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Abstract. We consider random binary trees that appear as the output of

certain standard algorithms for sorting and searching if the input is random.
We introduce the subtree size metric on search trees and show that the resulting

metric spaces converge with probability 1. This is then used to obtain almost

sure convergence for various tree functionals, together with representations of
the respective limit random variables as functions of the limit tree.

1. Introduction

A sequential algorithm transforms an input sequence t1, t2, . . . into an output se-
quence x1, x2, . . . where, for all n ∈ N, xn+1 depends on xn and tn+1 only. Typically,
the output variables are elements of some combinatorial family F, each x ∈ F has a
size parameter φ(x) ∈ N, and xn is an element of the set Fn := {x ∈ F : φ(x) = n}
of objects of size n. In the probabilistic analysis of such algorithms one starts with
a stochastic model for the input sequence and one is interested in certain aspects
of the output sequence. The standard input model assumes that the ti’s are the
values of a sequence η1, η2, . . . of independent and identically distributed random
variables. For random input of this type the output sequence then is the path of a
Markov chain X = (Xn)n∈N that is adapted to the family F in the sense that

(1) P (Xn ∈ Fn) = 1 for all n ∈ N.
Clearly, X is highly transient—no state can be visited twice.

The special case we are interested in, and which we will use to demonstrate an
approach that is generally applicable in the situation described above, is that of
binary search trees and two standard algorithms, known by their acronyms BST
(binary search tree) and DST (digital search tree). These are discussed in detail in
the many excellent texts in this area, for example in [Knu73], [Mah92] and [Drm09].
Various functionals of the search trees, such as the height [Dev86], the path length
[Rég89, Rös91], the node depth profile [JH01, CDJH01, CR04, CKMR05, FHN06,
DJN08], the subtree size profile [Fuc08, DG10], the Wiener index [Nei02], and
the silhouette [Grü09] have been studied, with methods spanning the wide range
from generatingfunctionology to martingale methods to contraction arguments on
metric spaces of probability distributions (neither of these lists is complete). Many
of the results are asymptotic in nature, where the convergence obtained as n→∞
may refer to the distributions or to the random variables themselves. As far as
strong limit theorems are concerned, a significant step towards a unifying approach
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was made in the recent paper [EGW12], where methods from discrete potential
theory were used to obtain limit results on the level of the combinatorial structures
themselves: In a suitable extension of the state space F, the random variables Xn

converge almost surely as n → ∞, and the limit generates the tail σ-field of the
Markov chain. The results in [EGW12] cover a wide variety of structures, search
trees are a special case. It should also be mentioned here that the use of boundary
theory has a venerable tradition in connection with random walks; see [KV83]
and [Woe00].

Our aims in the present paper are the following. First, we use the algorithmic
background for a direct proof of the convergence of the BST variables Xn, as
n → ∞, to a limit object X∞, and we obtain a representation of X∞ in terms of
the input sequence (ηi)i∈N. Second, we introduce the subtree size metric on finite
binary trees. This leads to a reinterpretation of the above convergence in terms of
metric trees. We also introduce a family of weighted variants of this metric, with
parameter ρ ≥ 1, and then identify the critical value ρ0 with the property that
the metric trees converge for ρ < ρ0 and do not converge if ρ > ρ0. The value
ρ0 turns out to also be the threshold for compactness of the limit tree. Third,
we use convergence at the tree level to (re)obtain strong limit theorems for three
tree functionals—the path length, the Wiener index, and a metric version of the
silhouette.

These topics are treated in the next three sections, where each has its own
introductory remarks.

2. Binary search trees

We first introduce some notation, mostly specific to binary trees, then discuss
the two search algorithms and the associated Markov chains, and finally recall the
results from [EGW12] related to these structures, including an alternative proof of
the main limit theorem.

2.1. Some notation. We write L(X) for the distribution of a random variable
X and L(X|Y = k), L(X|Y ), L(X|F) for the various versions of the conditional
distribution of X given (the value of) a random variable Y or a σ-field F . Further,
δc is the one-point mass at c, 1A is the indicator function of the set A (so that
1A(c) = δc(A)), Bin(n, p) denotes the binomial distribution with parameters n ∈ N
and p ∈ (0, 1), Beta(α, β) is the beta distribution with parameters α, β > 0, and
unif(0, 1) = Beta(1, 1) is the uniform distribution on the unit interval. We also
write unif(M) = (#M)−1

∑
c∈M δc for the uniform distribution on a finite set M .

With N0 = {0, 1, 2, . . .} let

Vk := {0, 1}k, V :=
⊔
k∈N0

Vk, ∂V := {0, 1}∞

be the set of 0-1 sequences of length k, k ∈ N0, the set of all finite 0-1 sequences,
and the set of all infinite 0-1 sequences respectively. The set V0 has ∅, the ‘empty
sequence’ as its only element, and |u| is the length of u ∈ V, i.e. |u| = k if u ∈ Vk.
For each node u = (u1, . . . , uk) ∈ V we use

u0 := (u1, . . . , uk, 0),

u1 := (u1, . . . , uk, 1),

ū := (u1, . . . , uk−1), if k ≥ 1,
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to denote its left and right direct descendant (child) and its direct ancestor (parent).
We write u ≤ v for u = (u1, . . . , uk) ∈ V, v = (v1, . . . , vl) ∈ V if k ≤ l and uj = vj for
j = 1, . . . , k, i.e. if u is a prefix of v; the extension to v ∈ ∂V is obvious. The prefix
order is a partial order only, but there exists a unique minimum u ∧ v to any two
nodes u, v ∈ V, their last common ancestor; again, this can be extended to elements
of ∂V. Another ordering on V can be obtained via the function β : V→ [0, 1],

(2) β(u) :=
1

2
+

k∑
j=1

2uj − 1

2j+1
, u ∈ V.

