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Abstract

We solve a class of control problems with fuel constraint by means of the log-Laplace trans-
forms of J-functionals of Dawson–Watanabe superprocesses. This solution is related to the
superprocess solution of quasilinear parabolic PDEs with singular terminal condition. For the
probabilistic verification proof, we develop sharp bounds on the blow-up behavior of log-Laplace
functionals of J-functionals, which might be of independent interest.
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1 Introduction

One of the most exciting aspects of Dawson–Watanabe superprocesses is their connection to
quasilinear partial differential equations (PDEs) with singular boundary condition. This con-
nection was pioneered by Dynkin (1991b, 1992); see also Dynkin (2004) for more recent devel-
opments and related literature. Similar quasilinear PDEs also appear in the Hamilton–Jacobi–
Bellman (HJB) formulation of stochastic control problems with terminal state constraint, and so
it is natural to ask whether these control problems possess solutions in terms of superprocesses.
Establishing such a direct connection is the main goal of this paper.

The connection we find is direct insofar as it avoids the use of HJB equations and instead
uses a probabilistic verification argument based solely on the log-Laplace equation for a certain
J-functional of a superprocess. While the standard verification argument relies on the existence
of smooth solutions to the HJB equation, whose existence is often very difficult to establish, the
‘mild solutions’ provided by the log-Laplace functionals of superprocesses are ideally suited for
carrying out the verification argument. They are also superior to the commonly used viscosity
solutions, because the latter do not go well along with Itô calculus due to their possible lack of
smoothness.

The problem we will consider here is the minimization of the functional

E0,z

[ ∫ T

0
|ẋ(t)|pη(Zt) dt+

∫
[0,T ]
|x(t)|pA(dt)

]
(1)
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over adapted and absolutely continuous strategies x(t) satisfying the constraints x(0) = x0
and x(T ) = 0. We assume here that p ∈ [2,∞), η is a strictly positive function, and A is a
nonnegative additive functional of the (time-inhomogeneous) Markov process Z with Z0 = z
P0,z-a.s. This control problem is closely related to the monotone follower problems with fuel
constraint that were introduced by Beneš, Shepp & Witsenhausen (1980) and further developed,
e.g., by Karatzas (1985). Also, as we will explain in Section 1.2, problems of this type have
recently appeared in the context of mathematical finance. In the next section we will give some
heuristic arguments that explain the connection of this problem with quasilinear PDEs with
singular terminal condition that are related to superprocesses.

1.1 The connection between the control problem and superpro-
cesses

Let us assume that A(du) = a(Zu) du for some function a ≥ 0 and define the value function of
our problem as

V (t, z, x0) := inf
x(·)

Et,z

[ ∫ T

t
|ẋ(u)|pη(Zu) du+

∫ T

t
|x(u)|pa(Zu) du

]
,

where the infimum is taken over the class of all absolutely continuous and adapted strategies
x(·) satisfying the constraints x(t) = x0 and x(T ) = 0. As usual Pt,z denotes the probability
measure under which the Markov process Z starts at z at time t. When Lt is the infinitesimal
generator of Z, standard arguments from optimal control suggest that V should satisfy the
following HJB equation

Vt(t, z, x0) + inf
ξ

{
η(z)|ξ|p + Vx0(t, z, x0)ξ

}
+ a(z)|x0|p + LtV (t, z, x0) = 0 (2)

with singular terminal condition

V (T, z, x0) =

{
0 if x0 = 0,

+∞ otherwise.
(3)

Note that the singularity in this terminal condition is required by the fuel constraint x(T ) = 0.
To see how this PDE is related to superprocesses, we consider the case x0 ≥ 0 and make

the ansatz V (t, z, x0) = xp0v(t, z) for some function v. Plugging this ansatz into (2), minimizing
over ξ, dividing by xp0, and using (3) yields the equation

vt −
1

β
η−βv1+β + a+ Ltv = 0,

v(T, z) = +∞,
(4)

where β = 1
p−1 . This is just the type of PDE solved in Dynkin (1992) by means of superprocesses.

The minimizing ξ in (2) is given by ξ = −x0vβ/ηβ, which suggests that the optimal strategy
x∗ is given in feedback form as the solution of the ordinary differential equation

ẋ(u) = −x(u)v(u, Zu)β

η(Zu)β
,

i.e.,

x∗(t) = x0 exp
(∫ t

0
−v(s, Zs)

β

η(Zs)β
ds
)
.
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As we will see later on, these heuristic computations will give the correct results. There are
some difficulties, however, which need to be overcome to turn these heuristics into a full proof.
For instance, we must make sure that the strategy x∗ satisfies the fuel constraint x∗(T ) = 0,
which requires us to find a lower bound on v(s, Zs) when it approaches the singularity. On the
other hand, we must also make sure that x∗ has finite cost (1). To this end, we will need a sharp
upper bound on v(s, Zs) for s close to T . These bounds are derived in Section 3 by extending
existing bounds from Schied (1996) to J-functionals and to a generalized class of superprocesses
with nonhomogeneous branching parameters. These bounds may be of independent interest.
For instance, by means of the results in Dynkin (1992) they translate into sharp bounds for
solutions v(t, z) of the singular Cauchy problem (4) when t approaches the singularity T .

1.2 Financial motivation of the control problem

Let (St) be a square-integrable martingale, which will be interpreted as the price process of an
asset. In the linear Almgren–Chriss market impact model, a strategy x(·) as described above is
interpreted as the policy of an investor who wishes to liquidate x0 shares of the asset throughout
the time interval [0, T ]. This liquidation creates price impact so that the investor trades at price
Sxt = St + γ(xt − x0) + ηtẋt, where γ is a constant and the process η describes the intraday
liquidity fluctuations; see Almgren & Chriss (2000), Almgren (2012), and the survey Gatheral
& Schied (2012) for details. The liquidation costs arising from the strategy x(·) are then given
by

C(x) =
γ

2
x20 +

∫ T

0
ηtẋ(t)2 dt−

∫ T

0
x(t) dSt.

The problem considered by practitioners is the minimization of the following mean-variance
functional of the costs,

E[C(x) ] + λvar (C(x)), (5)

over all absolutely continuous policies satisfying the constraints x(0) = x0 and x(T ) = 0. This
is a straightforward exercise when η is constant and strategies are deterministic, but not so
easy when strategies are adapted. The reason for this difficulty is the time inconsistency of the
mean-variance functional, which precludes the use of control techniques; see, e.g., Tse, Forsyth,
Kennedy & Windclif (2011) and the references therein.

As a way out, one can use an infinitesimal re-optimization process as in Section 6.4 of
Schöneborn (2008) or other, more generally available arguments such as those in Ekeland &
Lazrak (2006) or Björk & Murgoci (2010) to replace the original, time-inconsistent problem by
a time-consistent approximation. In our special situation, this process leads to the problem of
minimizing the functional

E
[ ∫ T

0
ηtẋ(t)2 dt+ λ

∫
[0,T ]

x(t)2 d[S]t

]
; (6)

see also Almgren (2012, Section 1.5), Forsyth, Kennedy, Tse & Windclif (2012), and Tse et al.
(2011) for other motivations of this problem and further studies with applications in mind.
When S and η are functions of an underlying Markov process Z, as it is the case for almost all
probabilistic models of asset price processes, we see that this problem is precisely of the form
(1). It is now also clear that using a general additive functional A and not just a functional of
the form A(dt) = a(Zt) dt in the formulation of (1) is suggested by applications and not just an
artificial generalization of our problem.
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1.3 Plan of the paper

In Section 2.1 we introduce the basic setup of the paper. In Section 2.2 we first state the solution
of problem (1) for η ≡ 1. Theorem 2.3, the corresponding result, is actually a special case of
our main result, Theorem 2.7, but unlike Theorem 2.7 it only involves classical superprocesses,
as constructed in Dynkin (1991a), while the case of nonconstant η requires an extended class of
superprocesses. In Theorem 2.8 we consider a variant of problem (1) in which the fuel constraint
x(T ) = 0 is relaxed and replaced by a penalty term.

