and

lim
ε→0

lim sup
n→+∞

wm(hn, ε) = 0

where from now on wm is the modulus of continuity:

wm(f, ε) = sup {|f(t)− f(s)| : 0 ≤ s, t ≤ m and |t− s| ≤ ε} .

Lemma A.1. Let fn, f ∈ E ′ and assume that the sequence (fn) is C-

relatively compact and that the sequence (Tfn) is bounded. Then the sequence

(L−1(fn)) is C-relatively compact. If in addition fn → f then we also have

L−1(fn) → L−1(f)

Proof. In the rest of the proof let hn = L−1(fn) and t = supn≥1 Tfn .
To show that the sequence (hn) is C-relatively compact, we show that
supn≥1‖hn‖∞ is finite and that

(4) lim
ε→0

lim sup
n→+∞

w∞(hn, ε) = 0

with w∞(j, δ) = limm→+∞wm(j, δ) for any j ∈ D and δ > 0. By definition
we have hn(t) = fn(

∫ t
0 hn) and so ‖hn‖∞ = ‖fn‖∞ = ‖fn‖Tfn

= ‖fn‖t.
Since (fn) is C-relatively compact, supn≥1‖fn‖t is finite and hence so is
supn≥1‖hn‖∞.

As for w∞(hn, ε), we have
∫ t
s hn ≤ (t − s)‖hn‖∞ for any 0 ≤ s ≤ t, and

since ‖hn‖∞ = ‖fn‖t we obtain for any 0 ≤ s ≤ t ≤ s+ ε

|hn(t)− hn(s)| =

∣∣∣∣fn
(∫ t

0
hn

)
− fn

(∫ s

0
hn

)∣∣∣∣ ≤ wt (fn, ε‖fn‖t) .

Hence w∞(hn, ε) ≤ wt (fn, ε‖fn‖t), and so (4) follows from this inequality
together with the fact that (fn) is C-relatively compact.

We now prove that hn → L−1(f) provided fn → f . Since the sequence
(hn) is C-relatively compact we only have to identify accumulation points, so
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let now h be any continuous accumulation point of (hn) and assume without
loss of generality that hn → h. Let t ≥ 0: then hn(t) → h(t), while on the
other hand from fn → f , hn → h and the fact that f is continuous we obtain
that fn(

∫ t
0 hn) → f(

∫ t
0 h). Since by definition hn(t) = fn(

∫ t
0 hn) this gives

h(t) = f(
∫ t
0 h) for every t ≥ 0. Since the solution to this equation is unique

because f ∈ E ′ we obtain that h = L−1(f), hence the result.

Lemma A.2. Let fn, f ∈ E and assume that fn → f , that f is continuous

and that the sequence (Tfn) is bounded. Then L(fn) → L(f).

Proof. Let cn(t) =
∫ t
0 fn and c−1

n : [0,∞) → [0, Tfn ] be such that
∫ c−1

n (t)
0 fn = t for any t <

∫
fn and c−1

n (t) = Tfn for t ≥
∫
fn, and de-

fine similarly c and c−1 starting from f instead of fn. Then for any t ≥ 0, we
have by definition L(fn)(t) = fn(c

−1
n (t)) and L(f)(t) = f(c−1(t)). We are in

the framework of Theorem 2.7 of Helland [15] but none of his cases applies
here (notwithstanding the problem that we allow excursions to start at 0).
We break the proof into two steps.

First step. Let t <
∫
f : we prove that ‖c−1

n − c−1‖t → 0. First, note that
c−1
n restricted to [0,

∫
fn] is the inverse of cn restricted to [0, Tfn ], and sim-

ilarly for c and c−1. Moreover, Lemma 2.1 implies that Tf ≤ lim infn Tfn

and since
∫ s
0 fn →

∫ s
0 f for any s ≥ 0 this implies that lim infn

∫
fn ≥

∫
f .

Since the inverse of a continuous and strictly increasing function is a con-
tinuous mapping (see for instance Theorem 7.1 in Whitt [33]), we get that
‖c−1

n − c−1‖t → 0.

Second step. We now prove that L(fn) → L(f). Let t = Tf ∨ supn Tfn , which
is finite by assumption and is such that cn(t) ≤ t and c(t) ≤ t for any t ≥ 0
and n ≥ 1. For t <

∫
f we write

‖fn ◦ c−1
n − f ◦ c−1‖t ≤ ‖fn ◦ c−1

n − f ◦ c−1
n ‖t + ‖f ◦ c−1

n − f ◦ c−1‖t

≤ ‖fn − f‖t + wt

(
f, ‖c−1

n − c−1‖t
)
.

Since fn → f , f is continuous and ‖c−1
n − c−1‖t → 0 by the first step

we see that the last upper bound vanishes. Consider now some arbitrary
t′ <

∫
f ≤ t, then

‖fn ◦ c−1
n − f ◦ c−1‖t ≤ ‖fn ◦ c−1

n − f ◦ c−1‖t′ + sup
t′≤s≤t

f(c−1(s))

+ sup
t′≤s≤t

fn(c
−1
n (s)).
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The first term of this upper bound goes to 0 by the first step. The last
term is equal to sup[c−1

n (t′),t] fn and since c−1
n (t′) → cn(t

′) by the previous
step and the supremum is a continuous function, we get

lim sup
n→+∞

‖fn ◦ c−1
n − f ◦ c−1‖t ≤ 2 sup

c−1(t′)≤s≤Tf

f(s).

Letting t′ → Tf achieves the proof.

We now prove Lemma 2.5, so consider Xn, X random elements of E such
that the sequence (Xn) is C-tight and the sequence (TXn) is tight. Let (u(n))
be any subsequence.

Assume that Xn ⇒ X: to prove that L(Xn) ⇒ L(X) it is enough to find a
subsequence (v(n)) of (u(n)) such that L(Xv(n)) ⇒ L(X). Since the sequence
(TXn) is tight there exists such a subsubsequence such that (Xv(n), TXv(n)

) ⇒
(X ′, T ′) for some continuous X ′ equal in distribution to X and some random
variable T ′. Lemma A.2 together with the continuous mapping theorem
implies that L(Xv(n)) ⇒ L(X ′), hence the result. The other statements of
the lemma follow using similar arguments, invoking Lemma A.1 instead of
Lemma A.2.

REFERENCES
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