This will be useful in various proofs, and also in connection with illustrations.
By a binary tree we mean a subset x of the set V of nodes that is prefix stable

in the sense that u ∈ x and v ≤ u implies that v ∈ x. Informally, we regard the
components u1, . . . , uk of u as a routing instruction leading to the vertex u, where
0 means a move to the left, 1 a move to the right, and the empty sequence is the
root node. The edges of the tree x are the pairs (ū, u), u ∈ x, u 6= ∅. A node is
external to a tree if it is not one of its elements but its direct ancestor is; we write
∂x := {u ∈ V : ū ∈ x, u /∈ x} for the set of external nodes of x. Finally,

(3) σ(x, u) := #{v ∈ x : u ≤ v}

is the size of the subtree of x rooted at u (or the number of descendants of u in x,
including u).

Let B denote the (countable) set of finite binary trees, Bn := {x ∈ B : #x = n}
those of size (number of nodes) n. The single element of B1 is {∅}, the tree that
consists of the root node only.

2.2. Search algorithms and Markov chains. Let (ti)i∈N be a sequence of pair-
wise distinct real numbers. The BST (binary search tree) algorithm stores these
sequentially into labelled binary trees (xn, Ln), n ∈ N, with xn ∈ Bn and Ln :
xn → {t1, . . . , tn}. For n = 1 we have x1 = {∅} and L1(∅) = t1. Given (xn, Ln), we
construct (xn+1, Ln+1) as follows: Starting at the root node we compare the next
input value tn+1 to the value Ln(u) attached to the node u under consideration and
move to u0 if tn+1 < Ln(u) and to u1 otherwise, until an ‘empty’ node u (necessar-
ily an external node of xn) is found. Then xn+1 := xn ∪ {u} and Ln+1(u) := tn+1,
Ln+1(v) := Ln(v) for all v ∈ xn.

Now let (ηi)i∈N be a sequence of independent random variables with L(ηi) =
unif(0, 1) for all i ∈ N and let Xn be the random binary tree associated with the
first n of these. By construction, the label functions Ln are monotone with respect
to the β-order of the tree nodes, i.e. with β as in (2),

(4) β(u) ≤ β(v) ⇒ Ln(u) ≤ Ln(v), for all n with {u, v} ⊂ Xn.

In particular, if we number the external nodes of Xn from the left to the right,
then the number of the node that receives ηn+1 is the rank of this value among
{η1, . . . , ηn}, hence uniformly distributed on {1, . . . , n + 1}. This shows that the
(deterministic) BST algorithm, when applied to the (random) input (ηi)i∈N, results
in a Markov chain (Xn)n∈N with state space B, start at X1 ≡ {∅}, and transition
probabilities

(5) Q(x, x ∪ {u}) =

{
1/(1 + #x), if u ∈ ∂x,
0, otherwise.
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In words: We obtain Xn+1 by choosing one of the n + 1 external nodes of Xn

uniformly at random and joining it to the tree. We refer to this construction as the
BST chain.

For the DST (digital search tree) algorithm the input values are infinite 0-1
sequences, i.e. elements of ∂V. Given t1, t2, . . . ∈ ∂V we again obtain a sequence
x1, x2, . . . of labelled binary trees, but now we use the components tn+1,k, k ∈ N,
of the next input value tn+1 as a routing instruction through xn, moving to u0
from an occupied node u ∈ Vk if tn+1,k+1 = 0 and to u1 otherwise. As in the
BST case we assume that the ti’s are the values of a sequence of independent and
identically distributed random variables ηi, where the distribution of the ηi’s is now
a probability measure µ on the measurable space (∂V,B(∂V)), with B(∂V) the σ-
field generated by the projections on the sequence elements, ∂V 3 t = (tk)k∈N 7→ ti,
i ∈ N. This σ-field is also generated by the sets

(6) Au :=
{
v ∈ ∂V : v ≥ u

}
, u ∈ V.

It is easy to check that the intersection of two such sets is either empty or again of
this form. This implies that µ is completely specified by its values µ(Au), u ∈ V,
and the DST analogue of (5) then is

(7) Q(x, x ∪ {u}) =

{
µ(Au), if u ∈ ∂x,
0, otherwise.

By the DST chain with driving distribution µ we mean a Markov chain (Xn)n∈N
with state space B, start at {∅} and transition mechanism given by (7).

2.3. Doob-Martin compactification. We refer the reader to Doob’s seminal pa-
per [Doo59] and to the recent textbook [Woe09] for the main results of, background
on, and further references for the boundary theory for transient Markov chains.
For the BST chain the Doob-Martin compactification has recently been obtained
in [EGW12]: It can be described as the closure B̄ of the embedding of B into the
compact space [0, 1]V, endowed with pointwise convergence, that is given by the
standardized subtree size functional,

B 3 x 7→
(
V 3 u 7→ σ(x, u)

#x

)
,

with σ as defined in (3). Further, the elements of the boundary ∂B may be rep-
resented by probability measures µ on (∂V,B(∂V)), with convergence xn → µ of a
sequence (xn)n∈N in B meaning that

µ(Au) = lim
n→∞

σ(xn, u)

#xn
for all u ∈ V,

and µn(Au) → µ(Au) for all u ∈ V if we have a sequence (µn)n∈N of elements of
∂B instead.