In Section 3 we collect some auxiliary results on superprocesses and their Laplace function-
als, some of which may be of independent interest. In Section 3.1 we present a probabilistic
version of the parabolic maximum principle for the log-Laplace equations associated with J-
functionals. This result will be needed for comparing log-Laplace equations for superprocesses
with inhomogeneous branching characteristics to the case with homogeneous branching. In
Section 3.2 we derive estimates for the Laplace functionals of J-functionals of superprocesses
with homogeneous branching characteristics by extending bounds obtained in Schied (1996) to
the case of J-functionals. In Section 3.3, these bounds are then extended as well to a gener-
alized class of superprocesses with nonhomogeneous branching parameters. This extension is
needed for Theorem 2.7. The generalized class of superprocesses is constructed by means of an
“h-transform” for superprocesses that was introduced independently by Engländer & Pinsky
(1999) and Schied (1999).

The proofs of our main results are given in Section 4.

2 Setup, preliminaries, and main results

2.1 Assumptions and preliminaries

2.1.1 The Markov process Z

We will assume henceforth that the Markov process Z = (Zt,F(I), Pr,z) is a time-inhomo-
geneous right process with sample space (Ω,F) and state space (S,B) in the sense of Section
2.2 in Dynkin (1994). Here, S is a metrizable Luzin space with Borel field B. The σ-algebra
F(I) ⊂ F contains events observable during the time interval I ⊂ [0,∞). For every r ≥ 0 and
probability measure µ on (S,B), we thus get a filtered probability space (Ω, (F [r, t])t≥r, Pr,µ).
Here, Pr,µ denotes as usual the probability measure under which Z starts at time r ≥ 0 with
initial distribution µ. The fact that Z is right essentially means that t 7→ Zt(ω) is càdlàg for
each ω and that, for r < t, measurable f : S → R+, and probability measures µ on (S,B), the
process s 7→ Es,Zs [ f(Zt) ] is Pr,µ-a.s. right-continuous on [r, t). For all further details we refer
to Sections 2.2.1 and 2.2.3 in Dynkin (1994).

2.1.2 The (Z,K, ψ)-superprocess

For t ≥ 0, z ∈ S, ξ ≥ 0, β ∈ (0, 1], and bounded, measurable and positive a : R+ × S → R+ let

ψ(t, z, ξ) = a(t, z)ξ1+β. (7)

Let moreover K be a continuous and nonnegative additive functional of Z such that

sup
ω
K[0, t](ω) <∞ for all t ≥ 0. (8)
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By Theorem 1.1 from Dynkin (1991a) one can then1 construct the superprocess with parameters
(Z,K,ψ). It is a time-inhomogeneous Markov process X = (Xt,G(I),Pr,µ) with state space
M, the space of all nonnegative finite Borel measures on (S,B). Its transition probabilities are
determined as follows by the Laplace functionals of X. For any measurable function f : S → R+

we write 〈f, ν〉 shorthand for the integral
∫
f dν. Then,

Er,µ[ e−〈f,XT 〉 ] = e−〈v(r,·),µ〉,

where v solves the integral equation

v(s, z) = Es,z[ f(ZT ) ]− Es,z
[ ∫ T

s
ψ(t, Zt, v(t, Zt))K(dt)

]
, r ≤ s ≤ T. (9)

When f is bounded, then v is the unique nonnegative solution of (9). For T < r we make the
convention that XT = 0 Pr,µ-a.s.

Later on, we will need to allow for unbounded additive functionals K and thus have to
extend this class of superprocesses; see Proposition 2.5.

It might be interesting to note that superprocesses provide an infinite-dimensional example
of an affine process, a class of processes which has recently received considerable attention in
mathematical finance; see Duffie, Filipović & Schachermayer (2003).

2.1.3 A class of additive functionals of Z

Following Dynkin (1991a), a nonnegative additive functional A of Z belongs to A(1) if there
exists a finite set {t1, . . . , tn} ⊂ R+ with t1 < · · · < tn and bounded measurable functions fi ≥ 0,
i = 1, . . . , n, such that

A[s, u] =
∑

s≤ti≤u
fi(Zti). (10)

Next, A(2) denotes the class of all nonnegative additive functionals A for which there exists a
sequence (An) in A(1) with the following three properties: An[r,∞) → A[r,∞) Pr,z-a.s. for all
pairs (r, z); there exists T > 0 such that An[T,∞) = 0 for all n; and supω,nAn[0, T ](ω) < ∞.
Finally, A consists of all nonnegative additive functionals A for which there exists a sequence
(An) in A(2) such that An(B) ↗ A(B) for all measurable sets B ⊂ R+. For q ≥ 1 and T > 0,
we furthermore introduce the class

AqT :=
{
A ∈ A |Er,z[A[r, T ]q ] <∞ and A(T,∞) = 0 Pr,z-a.s. for all (r, z) ∈ [0, T ]× S

}
.

Remark 2.1 (Quadratic variation and path processes). Suppose that Yt is a semimartingale of
the form Yt = φ(Zt), where φ : S → R is a measurable function. Then the quadratic variation
of Y gives rise to the nonnegative additive functional

A(dt) := d[Y ]t (11)

of Z. But in general it is not obvious whether A admits a version that belongs toA unless, e.g., Y
is an Itô process of the form Yt = Y0+

∫ t
0 σ(s, Zs) dWs+

∫ t
0 b(s, Zs) ds and so d[Y ]t = σ(t, Zt)

2 dt.
Nevertheless, when we are interested primarily in Y and its quadratic variation as in the financial

1Actually, a larger class of functions ψ is possible (Dynkin 1994), but here we will only need the class specified in
(7).
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context of Section 1.2, then we may always assume that Z is the path process for Y (called
historical process in Dawson & Perkins (1991) or Perkins (2002)), i.e., at each point t in time,
Zt is equal to the sample path of the entire history (Ys∧t)s≥0. Then the dynamics of Z will
automatically be Markovian, and Z will be a right process under mild assumptions. In this
case, we can let

fi(Zti) :=
(
Zti(ti))− Zti(ti−1)

)2 ∧K = (Yti − Yti−1)2 ∧K

in (10), where K > 0 and t0 := 0. The corresponding additive functional belongs to A(1) and
can be used to approximate the quadratic variation [Y ], so that under mild conditions (11) has
a version in A. ♦

2.1.4 J-functionals associated with an additive functional

J-functionals are functionals of the (Z,K,ψ)-superprocess X associated with additive function-
als A ∈ A. They were introduced in Dynkin (1991a) as follows. Suppose that A ∈ A(1) is given
by (10). Then the corresponding J-functional is defined as

JA :=

n∑
i=1

〈fti , Xti〉 (12)

(recall the convention that Xt = 0 Pr,µ-a.s for t < r). For more general additive functionals A,
the corresponding J-functionals can then be defined by a limiting procedure. By Theorem 1.2
in Dynkin (1991a), one has for A ∈ A1

T ,

Er,µ[ e−JA ] = e−〈v(r,·),µ〉, (13)

where v(r, z) solves

v(r, z) = Er,z[A[r, T ] ]− Er,z
[ ∫ T

r
ψ(s, Zs, v(s, Zs))K(ds)

]
, 0 ≤ r ≤ T. (14)

According to Dynkin (1994, Theorem 3.4.2), solutions to (14) are unique when Er,z[A[r, T ] ] is
uniformly bounded in z and r ≤ T , and hence in particular when A ∈ A(1). For the general
case, we have the following result, which will be proved in Section 3.1.

Proposition 2.2. For A ∈ A1
T and ψ as in (7), the function v(r, z) := − logEr,δz [ e−JA ] is the

unique finite and nonnegative solution of (14).

2.2 Statement of main results

Let T > 0 be a fixed finite time horizon, z ∈ S a fixed starting point for Z, and x0 ∈ R a
given initial value. An admissible strategy will be a stochastic process (x(t))0≤t≤T that is of

the form x(t) = x0 +
∫ t
0 ẋ(s) ds for an integrable and (F [0, t])-progressively measurable process

(ẋ(t))0≤t≤T . We also assume that x(·) satisfies the fuel constraint

x(T ) = 0 P0,z-a.s. (15)

The cost of an admissible strategy will be

E0,z

[ ∫ T

0
|ẋ(s)|pη(Zs) ds+

∫
[0,T ]
|x(s)|pA(ds)

]
. (16)
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Here, p ∈ [2,∞) and η : S → (0,∞) is a measurable function2 that will be further specified
below. Our goal is the minimization of this cost functional over all admissible strategies.