The general theory implies that Xn converges almost surely to a limit X∞ with
values in ∂B; [EGW12] also contains a description of L(X∞). The proof given
there does not make use of the algorithmic background but takes the transition
mechanism (5) as its starting point. We now show that this background leads to
a direct proof of Xn → X∞, and to a representation of X∞ in terms of the input
sequence.



METRIC SEARCH TREES 5

We need some more notation. On V we define a metric dV by

(8) dV(u, v) := 2−|u∧v| − 1

2

(
2−|u| + 2−|v|

)
, u, v ∈ V.

On V itself this gives the discrete topology, and the completion of V with respect
to dV leads to V̄ := V ∪ ∂V, a compact and separable metric space. This is also
the ends compactification if we regard V as the complete rooted binary tree. We
extend the Au’s to V̄ by

Āu := {v ∈ V̄ : v ≥ u}, u ∈ V.

Because of

Āu := {v ∈ V̄ : dV(u, v) < 2−|u|} = {v ∈ V̄ : dV(u, v) ≤ 2−|u|−1}

these sets are open and closed. Further,

{u} = Āu \ (Āu0 ∪ Āu1), Āu ∩ Āv =


Āu, if u ≤ v,
Āv, if u ≥ v,
∅, otherwise,

hence {Āu : u ∈ V} is a π-system that generates B(V̄). Together these facts imply
that weak convergence of probability measures µn to a probability measure µ on
(V̄,B(V̄)) is equivalent to

(9) lim
n→∞

µn(Āu) = µ(Āu) for all u ∈ V.

In view of
1

n
σ(Xn, u) = unif(Xn)(Āu)

and X∞(V) = 0 convergence in the Doob-Martin topology is therefore equivalent
to the weak convergence of probability measures on the metric space (V̄, dV), if we
represent finite subsets M of V by the uniform distribution unif(M) on (V̄,B(V̄)).

Moreover, any sequence (µn)n∈N of probability measures on (V̄,B(V̄)) is tight, as
V̄ is compact, and therefore has a limit point by Prohorov’s theorem [Bil68, p.37].
If (µn(Āu))n∈N is a convergent sequence for each u ∈ V, then there is only one such
limit point, which means that µn converges weakly to some probability measure µ
and that (9) holds. Finally, let

(10) τ(u) := inf{n ∈ N : Xn 3 u}, u ∈ V,

be the time that the node u becomes an element of the BST sequence. It is easy
to see that the τ(u)’s are finite with probability 1.

Theorem 1. Let (Xn)n∈N be the sequence of binary trees generated by the BST
algorithm with input a sequence (ηi)i∈N of independent and identically distributed
random variables with L(η1) = unif(0, 1).

(a) With probability 1 the sequence unif(Xn) converges weakly to a random proba-
bility measure X∞ on (∂V,B(∂V)) as n→∞.

(b) For each u ∈ V, u 6= ∅, with i := τ(u)− 1, τ as in (10), and

0 =: η(i:0) < η(i:1) < · · · < η(i:i) < η(i:i+1) := 1

the augmented order statistics associated with η1, . . . , ηi, we have

X∞(Au) = η(i:j+1) − η(i:j) with η(i:j) < ηi+1 < η(i:j+1).
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(c) The random variables

ξu :=
X∞(Au0)

X∞(Au)
, u ∈ V,

are independent, and L(ξu) = unif(0, 1) for all u ∈ V.

Proof. Let u, τ(u), i and η(i:j), j = 0, . . . , i + 1, be as in part (b) of the theorem.
The order property (4) of the labeled binary search trees implies that for a node
v with label ηk, k > i, the relation v ≥ u is equivalent to η(i:j) < ηk < η(i:j+1).
Hence, by the law of large numbers,

lim
n→∞

unif(Xn)(Āu) = lim
n→∞

#{v ∈ Xn : v ≥ u}
n

= lim
n→∞

#{i < k ≤ n : ηk ∈ (η(i:j), η(i:j+1))}
n

= η(i:j+1) − η(i:j)

with probability 1 for every u ∈ V. In view of

{u} = {v ∈ V̄ : d(u, v) < 2−|u|−1} for all u ∈ V

the one-point sets with elements from V are open in the topology on V̄. As unif(Xn)
assigns at most the value 1/n to such a set it follows with the portmanteau theo-
rem [Bil68, p.11] that any limit point of this sequence is concentrated on ∂V. Parts
(a) and (b) of the theorem now follow with the above general remarks on weak
convergence of probability measures on (V̄,B(V̄)).

For the proof of (c) we use the following well-known fact: The conditional dis-
tribution of ηi+1, given η1, . . . , ηi and given that the value lands in an interval
I = (η(i:j), η(i:j+1)) of the augmented order statistics, is the uniform distribution on
I, which implies that unif(0, 1) is the distribution of the normalized distance ξu to
the left endpoint of I. For different η-values these relative insertion positions are
independent, hence ξu, u ∈ V, are independent and uniformly distributed on the
unit interval. �

We note the following consequence of the representation in part (c) of the theo-
rem: For a fixed u ∈ V let

∅ = u(0) < u(1) < · · · < u(k) = u

with |u(j)| = j for j = 0, . . . , k be the path that connects u to the root node. We
then have

(11) X∞(Au) =

k−1∏
j=0

ξ̃u(j), with ξ̃u(j) :=

{
ξu(j), if u(j + 1) = u(j)0,

1− ξu(j), if u(j + 1) = u(j)1.

Note that the factors ξ̃u(j), j = 0, . . . , k−1, are independent and that they all have
distribution unif(0, 1).

Theorem 1 confirms the view expressed in [Woe09, pp.191 and 218] that in spe-
cific cases embeddings (or boundaries) can generally be obtained directly on using
the then available additional structure; here this turns out to be the algorithmic
representation of the Markov chain. However, there are two additional benefits
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of the general theory: First, because of the space-time property (1) the limit X∞
generates the tail σ-field

T :=

∞⋂
n=1

σ({Xm : m ≥ n})

associated with the sequence (Xn)n∈N. This may serve as a starting point for
the unification of strong limit theorems for functionals (Yn)n∈N, Yn = Ψ(Xn) of the
discrete structures: If Yn converges to Y∞ in a ‘reasonable’ space, then the limit Y∞,
which is T -measurable, must be a function of X∞ (see e.g. [Kal97, Lemma 1.13]).
The second general result is extremely useful in the context of the calculations
that arise in specific applications of the theory: The conditional distribution of
the chain (Xn)n∈N given the value of X∞ is again a Markov chain, where the new
transition probabilities can be obtained from the limit value and the old transition
probabilities by a procedure that is known as Doob’s h-transform. In the present
situation it turns out that the conditional distribution of the BST chain, given
X∞ = µ, is the same as that of the DST chain driven by µ. We refer the reader
to [EGW12] for details; the last statement appears there only for a specific µ,
but the generalization to an arbitrary probability measure µ in the boundary is
straightforward. Roughly, the embedded jump chains at the individual nodes are
Pólya urns, for these the boundary has been obtained in [BK64], and from the
general construction of the Doob-Martin boundary it is clear that the outcome is
unaffected by the step from a Markov chain to its embedded jump chain. We collect
some consequences in the following proposition, where

(12) Fn := σ(X1, . . . , Xn), n ∈ N,
are the elements of the natural filtration of the BST chain.

Proposition 2. With the notation and assumptions as in Theorem 1,

(13) L
(
σ(Xn, u0)

∣∣σ(Xn, u) = k, ξu = p
)

= Bin(k − 1, p) if k > 0,

and, for all i, j ∈ N0,

(14) L
(
ξu
∣∣σ(Xn, u0) = i, σ(Xn, u1) = j

)
= Beta(i+ 1, j + 1).

Further, the variables (ξu)u∈V are conditionally independent given Fn.

3. Metric aspects

All trees in this paper are subgraphs of the complete binary tree, which has V
as its set of nodes and {(ū, u) : u 6= ∅} as its set of edges; in particular, our trees
are specified by their node sets x. In a tree metric d the distance of any two nodes
u, v is the sum of the distances between successive nodes on the unique path from
u to v, which means that such a metric is given by its values d(ū, u), u ∈ x, u 6= ∅.
For example, the metric dV in Section 2.3 has dV(ū, u) = 2−|u|−1, and the canonical
tree distance dcan is given by dcan(ū, u) = 1. For our trees the prefix order further
leads to

(15) d(u, v) = d(u, ∅) + d(v, ∅)− 2d(u ∧ v, ∅) for all u, v ∈ x.
Metric trees may also be interpreted as graphs with edge weight, where the edge
(ū, u) receives the weight d(ū, u).

Our aim in this section is to rephrase the convergence of the BST sequence as a
convergence of metric trees, and to show that this view leads to convergence with
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respect to stronger topologies. The situation here is much simpler than for Aldous’
continuum random tree where the Gromov-Hausdorff convergence of equivalence
classes of metric trees is used; see [Eva08] and the references given there. In fact,
the search trees considered here have node sets that grow monotonically to the full
V, so we may define convergence of a sequence ((xn, dn))n∈N of metric binary trees
to (V, d∞) to mean that

(16) lim
n→∞

dn(u, v) = d∞(u, v) for all u, v ∈ V,

which of course is equivalent to limn→∞ dn(ū, u) = d∞(ū, u) for all u ∈ V, u 6= ∅.
Note that dV and dcan are both local metrics in the sense that d(u, v) does not
depend on the tree x as long as u, v ∈ x.

Motivated by the view in Section 2.3 of finite and infinite binary trees as proba-
bility measures µ on (V̄,B(V̄)) we now introduce the (relative) subtree size metric,
which assigns µ(Āu) to the distance of ū and u, i.e.

dx(ū, u) =
σ(x, u)

σ(x, ∅)
for all u ∈ x, u 6= ∅,

if x ∈ B, and

dµ(ū, u) = µ(Au) for all u ∈ V, u 6= ∅,
for the complete tree and a probability measure µ on (∂V,B(∂V)), where we assume
that µ(Au) > 0 for all u ∈ V. Again, there is an algorithmic motivation: In terms
of the BST mechanism the weight of an edge (ū, u) is the (relative) number of times
this edge has been traversed in the construction of the tree. These metrics depend
on their tree in a global manner.

With this terminology in place we may now rephrase the convergence in Theo-
rem 1 as the convergence in the sense of (16) of the finite metric trees (Xn, dXn)
to the infinite metric tree (V, dX∞), almost surely and as n→∞.