We are now ready to state our first main result. It is actually a corollary of the more general
Theorem 2.7, but the latter needs additional assumptions and preparation. So we state this
result here for the impatient reader.

Theorem 2.3. For p ∈ [2,∞) let q be such that 1
p + 1

q = 1 and take A ∈ AqT . Let JA

be the corresponding J-functional of the superprocess with parameters Z, K(ds) = 1
β ds, and

ψ(t, z, ξ) = ξ1+β for β := 1
p−1 , and define the function

v∞(r, z) = − logEr,δz [ e−JA 1{XT=0} ].

Then

x∗(t) := x0 exp
(
−
∫ t

0
v∞(s, Zs)

β ds
)

is the unique admissible strategy that minimizes the cost functional (16) for the choice η ≡ 1.
Moreover, the minimal costs are given by

E0,z

[ ∫ T

0
|ẋ∗(s)|p ds+

∫
[0,T ]
|x∗(s)|pA(ds)

]
= |x0|pv∞(0, z).

Remark 2.4. In the proof of Theorem 2.7 it will be shown that the optimal strategy is always
below the linear strategy, i.e.,

|x∗(t)| ≤ |x0|
T − t
T

for 0 ≤ t ≤ T ; (17)

see Remark 4.3.

We now turn to extending the results from Theorem 2.3 to the minimization of the cost
functional (16) with nonconstant η. Unless η is bounded away from zero, this problem cannot
be solved by the standard class of superprocesses considered in Dynkin (1991a, 1994); we need
the extended class of superprocesses constructed in Schied (1999) by means of an “h-transform”.
An analytical version of this transform was found independently by Engländer & Pinsky (1999).
Here we will use its probabilistic version. To make it work, we need the following assumption,
which we will impose from now on: there exists a constant cT > 0 such that

1

cT
η(z) ≤ Er,z[ η(Zt) ] ≤ cT η(z) for 0 ≤ r ≤ t ≤ T and z ∈ S. (18)

We assume moreover that

Et,z[ η(ZT ) ]→ η(z) uniformly in z as t ↑ T . (19)

By Mη we denote the class of all nonnegative measures µ on (S,B) for which
∫
η dµ <∞ and

by B+
η the class of all bounded B-measurable functions f : S → R+ for which there is a constant

c such that f ≤ c η. The proof of the following result will be based on (Schied 1999, Theorem
2) and given in Section 3.3.

2Since Z is a time-inhomogeneous Markov process, we can always assume that Z is of the form Zt = (t, Z̃t), and
so there is no loss of generality in assuming the form η(Zt) rather than the form η(t, Zt).
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Proposition 2.5. For β ∈ (0, 1] and under the above assumptions, there exists an Mη-valued
Markov process X = (Xt,G(I),Pr,µ), the superprocess with parameters Z, K(ds) = 1

βη(Zs)β
ds,

and ψ(ξ) = ξ1+β, whose Laplace functionals are given by

Er,µ[ e−〈f,Xt〉 ] = e−〈u(r,·),µ〉, f ∈ B+
η , µ ∈Mη, (20)

where u(r, ) is the unique solution of the integral equation

u(r, z) = Er,z

[
f(Zt)−

∫ t

r
u(s, Zs)

1+β 1

βη(Zs)β
ds
]

(21)

in B+
η . Moreover, to each A ∈ A1

T there exists a corresponding J-functional, JA, satisfying

Er,µ[ e−JA ] = e−〈v(r,·),µ〉 (22)

where v solves

v(r, z) = Er,z

[
A[r, T ]−

∫ t

r
v(s, Zs)

1+β 1

βη(Zs)β
ds
]
. (23)

Furthermore, v is the unique finite and nonnegative solution of (23).

Example 2.6 (Hyperbolic superprocesses). Let Z be a one-dimensional Brownian motion

stopped when first hitting zero. Then one can take η(z) = |z|
1
β
+λ

for some λ ∈ [0, 1]; see
Schied (1999, Example 1 (i)). For β = λ = 1, the corresponding superprocess was constructed
in Fleischmann & Mueller (1997).

We are now ready to state our main result.

Theorem 2.7. Suppose that η is as above. For p ∈ [2,∞) let q be such that 1
p + 1

q = 1 and take

A ∈ A1
T such that ∫ T

0
E0,z

[
η(Zt)

1−qA[t, T ]q
]
dt <∞. (24)

For β := 1
p−1 let moreover X = (Xt,G(I),Pr,µ) be the superprocess constructed in Proposition 2.5

and define
v∞(r, y) := − logEr,δy [ e−JA 1{XT=0} ] (25)

and

x∗(t) := x0 exp
(
−
∫ t

0

v∞(s, Zs)
β

η(Zs)β
ds
)
. (26)

Then x∗ is an admissible strategy and the unique minimizer of the cost functional (16). More-
over, the minimal costs are given by

E0,z

[ ∫ T

0
|ẋ∗(s)|pη(Zs) ds+

∫
[0,T ]
|x∗(s)|pA(ds)

]
= |x0|pv∞(0, z).
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Note that the function v∞(t, y) blows up as t ↑ T . This fact will create considerable diffi-
culties. In fact, the most difficult part in the proof of Theorem 2.7 will be to show that the
strategy x∗ defined through (26) is an admissible strategy with finite cost. To prove this, we
need sharp upper and lower bound for the behavior of v∞(t, y) as t ↑ T . These estimates are of
independent interest and will be developed in Section 3.

The blow-up of the function v∞ is of course linked to the fuel constraint (15) required from
admissible strategies. A common question one therefore encounters in relation to finite-fuel
control problems is whether it may not be reasonable to replace the sharp fuel constraint by
a suitable penalization term and thus avoid the singularity of the value function. It turns out
that in our context such a penalization approach can be carried out without much additional
effort. To describe it, we define a relaxed strategy as a stochastic process (x(t))0≤t≤T that is of

the form x(t) = x0 +
∫ t
0 ẋ(s) ds for an integrable and (F [0, t])-progressively measurable process

(ẋ(t))0≤t≤T . The cost of a relaxed strategy x(·) will be

E0,z

[ ∫ T

0
|ẋ(s)|pη(Zs) ds+

∫
[0,T ]
|x(s)|pA(ds) + %(ZT )|x(T )|p

]
, (27)

where p, A, and η are as above, and % : S → R+ is a measurable penalty function that satisfies
the following assumptions:

%(y) ≤ c%η(y) for a constant c% and all y;

Et,Zt [ %(ZT ) ] −→ %(ZT ) P0,z-a.s. as t ↑ T .
(28)

By martingale convergence, the second condition is satisfied as soon as ZT is P0,z-a.s. measurable
with respect to σ(

⋃
t<T F [0, t]), which in turn holds when Z is a Hunt process. Moreover, it

follows from (19) that both conditions in (28) are satisfied when % = cη for some constant c ≥ 0.

Theorem 2.8. Suppose that η, p, β, and X are as in Theorem 2.7 and that the measurable
penalty function % : S → R+ satisfies (28). Let A ∈ A1

T be such that A{T} = 0 P0,z-a.s. For

v%(r, y) = − logEr,δy [ e−JA−〈%,XT 〉 ] (29)

the relaxed strategy

x%(t) := x0 exp
(
−
∫ t

0

v%(s, Zs)
β

η(Zs)β
ds
)

(30)

is the unique minimizer of the cost functional (27) in the class of relaxed strategies. Moreover,
the minimal costs are

E0,z

[ ∫ T

0
|ẋ%(s)|pη(Zs) ds+

∫
[0,T ]
|x%(s)|pA(ds) + %(ZT )|x%(T )|p

]
= |x0|pv%(0, z).