By construction the Doob-Martin compactification is the weakest topology that
allows for a continuous extension of the functions B 3 x 7→ σ(x, u)/σ(x, ∅), u ∈ V.
For the analysis of tree functionals stronger modes of convergence turn out to be
useful; for example, do we have uniform convergence in (16)? Also, subtree sizes
decrease along paths leading away from the root node, so we may consider a weight
factor for the distance of a node to its parent that depends on the depth of the node:
For all ρ ≥ 1, we define the weighted subtree size metric with weight parameter ρ
by

dx,ρ(ū, u) := ρ|u|dx(ū, u), dµ,ρ(ū, u) := ρ|u|dµ(ū, u),

in the finite and infinite case respectively. Of course, with ρ = 1 the subtree size
metric reappears.

Theorem 3. Let ρ0 = 1.26107 · · · be the smaller of the two roots of the equation
2e log(ρ) = ρ, ρ > 0. Let Xn, n ∈ N, and X∞ be as in Theorem 1.

(a) For ρ < ρ0, the metric space (V, dX∞,ρ) is compact with probability 1.

(b) For ρ > ρ0, the metric space (V, dX∞,ρ) has infinite diameter with probability 1.

(c) For ρ < ρ0, the metric spaces (Xn, dXn,ρ) converge uniformly to (V, dX∞,ρ) as
n→∞ in the sense of

(17) sup
u,v∈Xn

∣∣dXn,ρ(u, v)− dX∞,ρ(u, v)
∣∣ → 0 almost surely and in mean.
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(d) For ρ > ρ0, and with dXn,ρ(ū, u) := 0 for u /∈ Xn,

sup
u,v∈V

∣∣dXn,ρ(u, v)− dX∞,ρ(u, v)
∣∣ = ∞ with probability 1.

Proof. We embed the metric trees into the linear space L(0) of all functions f :
V \ {∅} → R via

x 7→ f :=
(
u 7→ dx(ū, u)

)
, x ∈ B;

probability measures µ on (V̄,B(V̄)) become elements of L(0) by identifying µ with
the function u 7→ µ(Au). In particular, we now write X∞(u) instead of X∞(Au).
For ρ ≥ 1 let L(ρ) be the set of all f ∈ L(0) with

‖f‖ρ :=

∞∑
k=1

ρk max
|u|=k

|f(u)| < ∞.

Clearly, this gives a family of nested separable Banach spaces, with

B ↪→ L(γ) ⊂ L(ρ) ⊂ L(0) for 1 ≤ ρ < γ.

We now show that, with the above identification,

E‖X∞‖ρ < ∞ if ρ < ρ0,(18)

P
(

sup
u∈V

ρ|u|X∞(u) =∞
)

= 1 if ρ > ρ0,(19)

and that, for ρ < ρ0 and as n→∞,

(20) ‖Xn −X∞‖ρ → 0 almost surely and in mean.

Clearly, (18) implies that X∞ ∈ L(ρ) with probability 1 if ρ < ρ0.
The basis for our proof of (18) and (19) is the connection of BST trees to branch-

ing random walks, a connection that has previously been used by several authors,
especially for the analysis of the height of search trees; see the survey [Dev98] and
the references given there. Let u(k, j), j = 1, . . . , 2k, be a numbering of the nodes
from Vk such that

β(u(k, 1)) < β(u(k, 2)) < · · · < β(u(k, 2k)),

with β as defined in (2). The key observation is that the variables

Yk,j := − logX∞(u(k, j)), j = 1, . . . , 2k,

are the positions of the members of the kth generation in a branching random walk
with offspring distribution δ2 and with

Z := δ− log ξ + δ− log(1−ξ), L(ξ) = unif(0, 1),

for the point process of the positions of the children relative to their parent. Big-
gins [Big77] obtained several general results for such processes that we now spe-
cialize to the present offspring distribution and point process of relative positions.
Let

m(θ) := E
(∫

e−θt Z(dt)
)

=
2

1 + θ
and

(21) m̃(a) := inf
{
eθam(θ) : θ ≥ 0

}
= 2ae1−a.

Note that

(22) m̃(a) = m(θ(a)) with θ(a) =
1

a
− 1,
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and that, by definition of ρ0,

(23) ρ < ρ0 ⇐⇒ m̃(log ρ) < 1.

Finally, let Z(k)(t) be the number of particles in generation k that are located to
the left of t.

Now suppose that ρ < ρ0. Let α := (ρ + ρ0)/2 and η := log(α). We adapt the
upper bound argument in [Big77] to our present needs: For all θ > 0 and C > 1,
with γ := log(C),

P
(
αk max
|u|=k

X∞(u) > C
)

= P
(

min
1≤j≤2k

Yk,j ≤ kη − γ
)

≤ EZ(k)

(
k
(
η − γ

k

))
≤ exp

(
k
(
η − γ

k

)
θ

)
m(θ)k

= C−θ
(
eηθm(θ)

)k
.

By (23), m̃(η) < 1. Choosing the optimal θ = θ(η), which with (22) is easily seen
to be greater than 1, leads to

E
(
αk max
|u|=k

X∞(u)
)
≤ 1 +

∫ ∞
1

P
(
αk max
|u|=k

X∞(u) > x
)
dx

≤ 1 + m̃(η)k
∫ ∞
1

x−θ(η) dx ≤ c,

with a finite constant c that does not depend on k. Hence

∞∑
k=1

ρk E
(

max
|u|=k

X∞(u)
)
≤ c

∞∑
k=1

(
ρ

α

)k
< ∞,

which in turn implies (18) by monotone convergence.
Suppose now that ρ > ρ0, so that m̃(η) > 1 by (23) for η := log ρ. By [Big77,

Theorem 2],

lim
k→∞

1

k
log
(
#{1 ≤ j ≤ 2k : Yk,j ≤ kη}

)
= log m̃(η) > 0

with probability 1. In particular, and again with probability 1,

∃ k0 ∀ k ≥ k0 ∃u ∈ Vk : − logX∞(u) ≤ k log ρ.