3 Auxiliary results on superprocesses and their Laplace

functionals

3.1 A probabilistic version of the parabolic maximum principle

Our first result is the following proposition, which can be regarded as a probabilistic version of
a parabolic maximum principle for equations of the form (14).
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Proposition 3.1. Suppose that A, Ã ∈ A1
T . Let furthermore L and L̃ be nonnegative continuous

additive functionals of Z. Suppose that A[r, t] ≤ Ã[r, t] and L[r, t] ≥ L̃[r, t] for 0 ≤ r ≤ t ≤ T .
For some q ≥ 1 let v and ṽ be finite and nonnegative solutions of the integral equations

v(r, z) = Er,z

[
A[r, T ]−

∫ T

r
v(t, Zt)

q L(dt)
]
, ṽ(r, z) = Er,z

[
Ã[r, T ]−

∫ T

r
ṽ(t, Zt)

q L̃(dt)
]
.

Then we have v ≤ ṽ.

For this and other proofs we will need the following special version of the general Feynman–
Kac formula from Dynkin (1994, Theorem 4.1.1).

Proposition 3.2 (Dynkin (1994)). Suppose that B is a signed additive functional of Z whose
total variation belongs to A1

T . Let furthermore C be a continuous and nonnegative additive
functional of Z. Let

g(r, z) := Er,z

[ ∫
[r,T ]

e−C[r,s]B(ds)
]
.

When Er,z[
∫ t
r g(s, Zs)C(ds) ] is well-defined and finite for all (r, z), then g is the unique solution

of the linear integral equation

g(r, z) = Er,z
[
B[r, T ]

]
− Er,z

[ ∫ t

r
g(s, Zs)C(ds)

]
. (31)

Proof of Proposition 3.1. Via the outer regularity of finite Borel measures on [0, T ], our condition
L̃[r, t] ≤ L[r, t] implies that L(dt) = (1 +ϕt) L̃(dt) for some nonnegative function ϕt, which can
be chosen to be progressively measurable. One sees that u := ṽ − v satisfies

u(r, z) = Er,z

[
Ã[r, T ]−A[r, T ] +

∫ T

r
v(t, Zt)

qϕt L̃(dt)−
∫ T

r
u(t, Zt)w(t, Zt) L̃(dt)

]
,

where

w(t, z) :=


ṽ(t, z)q − v(t, z)q

ṽ(t, z)− v(t, z)
if ṽ(t, z) 6= v(t, z)

0 otherwise.

Note that w(t, z) is nonnegative. We define a nonnegative additive functional B of Z via

B[r, t] := Ã[r, t]−A[r, t] +

∫ t

r
v(s, Zs)

qϕs L̃(ds).

It belongs to A1
T because

Er,z

[ ∫ T

r
v(s, Zs)

qϕs L̃(ds)
]
≤ Er,z

[ ∫ T

r
v(s, Zs)

q L(ds)
]
,

and the expectation on the right is finite by assumption. Moreover, C(dt) := w(t, Zt) L̃(dt) is a
continuous and nonnegative additive functional. We have

Er,z

[ ∫ T

r
u(s, Zs)C(ds)

]
= Er,z

[ ∫ T

r
ṽ(t, Zt)

q1{w(t,Zt)6=0} L̃(dt)
]
− Er,z

[ ∫ T

r
v(t, Zt)

q1{w(t,Zt)6=0} L̃(dt)
]
.
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Both expectations on the right are finite, and so Er,z[
∫ T
r u(s, Zs)C(ds) ] is well-defined and

finite for all (r, z). Therefore, Proposition 3.2 yields that

u(r, z) = Er,z

[ ∫
[r,T ]

e−C[r,s]B(ds)
]
,

which is nonnegative. Hence, ṽ ≥ v.

Proof of Proposition 2.2. By Dynkin (1991a, Theorem 1.2), we have Er,δz [ JA ] ≤ Er,z[A[r, T ] ],
which is finite for all (r, z) since A ∈ A1

T . Hence JA <∞ Pr,δz -a.s. and so v(r, z) is finite for all
(r, z). Note that

Er,z

[ ∫ T

r
v(s, Zs)

1+βa(s, Zs)K(ds)
]

= Er,z

[ ∫ T

r
ψ(s, Zs, v(s, Zs))K(ds)

]
<∞ (32)

for all (r, z). When ṽ is another finite and nonnegative solution of (14), then (32) holds also for
ṽ. Therefore we may apply Proposition 3.1 with L(ds) = L̃(ds) = a(s, Zs)K(ds) and q = 1 + β
to get v ≤ ṽ. Interchanging the roles of v and ṽ yields the uniqueness of solutions.

Example 3.3 (Laplace functionals for the total mass process). Consider the superprocess with
parameters Z, K(ds) = γ ds for a constant γ > 0, and ψ(s, z, ξ) = ξ1+β for β ∈ (0, 1]. Let ν be
a finite and nonnegative Borel measure on [0, T ]. Clearly, ν can be regarded as an element of
A1
T . The corresponding J-functional is given by

Jν =

∫
〈1, Xt〉 ν(dt), (33)

as can easily be seen from (12). Its log-Laplace functional

v(r, z) := − logEr,δz
[
e−Jν

]
= − logEr,δz

[
e
−

∫
[r,T ]〈1,Xt〉 ν(dt)

]
is in fact independent of z. Indeed, when ν = λδt for some λ ≥ 0 and t ∈ [r, T ], then v(r, z) = 0
for r > t and

v(r, z) = − logE
[
e−λ〈1,Xt〉

]
=

λ

(1 + γβ(t− r)λβ)1/β
(34)

for r ≤ t and λ ≥ 0, as can be shown by a straightforward computation based on the integral
equation (9). When ν is a positive linear combination of Dirac measures, then we can use
the Markov property of X to conclude that v(r, z) is independent of z. For general ν we
use an approximation argument. Alternatively, one can use the fact that, for superprocesses
with homogeneous branching, the total mass process, 〈1, Xt〉, is itself a one-dimensional Markov
process. It follows that the function v is the unique nonnegative solution of the integral equation

v(r) = ν[r, T ]− γ
∫ T

r
v(s)1+β ds.

3.2 Estimates for the Laplace functionals of J-functionals

Throughout this section, let X = (Xt,G(I),Pr,µ) be the superprocess with one-particle motion
Z, K(ds) = γ ds for a constant γ > 0, and ψ(s, z, ξ) = ξ1+β for β ∈ (0, 1]. A key ingredient in
the proof of Theorem 2.7 will be the inequality (37) in the following theorem. This inequality
gives a bound on the Laplace transform of a J-functional and is also of independent interest.
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It extends the upper bound of the following estimate for the Laplace functionals of X from
Section 5 of Schied (1996):

Er,z[VT−rf(ZT ) ] ≤ − logEr,δz [ e−〈f,XT 〉 ] ≤ VT−rEr,z[ f(ZT ) ], r < T, f ≥ 0, (35)

where Vt : R+ → R+ denotes the nonlinear semigroup

Vty =
y

(1 + γβtyβ)1/β
, y ≥ 0, t ≥ 0.

For β = 1, the estimate (35) can actually be extended to functions f with arbitrary sign.
The lower bound in (35) will be needed in the proof of Theorem 2.8. Note that, by means
of Example 3.3, the following inequality (37) coincides with the upper bound in (35) for the
additive functional A(dt) = f(Zt) δT (dt).

Theorem 3.4. For the superprocess with homogeneous branching rate γ, let JA be the J-
functional associated with a given A ∈ A1

T . For r ≤ T and z ∈ S fixed, define moreover
the finite and nonnegative Borel measure αr,z(ds) on [r, T ] by∫

f(s)αr,z(ds) = Er,z

[ ∫
[r,T ]

f(s)A(ds)
]

for bounded measurable f : [r, T ] → R. Then the conditional expectation of JA given the
evolution of the total mass process, (〈1, Xt〉)r≤t≤T , is given by

Er,δz
[
JA
∣∣ 〈1, Xt〉, r ≤ t ≤ T

]
=

∫
[r,T ]
〈1, Xt〉αr,z(dt). (36)

Moreover,

Er,δz [ e−JA ] ≥ Er,δz
[
e
−

∫
[r,T ]〈1,Xt〉αr,z(dt)

]
. (37)

Proof. To prove (36), we can assume without loss of generality that A is bounded. For λ ≥ 0
and a bounded nonnegative Borel measure µ on [0, T ], let

vλ(s, y) := − logEs,δy [ e−λJA−
∫
〈1,Xt〉µ(dt) ].