Clearly, this implies (19).
For the proof of (20) we first consider the random variables σ(Xn, u), n ∈ N, for

some fixed u ∈ V. We wish to relate these to E[X∞(u)|Fn], with Fn as in (12).
For this, we use the representation of X∞ in terms of (ξu)u∈V given in Section 2.3,
together with Proposition 2. We may assume that k := |u| > 0.

The representation (11), the conditional independence of the ξ̃-variables given
Fn, and the well known formula for the first moment of beta distributions together
lead to

E[X∞(u)|Fn] =

k−1∏
j=0

E[ξ̃u(j)|Fn] =

k−1∏
j=0

σ(Xn, u(j + 1)) + 1

σ(Xn, u(j)0) + σ(Xn, u(j)1) + 2
.
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In view of

σ(x, u0) + σ(x, u1) + 1 =

{
σ(x, u), if u ∈ x,
1, if u /∈ x,

the product telescopes to

(24) E[X∞(u)|Fn] =
σ(Xn, u) + 1

n+ 1
for all u ∈ Xn.

We now introduce

Zn : V→ R, u 7→ E[X∞(u)|Fn].

Then (Zn,Fn)n∈N is a vector-valued martingale. For ρ < ρ0 we have by part (a)
of the theorem that X∞ ∈ L(ρ) with probability 1 and that E‖X∞‖ρ <∞, hence
Zn → X∞ almost surely and in mean in L(ρ) by Proposition V-2-6 in [Nev75].

In our present representation of trees as functions on V we have

Xn(u) =

{
n+1
n Zn(u)− 1

n , if u ∈ Xn,

0, if u /∈ Xn,

which implies that 0 ≤ Xn ≤ (1 + n−1)Zn for all n ∈ N. As Xn → X∞ pointwise
with probability 1 by Theorem 1 we can now use a suitable version of the dominated
convergence theorem, such as given in [Kal97, Theorem 1.21], to obtain that Xn

converges to X∞ in L(ρ) as n→∞, again almost surely and in mean.
It remains to show that the tree statements in the theorem follow from the linear

space statements (18), (19), and (20).
For (a) we prove that the limiting metric space is totally bounded. From (18)

and the definition of the norm we obtain for any given ε > 0 a k = k(ε) ∈ N such
that

∞∑
j=k

ρj max
|u|=j

X∞(u) < ε,

which by the definition of the weighted subtree size metric means that all nodes v
with |v| ≥ k have a distance from their predecessor at level k that is less than ε. As
there are only finitely many nodes of level less than k this shows that the whole of
V̄ may be covered by a finite number of ε-balls. Of course, this argument is meant
to be applied to each element of a suitable set of probability 1 separately.

For (b) we simply note that (19) implies that, with probability 1,

sup
u∈V,u6=∅

dX∞,ρ(ū, u) =∞

if ρ > ρ0. This also gives (d).
Finally, for all u ∈ V, u 6= ∅,∣∣dXn,ρ(u, ∅)− dX∞,ρ(u, ∅)

∣∣ ≤ ∑
∅6=v≤u

∣∣dXn,ρ(v̄, v)− dX∞,ρ(v̄, v)
∣∣

≤
|u|∑
k=1

ρk max
|v|=k

∣∣Xn(v)−X∞(v)
∣∣

≤ ‖Xn −X∞‖ρ.

The upper bound does not depend on u, hence (c) follows on using (15). �
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We note that the convergence of metric trees considered in Theorem 3 implies the
convergence with respect to the Gromov-Hausdorff distance of the corresponding
equivalence classes of metric trees; see [BBI01, Section 7.3.3].

The subtree size metric also leads to a visualization of search trees: We use
the function β defined in (2) to map nodes to points in the unit interval, and
above the x-coordinate β(u) we draw a line parallel to the y-axis from dXn

(ū, ∅)
to dXn

(u, ∅). In order to obtain a visually more pleasing result we may add lines
that run parallel to the x-axis, connecting nodes with the same parent. In Figure 1
we have carried this out for the trees arising from two separate input sequences for
the BST algorithm, with the data obtained from alternating blocks of length 10
of digits in the decimal expansion of π − 3. The upper part refers to the odd, the
lower to the even numbered blocks. In both cases we have given the trees for n = 50
and n = 100, and with ρ = 1. Vertically, the trees are from the same distribution;
moving horizontally to the right, we have almost sure convergence.

4. Tree functionals

In this section we show how the above results can be used in connection with
the asymptotic analysis of tree functionals. Here is the recipe: We start with a
functional Yn = Ψn(Xn) of the trees, with (deterministic) functions Ψn on Bn
that have values in some separable Banach space (L, ‖ · ‖). We suspect that Yn
converges almost surely to some limit variable Y∞ as n → ∞. We know that if
this is the case then Y∞ = Ψ(X∞) for some Ψ defined on ∂B (as always, almost
surely). We don’t know what Ψ is, but if we manage to rewrite the Ψn’s in terms
of subtree sizes, then Theorem 1 may lead to an educated guess. On that basis
we next consider Φn(Xn) = E[Ψ(X∞)|Fn], assuming that E‖Ψ(X∞)‖ < ∞. This
gives an L-valued martingale. By the associated convergence theorem we then have
that Ỹn := Φn(Xn) converges to Y∞ almost surely and in mean. Finally, a simple

inspection of Φn−Ψn may reveal that Ỹn−Yn is asymptotically negligible—indeed,
if Yn converges to Y∞, then Ỹn − Yn must tend to 0.

In the first three subsections we work out the details of the above strategy for
path lengths, for a tree index and for an infinite dimensional tree functional. The
final subsection is a collection of remarks on other functionals and related tree
structures, indicating further applications of the method, but also its limitations.
The potential-theoretic approach can provide additional insight; for example, we
will relate a martingale introduced in connection with tree profiles to Doob’s h-
transform.

Throughout this section we abbreviate X∞(Au) to X∞(u),

4.1. Path length. The first tree functional we consider is the internal path length,

(25) IPL(x) :=
∑
u∈x
|u|, x ∈ B,

which may be rewritten as

(26) IPL(x) =
∑

u∈x,u 6=∅

σ(x, u) =
∑
u∈x

σ(x, u) − #x.

Let

H(0) := 0, H(n) :=

n∑
i=1

1

i
for all n ∈ N,
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Figure 1. The metric tree for the odd (upper part) and even
(lower part) π-data, for n = 50 (left) and n = 100 (right) respec-
tively; see text for details.
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be the harmonic numbers. It is well known that

lim
n→∞

(
H(n)− log n

)
= γ,

where γ ≈ 0.57722 is Euler’s constant. We need two auxiliary statements; we omit
the (easy) proofs.

Lemma 4. For all i, j ∈ N0,

Γ(i+ j + 2)

Γ(i+ 1)Γ(j + 1)

∫ 1

0

xi(1− x)j log(x) dx = H(i)−H(i+ j + 1).

For a random variable η with distribution Beta(i+ 1, j + 1) Lemma 4 leads to

(27) E
(
η log(η)

)
=

i+ 1

i+ j + 2

(
H(i+ 1)−H(i+ j + 2)

)
.

The next lemma is a summation by parts formula for binary trees.

Lemma 5. For any function ψ : V→ R,∑
u∈x

(
ψ(u)− ψ(u0)− ψ(u1)

)
= ψ(∅)−

∑
u∈∂x

ψ(u) for all x ∈ B.

Major parts of the following theorem are known; we will give details later in
order to be able to refer to the proof for a comparison of the methods used. Let
(Xn)n∈N be the BST chain and let X∞ be its limit, as in Theorem 3.

Theorem 6. Let C : (0, 1)→ R be defined by

C(s) := 1 + 2
(
s log(s) + (1− s) log(1− s)

)
.

(a) The limit

Y∞ :=
∑
u∈V

X∞(u)C

(
X∞(u0)

X∞(u)

)
exists almost surely and in quadratic mean.

(b) As n→∞,

(28)
1

n
IPL(Xn)− 2 log n → 2γ − 4 + Y∞,

almost surely and in quadratic mean.

Proof. From the representation ofX∞ given in Section 2.3 we know that the random
variables

ξu :=
X∞(u0)

X∞(u)
, u ∈ V,

are independent and uniformly distributed on the unit interval, and that X∞(u) is
a function of the ξv’s with v < u. In particular, for all nodes u, the two factors in
the sum appearing in the definition of Y∞ are independent. Let Gk be the σ-field
generated by the ξu’s with |u| ≤ k and put

Yk :=
∑

u∈V, |u|≤k

X∞(u)C

(
X∞(u0)

X∞(u)

)
, k ∈ N.

Then these properties lead to

E[Yk+1|Gk] = Yk + E

 ∑
|u|=k+1

X∞(u)C

(
X∞(u0)

X∞(u)

) ∣∣∣∣∣Gk

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= Yk +
∑
|u|=k+1

X∞(u)EC(ξu)

= Yk,

where we have used the fact that EC(ξu) = 0. Further, with the same arguments,

E
[
(Yk+1 − Yk)2

∣∣ Gk] = E


 ∑
|u|=k+1

X∞(u)C(ξu)

2 ∣∣∣∣∣Gk


=
∑
|u|=k+1

X∞(u)2EC(ξu)2,

so that

E(Yk+1 − Yk)2 =
∑
|u|=k+1

EX∞(u)2EC(ξu)2.

We also have κ := EC(ξu)2 <∞, and using (11) we get

EX∞(u)2 =
(
Eξ2∅)

k = 3−k,

so that

(29) E(Yk+1 − Yk)2 = 2k3−kκ for all k ∈ N.

Taken together these calculations show that (Yk,Gk)k∈N is an L2-bounded martin-
gale, and an appeal to the corresponding martingale limit theorem completes the
proof of (a). In particular, Y∞ is well defined and even has finite second moment.

For the proof of (b) let Zn := E[Y∞|Fn], n ∈ N, so that (Zn,Fn)n∈N is again a
martingale bounded in L2. Our plan is to show that Zn is sufficiently close to the
transformed internal path length that appears in (28).

Using again the stochastic structure of X∞ we are thus led to consider the
conditional expectations E[X∞(u)|Fn] and E[C(ξu)|Fn], u ∈ V and n ∈ N. From
Proposition 2 we know that, for all u ∈ Xn,

L(ξu|Fn) = Beta
(
σ(Xn, u0) + 1, σ(Xn, u1) + 1)

)
,

and that the ξu’s are conditionally independent given Fn. Hence Lemma 4 can be
applied, see also (27), resulting in

E[C(ξu)|Fn] = 1 +
2τ(Xn, u0) + 2τ(Xn, u1)

σ(Xn, u0) + σ(Xn, u1) + 2

− 2H
(
σ(Xn, u0) + σ(Xn, u1) + 2

)
,

(30)

where the function τ : B×V→ R is given by

τ(x, u) :=
(
σ(x, u) + 1

)
H
(
σ(x, u) + 1

)
.