Then vλ is the unique nonnegative solution of

vλ(s, y) = Es,y[λA[s, T ] ] + µ[s, T ]− γ
∫ T

s
Es,y[ vλ(t, Zt)

1+β ] dt. (38)

It follows that

Er,δz [ JA e−
∫
〈1,Xt〉µ(dt) ] = − d

dλ

∣∣∣
λ=0

e−vλ(r,z) = e−v0(r,z)
∂vλ(r, z)

∂λ

∣∣∣
λ=0

.

For λ = 0, the function v0(s, y) describes the log-Laplace functional − logEs,δy [ e−
∫
〈1,Xt〉µ(dt) ],

which is independent of z due to the assumed homogeneity of the branching mechanism; see
Example 3.3. Hence, w := ∂vλ/∂λ|λ=0 solves

w(s, y) = Es,y[A[s, T ] ]− γ(1 + β)

∫ T

s
Es,y[w(t, Zt) ]v0(t)

β dt.

12



Here, interchanging differentiation and integration is justified due to the uniform boundedness
of A and, hence, of vλ and w (the latter being implied at least a posteriori from the following
argument). By the general Feynman-Kac formula of Proposition 3.2, w is given by

w(r, z) = Er,z

[ ∫
[r,T ]

e−γ(1+β)
∫ t
r v0(u)

β duA(dt)
]

=

∫
[r,T ]

e−γ(1+β)
∫ t
r v0(u)

β du αr,z(dt).

Therefore

Er,δz [ JA e−
∫
〈1,Xt〉µ(dt) ] = e−v0(r)

∫
[r,T ]

e−γ(1+β)
∫ t
r v0(u)

β du αr,z(dt). (39)

Now we take A(dt) = ν(dt) for a nonnegative finite Borel measure ν on [0, T ] and recall from
(33) that in this case JA = Jν =

∫
〈1, Xt〉 ν(dt). We then get

Er,δz
[
Jν e

−
∫
〈1,Xt〉µ(dt)

]
= e−v0(r)

∫
[r,T ]

e−γ(1+β)
∫ t
r v0(u)

β du ν(dt). (40)

Comparing (39) with (40) and recalling (33) yields

Er,δz [ JA e−
∫
〈1,Xt〉µ(dt) ] = Er,δz

[
Jαr,z e

−
∫
〈1,Xt〉µ(dt)

]
= Er,δz

[ ∫
[r,T ]
〈1, Xt〉αr,z(dt)e−

∫
〈1,Xt〉µ(dt)

]
.

Varying µ and applying a monotone class argument yields (36).
Now we prove (37). We have

Er,δz [ e−JA ] = Er,δz
[
Er,δz [ e−JA | 〈1, Xt〉, r ≤ t ≤ T ]

]
≥ Er,δz [ e−Er,δz [ JA | 〈1,Xt〉, r≤t≤T ] ]

= Er,δz
[
e
−

∫
[r,T ]〈1,Xt〉αr,z(dt)

]
,

where we have used Jensen’s inequality for conditional expectations in the second step and (36)
in the third.

Recall that K(ds) = γ ds and ψ(s, z, ξ) = ξ1+β. Let us also mention that the following
estimates will be extended to the case of non-homogeneous branching in Proposition 3.7.

Proposition 3.5. Let JA be the J-functional associated with A ∈ A1
T . Then, for k ≥ 0 and

r < T ,

− logEr,δz [ e−JA−k〈1,XT 〉 ] ≤ Er,z[A[r, T ] ] +
k

(1 + γβ(T − r)kβ)1/β
(41)

and

− logEr,δz [ e−JA 1{XT=0} ] ≤ Er,z[A[r, T ] ] +
1

(γβ(T − r))1/β
. (42)

Proof. We can assume without loss of generality that A is bounded. From (37) we get

− logEr,δz [ e−JA−k〈1,XT 〉 ] ≤ − logEr,δz
[
e
−

∫
[r,T ]〈1,Xt〉µ(dt)−k〈1,XT 〉

]
, (43)

where µ([s, t]) = Er,z[A[s, t] ] for r ≤ s ≤ t ≤ T . As noted in Example 3.3, the right-hand side
of (43) is independent of z and equal to v(r), where v solves the integral equation

v(t) = k + µ([t, T ])− γ
∫ T

t
v(s)1+β ds, 0 ≤ t ≤ T.

Assertion (41) now follows from an application of Lemma 3.6, which is stated below. The
inequality (42) is obtained by sending k to infinity in (41) .
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Lemma 3.6. Suppose that a : [0, T ] → R+ is a measurable function, k ≥ 0 is a constant, and
v : [0, T ]→ R+ solves the integral equation

v(r) = k + a(r)− γ
∫ T

r
v(s)1+β ds, 0 ≤ r ≤ T.

Then

v(t) ≤ a(t) +
k

(1 + γβ(T − t)kβ)1/β
, 0 ≤ t ≤ T. (44)

Proof. The function

u(t) :=
k

(1 + γβ(T − t)kβ)1/β

satisfies u(T ) = k and solves

u(r) = k − γ
∫ T

r
u(s)1+β ds.

Let ṽ(t) := v(T − t), and define ũ and ã accordingly. The function w(t) := ṽ(t)− ũ(t)− ã(t) is
absolutely continuous and satisfies for a.e. t

w′(t) = −γ
(
ṽ(t)1+β − ũ(t)1+β

)
= −γ

(
ṽ(t)− ũ(t)

)
f(t),

where

f(t) =


ṽ(t)1+β − ũ(t)1+β

ṽ(t)− ũ(t)
for ṽ(t) 6= ũ(t),

0 otherwise.

Since f ≥ 0 and a ≥ 0, it follows that w′(t) ≤ −γw(t)f(t) for a.e. t ∈ [0, T ]. When letting

w0(t) := e−γ
∫ t
0 f(s) ds, we have( w(t)

w0(t)

)′
=
w′(t)w0(t)− w(t)w′0(t)

w0(t)2
≤ 0,

and so
w(t)

w0(t)
≤ w(0)

w0(0)
= v(T )− u(T )− a(T ) = 0.

It follows that w(t) ≤ 0 and in turn that v ≤ a+ u.

3.3 An “h-transform” for superprocesses

In this section, we prove Proposition 2.5 and extend the estimates from Proposition 3.5 to
certain superprocesses with inhomogeneous branching characteristics. Our approach is based
on the “h-transform” for superprocesses that was introduced independently by Engländer &
Pinsky (1999) and Schied (1999). Whereas the first approach is primarily analytical, the latter
approach is probabilistic and it is the one we are going to use here. It is based on the following
space-time harmonic function of Z:

h(r, z) := Er,z[ η(ZT ) ], 0 ≤ r ≤ T , z ∈ S. (45)
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We define the function ψ(z, ξ) =
( ξ
η(z)

)1+β
, ξ ≥ 0, z ∈ S, and a continuous nonnegative additive

functional K of Z by K(dt) = 1
βη(Zt) dt. Then we have ψ̃(z, ξ) := ψ(z, η(z)ξ) = ξ1+β. Moreover,

by (18),

Er,z
[
K[r, t]

]
=

1

β

∫ t

r
Er,z[ η(Zt) ] dt ≤ 1

β
cT (t− r)η(z) for 0 ≤ r ≤ t ≤ T and z ∈ S.

Therefore, both ψ and K satisfy the conditions of Theorem 2 from Schied (1999), which hence
implies the existence of a (Z,K,ψ)-superprocess X for which the function u from (20) uniquely
solves

u(r, z) = Er,z

[
f(Zt)−

∫ t

r
ψ(Zs, u(s, Zs))K(ds)

]
= Er,z

[
f(Zt)−

∫ t

r
u(s, Zs)

1+β 1

βη(Zs)β
ds
]
.

This implies the first part in the assertion of Proposition 2.5.
To prove the remaining part of Proposition 2.5 and to prepare for the proof of Theorem 2.7,

we need to recall the construction of X given in Schied (1999). One first introduces Doob’s
h-transform of the process Z, i.e., the Markov process Zh = (Zt,F(I), P hr,z) (defined up to the
time horizon T ) where

P hr,z[A ] =
1

h(r, z)
Er,z[ η(ZT )1

A
], A ∈ F [r, T ],

(note that h > 0 by (18)). For any additive functional B of Z one then defines an additive
functional Bh of Zh by

Bh(ds) =
1

h(s, Zs)
B(ds).

By the right property of Z, the process h(s, Zs) is a rightcontinuous Pr,z-martingale. Hence,
h(s, Zs) is equal to the optional projection of the constant process t 7→ η(ZT ). Therefore, for
0 ≤ r ≤ t ≤ T ,

Er,z
[
B[r, t]

]
= Er,z

[ ∫
[r,t]

h(s, Zs)Bh(ds)
]

= Er,z
[
Bh[r, t] η(ZT )

]
= h(r, z)Ehr,z[Bh[r, t] ],

(46)

where we have used Theorem 57 in Chapter VI of Dellacherie & Meyer (1982) in the second
step.

With this notation,

Kh(ds) =
1

h(s, Zs)
K(ds) =

η(Zs)

βh(s, Zs)
ds

is a bounded and continuous additive functional of Zh, and the function

ψh(t, z, ξ) = ψ(z, h(t, z)ξ)

is of the form (7). Therefore, up to the time horizon T , we can define the (Zh,Kh, ψh)-
superprocess Xh = (Xh

t ,G(I),Phr,µ), e.g., via Theorem 1.1 in Dynkin (1991a). The (Z,K,ψ)-
superprocess X under Pr,µ is then defined as the law of

Xt(dz) :=
1

h(t, z)
Xh
t (dz) (47)
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under Phr,h.µ, where h.µ denotes the measure h(r, z)µ(dz). Using once again Theorem 57 in
Chapter VI of Dellacherie & Meyer (1982), one checks that the log-Laplace functionals of X are
indeed given by (20), (21).

Proof of the second part of Proposition 2.5. For A ∈ A(1) ∩ A1
T it is clear from (12) and (47)

that JA must be defined as the J-functional JAh for Xh, and this identification carries over to
all A ∈ A1

T by approximation. As above, one then checks that

v(r, z) := − logEr,δz [ e−JA ] = − logEhr,h(r,z)δz [ e
−JAh ] = −h(r, z) logEhr,δz [ e

−JAh ]

solves (23).
Conversely, whenA ∈ A1

T and ṽ is a nonnegative solution of (23), then ṽh(r, z) := h(r, z)ṽ(r, z)
solves

ṽh(r, z) = Ehr,z[Ah[r, T ] ]− Ehr,z
[ ∫ T

r
ψh(s, Zs, ṽ

h(s, Zs))Kh(ds)
]
. (48)

By (46), Ah belongs to the class A1
T for Zh, and so Proposition 2.2 implies that ṽh is the

unique finite and nonnegative solution of (48). But this equation is also solved by vh(r, z) =
h(r, z)v(r, z), which gives the uniqueness of solutions to the equation (23).

Now we turn toward generalizing the results from Section 3.2 to superprocesses with inho-
mogeneous, state-dependent branching mechanism as constructed in Proposition 2.5.

Proposition 3.7. Let X be the superprocess constructed in Proposition 2.5 and let JA be the
J-functional associated with A ∈ A1

T . Then

− logEr,δz [ e−JA−k〈η,XT 〉 ] ≤ Er,z[A[r, T ] ] +
h(r, z)k

(1 + c−βT (T − r)kβ)1/β
(49)

and

− logEr,δz [ e−JA 1{XT=0} ] ≤ Er,z[A[r, T ] ] +
cTh(r, z)

(T − r)1/β
, (50)

where cT is the constant from (18).

Proof. With the notation introduced above, we have

− logEr,δz [ e−JA−k〈η,XT 〉 ] = − logEhr,h(r,z)δz [ e
−JAh−k〈1,X

h
T 〉 ] = h(r, z)vh(r, z),

where vh(r, z) solves

vh(r, z) = k + Ehr,z
[
Ah[r, T ]

]
− Ehr,z

[ ∫ T

r
ψh(t, Zt, v

h(t, Zt))Kh(dt)
]

= k + Ehr,z
[
Ah[r, T ]

]
− Ehr,z

[ ∫ T

r

1

β

(h(t, Zt)

η(Zt)

)β
vh(t, Zt)

1+β dt
]
.

(51)

By (18), h(t,Zt)η(Zt)
≥ 1

cT
. Applying Proposition 3.1 with L(dt) = 1

β (h(t,Zt)η(Zt)
)β and L̃(dt) := β−1c−βT dt

yields that

vh(r, z) ≤ ṽh(r, z) := − log Ẽr,δz [ e
−JAh−k〈1,X̃T 〉 ],
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where X̃ = (X̃t,G(I), P̃r,µ) is the superprocess with one-particle motion Zh, branching function

ψ̃(ξ) = ξ1+β, and branching functional L̃. Proposition 3.5 yields that

ṽh(r, z) ≤ Ehr,z
[
Ah[r, T ]

]
+

k

(1 + β−1c−βT β(T − r)kβ)1/β

=
1

h(r, z)
Er,z

[
A[r, T ]

]
+

k

(1 + c−βT (T − r)kβ)1/β

This proves (49). Sending k to infinity gives (50).

We also need a lower bound in case A = 0. To this end, we define

cr,T := sup
t∈[r,T ]

sup
z

h(t, z)

η(z)
. (52)

It follows from (18) that cr,T is finite for all r ∈ [0, T ] and from (19) that cr,T ↘ 1 as r ↑ T .

Lemma 3.8. Let X be the superprocess constructed in Proposition 2.5. Then

− logPr,δz [XT = 0 ] ≥ h(r, z)

cr,T (T − r)1/β
.

Proof. We have

− logPr,δz [XT = 0 ] = − lim
k↑∞

logEr,δz [ e−k〈η,XT 〉 ] = − lim
k↑∞

logEhr,h(r,z)δz [ e
−k〈1,Xh

T 〉 ]

= h(r, z) lim
k↑∞

vhk (r, z),

where vhk solves (51) for Ah = 0. Using h(t,Zt)
η(Zt)

≤ cr,T for r ≤ t ≤ T and applying Proposition 3.1

with L(dt) = β−1cβr,T dt and L̃(dt) = 1
β (h(t,Zt)η(Zt)

)β hence yields that

vhk (s, z) ≥ − log Ês,δz [ e−k〈1,X̂T 〉 ], r ≤ s ≤ T,

where X̂ = (X̂t,G(I), P̂s,µ) is the superprocess with one-particle motion Zh, branching function

ψ̂(ξ) = ξ1+β, and branching functional L. By (34),

− log Ẽs,δz [ e−k〈1,X̃T 〉 ] =
k

(1 + cβr,T (T − s)kβ)1/β
.

Taking s = r and sending k to infinity yields the assertion.

4 Proofs of the main results

4.1 Proof of Theorem 2.7

We start by making the following simple observation.

Lemma 4.1. For any admissible strategy that is not monotone, there exists another admissible
strategy that is monotone and has strictly lower cost.
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Proof. We may suppose without loss of generality that x0 > 0. Let x(·) be an admissible strategy
that is not monotone. Define y(t) := x0+

∫ t
0 ẋ(t)1{ẋ(t)<0} dt and τ := inf{t ≥ 0 | y(t) = 0}. Then

y is monotone, τ ≤ T , and x̃(t) := y(t ∧ τ) is an admissible strategy with strictly lower cost
than x(·).

Let X be the superprocess constructed in Proposition 2.5 and recall the definitions (25) and
(26) for v∞ and x∗. In addition to (52) we define

cr,T := inf
t∈[r,T ]

inf
z

h(t, z)

η(z)
and Cr,T :=

cr,T
cr,T

. (53)

It follows from (18) that Cr,T is strictly positive for all r ∈ [0, T ] and from (19) that Cr,T → 1
as r ↑ T . Proposition 3.7, and hence Theorem 3.4, play a crucial role in proving the following
key lemma.

Lemma 4.2. For A ∈ A1
T satisfying (24), the process

x∗(t) = x0 exp
(
−
∫ t

0

(v∞(s, Zs)

η(Zs)

)β
ds
)
, 0 ≤ t < T,

is an admissible strategy with finite cost: x∗(t)→ 0 as t ↑ T and E0,z[
∫ T
0 |ẋ

∗(t)|pη(Zt) dt ] <∞.

Proof. By Lemma 3.8 and (53),

v∞(r, z) ≥ − logPr,δz [XT = 0 ] ≥ h(r, z)

cr,T (T − r)1/β
≥

Cr,T η(z)

(T − r)1/β
. (54)

We thus get the upper bound

x∗(t) ≤ x0 exp
(
− Cβr,T

∫ t

r

1

T − s
ds
)

= x0

(T − t
T − r

)Cβr,T
, r ≤ t < T. (55)

In particular, we have x∗(t)→ 0 as t ↑ T .
Next, recalling the identity p = 1+β

β , the estimate (55) implies that for a.e. t ≥ r,

|ẋ∗(t)|p =
(v∞(t, Zt)

η(Zt)

)1+β
x∗(t)

β+1
β ≤ c1

(v∞(t, Zt)

h(t, Zt)
(T − t)C

β
r,T /β

)1+β
,

where here and in the sequel ci, i ∈ N, denote constants depending on r, T , β, cT , z, and x0.
Using (50) and the identity (46), we obtain that(v∞(t, Zt)

h(t, Zt)
(T − t)C

β
r,T /β

)1+β
≤

(
Et,Zt [A[t, T ] ]

h(t, Zt)
(T − t)C

β
r,T /β + cT (T − t)

C
β
r,T

−1

β

)1+β

≤
(
Eht,Zt

[
Ah[t, T ]

]
(T − t)1/β + cT

)1+β
(T − t)

(1+β)(C
β
r,T

−1)

β

≤ c2

(
1 + Eht,Zt

[
Ah[t, T ]

]1+β
(T − t)(1+β)/β

)
(T − t)

(1+β)(C
β
r,T

−1)

β

= c2(T − t)−δ + c2E
h
t,Zt

[
Ah[t, T ]

]1+β
(T − t)

1+β
β
−δ
,
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where

δ := −
(1 + β)(Cβr,T − 1)

β
≥ 0.

Now we fix r so that δ < 1, which is possible since Cr,T → 1 as r ↑ T by (19). Then

|ẋ∗(t)|p ≤ c1
(v∞(t, Zt)

h(t, Zt)
(T − t)C

β
r,t/β

)1+β
≤ c1c2(T − t)−δ + c1c3E

h
t,Zt

[
Ah[t, T ]

]1+β
. (56)

We also need to estimate |ẋ∗(t)| for 0 ≤ t ≤ r. To this end, we will use the trivial bound
x∗(t) ≤ x0 to get as above that

|ẋ∗(t)|p ≤ c4
(v∞(t, Zt)

h(t, Zt)
(T − t)C

β
r,t/β

)1+β
≤ c5

(
1 + Eht,Zt

[
Ah[t, T ]

]1+β)
for 0 ≤ t ≤ r.

Putting everything together and using
∫ T
r (T − t)−δ dt < ∞, the fact that q = 1 + β, (18),

(46), Jensen’s inequality, the Markov property of Z, and once again (18) yields

E0,z

[ ∫ T

0
|ẋ∗(t)|pη(Zt) dt

]
≤ c6cTTη(z) + c5E0,z

[ ∫ r

0
η(Zt)E

h
t,Zt

[
Ah[t, T ]

]q
dt
]

+c1c3E0,z

[ ∫ T

r
η(Zt)E

h
t,Zt

[
Ah[t, T ]

]q
dt
]

≤ c7 + c8

∫ T

0
E0,z

[
η(Zt)E

h
t,Zt

[
Ah[t, T ]

]q ]
dt

≤ c7 + c8

∫ T

0
E0,z

[
η(Zt)h(t, Zt)

−qEt,Zt
[
A[t, T ]q

] ]
dt

≤ c7 + c9

∫ T

0
E0,z

[
η(Zt)

1−qA[t, T ]q
]
dt,

which is finite due to our assumption (24).

Remark 4.3. When η ≡ 1 we will also have Cr,T = 1. Hence (55) implies the bound (17).

For p ≥ 2, let us introduce the function

φp(ξ, ζ) := ξp − pζp−1ξ + (p− 1)ζp, ξ, ζ ≥ 0. (57)

Note that φp(ξ, ζ) ≥ 0 with equality if and only if ξ = ζ, because Young’s inequality gives

ξζp−1 ≤ 1

p
ξp +

p− 1

p
ζp for ξ, ζ ≥ 0. (58)

Proposition 4.4. For A ∈ A1
T satisfying (24), the following inequality holds for any monotone

admissible strategy x with finite cost,

E0,z

[ ∫ T

0
|ẋ(s)|pη(Zs) ds+

∫
[0,T ]
|x(s)|pA(ds)

]
≥ |x0|pv∞(0, z) + E0,z

[ ∫ T

0
η(Zt)φp

(
|ẋ(t)|, |x(t)|

(v∞(t, Zt)

η(Zt)

)1/(p−1))
dt

]
.

(59)

Moreover, there is equality in (59) when x = x∗.
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Before proving Proposition 4.4, let us show how it implies Theorem 2.7.

Proof of Theorem 2.7. Since φp(ξ, ζ) ≥ 0, Proposition 4.4 yields that for any monotone admis-
sible strategy x(·) with finite cost,

E0,z

[ ∫ T

0
|ẋ(s)|pη(Zs) ds+

∫
[0,T ]
|x(s)|pA(ds)

]
≥ |x0|pv∞(0, z). (60)

Since moreover φp(ξ, ζ) = 0 if and only if ξ = ζ, equality holds in (60) if and only if there is
equality in (59) and

|ẋ(t)| = |x(t)|
(v∞(t, Zt)

η(Zt)

)1/(p−1)
= |x(t)|

(v∞(t, Zt)

η(Zt)

)β
for a.e. t, P0,z-a.s.

By the monotonicity of x the latter condition holds if and only if x = x∗. Moreover, x∗ is an
admissible strategy with finite cost by Lemma 4.2 and satisfies equality in (60).

Proof of Proposition 4.4. For k ∈ N, we introduce the functions

vk(r, z) = − logEr,δz [ e−JA−k〈1,XT 〉 ]. (61)

Then vk ↗ v∞ and vk uniquely solves

vk(r, z) = k + Er,z[A[r, T ] ]− Er,z
[ ∫ T

r
vk(s, Zs)

1+β 1

βη(Zs)β
ds
]
.

We now fix a monotone admissible strategy x(·) with finite cost. We may assume without
loss of generality that x0 ≥ 0 and hence also x(t) ≥ 0 for all t. We define

Ckt :=

∫ t

0
|ẋ(s)|pη(Zs) ds+

∫
[0,t)

x(s)pA(ds) + x(t)pvk(t, Zt). (62)

The first two terms on the right represent the cost accumulated by the strategy x over the time
interval [0, t). The rightmost term approximates our guess for the minimal cost incurred over
the time interval [t, T ] when starting at time t with the remainder x(t).

We next define Mk as a rightcontinuous version of the martingale

Mk
t := k + E0,z

[
A[0, T ]−

∫ T

0
vk(s, Zs)

1+β 1

βη(Zs)β
ds
∣∣∣Ft ]. (63)

Such a version exists when we replace the filtration (F [0, t])t≥0 by its P0,z-augmentation (F [r, t])t≥0
so that the resulting filtered probability space (Ω, (F [0, t]), P0,z) satisfies the usual conditions;
see Section A.1.1 in Dynkin (1994).

By the Markov property of Z, we have

vk(t, Zt) = Mk
t −A[0, t) +

∫ t

0
vk(s, Zs)

1+β 1

βη(Zs)β
ds. (64)

In particular,
Vt := vk(t, Zt)−A{t} (65)

is rightcontinuous and

Ckt =

∫ t

0
|ẋ(s)|pη(Zs) ds+

∫
[0,t]

x(s)pA(ds) + x(t)pVt (66)
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is rightcontinuous as well.
Our next goal is to investigate the limit of Ckt as t ↑ T . To this end, we define N as a

rightcontinuous version of the martingale

Nt = k + E0,z[A[0, T ] | Ft ].

We have Vt ≤ k + Et,Zt [A[t, T ] ] for each t P0,z-a.s. and hence, by right continuity, Vt ≤ Nt for
all t P0,z-a.s. The martingale convergence theorem implies that supt≤T Nt <∞ P0,z-a.s. Hence
also supt≤T Vt < ∞ P0,z-a.s. It thus follows from x(t) → 0 that x(t)pVt → 0 P0,z-a.s. as t ↑ T .
Moreover, we have

∫
[0,T ) x(s)A(ds) =

∫
[0,T ] x(s)A(ds) because x(T ) = 0. Therefore,

Ckt −→ CkT :=

∫ T

0
|ẋ(s)|pη(Zs) ds+

∫
[0,T ]

x(s)pA(ds) P0,z-a.s. as t ↑ T . (67)

Next, applying Itô’s formula to (66) and using (64) and (65) yields

dCkt = |ẋ(t)|pη(Zt) dt+ x(t)pA(dt) + px(t)p−1ẋ(t)Vt dt+ x(t)p dVt

=
(
|ẋ(t)|pη(Zt) + px(t)p−1ẋ(t)Vt + x(t)pV 1+β

t

1

βη(Zt)β

)
dt+ x(t)p dMk

t

= η(Zt)φp

(
|ẋ(t)|, x(t)

(vk(t, Zt)
η(Zt)

)1/(p−1))
dt+ x(t)p dMk

t ,

where, in the last step, we have used the relation 1+β = p/(p−1) and the fact that Vt = vk(t, Zt)
for a.e. t.

Using (67), we obtain in the limit t ↑ T that P0,z-a.s.∫ T

0
|ẋ(s)|p ds+

∫
[0,T ]

x(s)pA(ds)− xp0vk(0, z)

= CkT − Ck0

=

∫ T

0
η(Zt)φp

(
|ẋ(t)|, x(t)

(vk(t, Zt)
η(Zt)

)1/(p−1))
dt+

∫ T

0
x(t)p dMk

t .

Taking expectations and using Ck0 = xp0vk(0, z) yields

E0,z

[ ∫ T

0
|ẋ(s)|pη(Zs) ds+

∫
[0,T ]

x(s)pA(ds)
]

= xp0vk(0, z) + E0,z

[ ∫ T

0
η(Zt)φp

(
|ẋ(t)|, x(t)

(vk(t, Zt)
η(Zt)

)1/(p−1))
dt

]
.

(68)

Fatou’s lemma and the facts that φp ≥ 0 and vk ↑ v∞ thus yield the first part of the assertion
when passing to the limit k ↑ ∞ on the right-hand side of this identity.

Now we show that we may retain equality in (68) when passing to the limit k ↑ ∞ and
taking x = x∗. By (58) and dominated convergence, this will hold when

E0,z

[ ∫ T

0
η(Zt)

(
x∗(t)

(v∞(t, Zt)

η(Zt)

)1/(p−1))p
dt

]
<∞.

But the latter expectation is easily seen to be equal to E0,z[
∫ T
0 |ẋ

∗(t)|pη(Zt) dt ], which in turn
is finite by Lemma 4.2. This proves the second part of the assertion.
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4.2 Proof of Theorem 2.8

Lemma 4.5. If % is as in Theorem 2.8, then v%(t, Zt)→ %(ZT ) in P0,z-probability as t ↑ T .

Proof. First, using the Markov property of Z,

v%(t, Zt) ≤ Et,Zt [A[t, T ] + %(ZT ) ] = E0,z

[
A[t, T ]

∣∣F [0, t]
]

+ Et,Zt [ %(ZT ) ]. (69)

By (28), the second term on the right converges P0,z-a.s. to ρ(ZT ). As for the first term on the
right, we first note that A[t, T ]→ 0 in L1(P0,z) due to our assumption A{T} = 0 P0,z-a.s., the
fact that E0,z[A[0, T ] ] < ∞, and dominated convergence. Therefore, E0,z[A[t, T ] | F [0, t] ] →
0 in P0,z-probability, and so the entire right-hand side of (69) converges to ρ(ZT ) in P0,z-
probability.

We also need a lower bound on v%(t, Zt). Using the results and notations from Section 3.3,
we have

v%(t, Zt) = − logEt,δZt [ e
−JA−〈%,XT 〉 ] ≥ − logEt,δZt [ e

−〈%,XT 〉 ]

= − logEht,h(t,Zt)δZt [ e
−〈%/η,Xh

T 〉 ] = h(t, Zt)v
h(t, Zt),

(70)

where vh solves

vh(r, y) = Ehr,y

[ ρ(ZT )

η(ZT )

]
− Ehr,y

[ ∫ T

r

1

β

(h(t, Zt)

η(Zt)

)β
vh(t, Zt)

1+β dt
]
.

By (18), we have h(t, Zt)/η(Zt) ≤ cT . Let X̃ = (X̃t,G(I), P̃r,µ) be the superprocess with one-

particle motion Zh, K(ds) =
cβT
β ds, and ψ(ξ) = ξ1+β. Due to the fact that Ehr,y[

ρ(ZT )
η(ZT )

] =
1

h(r,y)Er,y[ ρ(ZT ) ] < ∞ for all (r, y) by (18) and the first condition in (28), we may apply
Proposition 3.1, which then yields that

vh% (r, y) ≥ − log Ẽr,δy [ e−〈%/η,X̃T 〉 ].

Since X̃ has a homogeneous branching mechanism, we may apply the lower bound from (35) to
get

− log Ẽr,δy [ e−〈%/η,X̃T 〉 ] ≥ Ehr,y

[ ρ(ZT )
η(ZT )

(1 + cβT (T − r)
(ρ(ZT )
η(ZT )

)β
)1/β ]

=
1

h(r, y)
Er,y

[
ρ(ZT )

(1 + cβT (T − r)
(ρ(ZT )
η(ZT )

)β
)1/β ]

≥ Er,y[ %(ZT ) ]

h(r, y)(1 + cβT c
β
% (T − r))1/β

,

where we have used the first condition from (28) in the third step. Combining the preceding
inequality with (70) yields

lim inf
t↑T

v%(t, Zt) ≥ lim inf
t↑T

Et,Zt [ %(ZT ) ]

(1 + cβT c
β
% (T − r))1/β

= %(ZT ) P0,z-a.s.

and hence the assertion.
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Proof of Theorem 2.8. Just as in Lemma 4.1 one first notes that we can restrict our attention
to monotone relaxed strategies x(·) with x(T ) ≥ 0 for x0 ≥ 0 and x(T ) ≤ 0 for x0 ≤ 0.

We may assume x0 ≥ 0 without loss of generality. For a given monotone relaxed strategy
x(·) with x(T ) ≥ 0 we define

Ct :=

∫ t

0
|ẋ(s)|pη(Zs) ds+

∫
[0,t)

x(s)pA(ds) + x(t)pv%(t, Zt).

It follows from our assumptions A{T} = 0 and Lemma 4.5 that in P0,z-probability

Ct −→ CT =

∫ T

0
|ẋ(s)|pη(Zs) ds+

∫
[0,T ]

x(s)pA(ds) + x(t)p%(ZT ).

The function v% solves

v%(r, z) = Er,z
[
A[r, T ] + %(ZT )

]
− Er,z

[ ∫ T

r
v%(s, Zs)

1+β 1

βη(Zs)β
ds
]
.

Thus, arguing as in the proof of Proposition 4.4, we find that

E0,z

[ ∫ T

0
|ẋ(s)|pη(Zs) ds+

∫
[0,T ]

x(s)pA(ds) + %(ZT )x(T )p
]

= xp0v%(0, z) + E0,z

[ ∫ T

0
η(Zt)φp

(
|ẋ(t)|, x(t)

(v%(t, Zt)
η(Zt)

)1/(p−1))
dt

]
.

In contrast to the proof of Proposition 4.4, note that here is no need for a limiting procedure
since, unlike v∞, the function v% has no singularity.

Now we can proceed as in the proof of Theorem 2.7 to get the assertion.
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