For each fixed n ∈ N, almost sure convergence of E[Yk|Fn] to E[Y∞|Fn] as k →∞
follows from ∥∥E[Yk|Fn]− E[Y∞|Fn]

∥∥
2
≤
∥∥Yk − Y∞|∥∥2,

the upper bound in (29), and the Borel-Cantelli lemma. Together with the condi-
tional independence of X∞(u) and C(ξu) given Fn this leads to

(31) Zn =
∑
u∈V

E
[
X∞(u)

∣∣Fn]E[C(ξu)|Fn].
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From (30) we obtain E[C(ξu)|Fn] = 0 for u /∈ Xn, and, clearly,

(32) σ(Xn, u0) + σ(Xn, u1) + 1 = σ(Xn, u) for all u ∈ Xn.

Taken together, (24), (30), (31) and (32) lead to

Zn =
∑
u∈Xn

σ(Xn, u) + 1

n+ 1

(
1 +

2τ(Xn, u0) + 2τ(Xn, u1)

σ(Xn, u) + 1
− 2H

(
σ(Xn, u) + 1

))
,

which in turn gives

Zn =
1

n+ 1

(
IPL(Xn) + 2n

)
− 2

n+ 1

∑
u∈Xn

(
τ(Xn, u)− τ(Xn, u0)− τ(Xn, u1)

)
.

Lemma 5 can be applied to the second sum, and the assertion finally follows from
τ(Xn, ∅) = 2(n+ 1)H(n+ 1) and τ(Xn, u) = 1 for u ∈ ∂Xn. �

Almost sure convergence of the standardized internal path length for the BST
sequence has been obtained in [Rég89], and convergence in distribution, together
with a fixed point relation for the limit distribution, in [Rös91]. Our method
may been seen as an amalgamation of Régnier’s martingale approach and Rösler’s
approach, where the latter has come to be known as the contraction method in
the analysis of algorithms: We obtain a strong limit, but we do not need to ‘find
the martingale’ (a task familiar to many an applied probabilist). The approach
suggested in the present paper, to look at convergence of the full objects via a
suitable completion of the state space of the underlying combinatorial Markov chain,
leads to a representation of the almost sure limit. This gives the martingale by
projection via conditional expectations, and from the representation one can also
read off a fixed point relation for the distribution of the limit.

4.2. The Wiener index. The canonical graph distance dcan(u, v) of any two nodes
u and v in a finite connected graph G with node set V is the minimum length of a
path (sequence of edges) that connects u and v in G. The sum of these distances
is the Wiener index of the graph,

(33) WI(G) :=
1

2

∑
(u,v)∈V×V

dcan(u, v),

introduced by the chemist H. Wiener. Some background together with pointers to
the literature is given in [Nei02], which is also our main reference in this subsection.
Among other results it is shown in [Nei02] that for the BST sequence (Xn)n∈N the
rescaled Wiener indices,

Wn :=
1

n2
WI(Xn)− 2 log n,

converge in distribution as n→∞.
Again, we project a suitable functional Ψ(X∞) of the limit tree X∞ to a function

E[Ψ(X∞)|Fn] of Xn that is sufficiently close to Wn. This will give a strong limit
theorem, i.e. it turns out that the rescaled Wiener indices in fact converge almost
surely for the random binary trees generated by the BST algorithm for i.i.d. input,
and it will also lead to a representation of the limit W∞ as a function of X∞.
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We begin by rewriting the Wiener index in terms of subtree sizes, similar to the
transition from (25) to (26) in the analysis of the internal path length. For a binary
tree x,

(34)
∑

(u,v)∈x×x

|u ∧ v| =
∑
u∈x

σ(x, u)2.

This may be proved by induction, using the left and right subtrees in the induction
step; see [Den09, p.70]. Using (15), (26), (33) and (34) we now obtain

(35) WI(Xn) = n IPL(Xn) + n2 −
∑
u∈Xn

σ(Xn, u)2.

It is a benefit of working with almost sure convergence that we can deal with the
constituents on the right hand side of (35) separately (which means that we can
make use of Theorem 6), whereas in connection with convergence in distribution
one needs to consider the joint distribution of IPL(Xn) and WI(Xn); see [Nei02].

Theorem 7. The series

(36) Z∞ :=
∑
u∈V

X∞(u)2

converges almost surely and in quadratic mean, and, as n→∞,

(37)
1

n2
WI(Xn)− 2 log n → W∞

again almost surely and in quadratic mean, where the limit is given by

(38) W∞ := 2γ − 3 + Y∞ − Z∞,

with Y∞ as in Theorem 6.

Proof. Almost sure convergence in (36) follows with Theorem 3, and the moment
calculations below show that EZ2

∞ <∞. In particular,

Zn := E[Z∞|Fn] → Z∞

almost surely and in quadratic mean. Again, the Markov property implies that
Zn can be written as a function of Xn. In order to obtain this function we first
consider a fixed node u ∈ V.

From (11) we get

X∞(u)2 =

k−1∏
j=0

ξ̃ 2
u(j).

From (14) and the known formula for the second moment of beta distributions we
obtain, considering the cases u(j + 1) = u(j)0 and u(j + 1) = u(j)1 separately,

E[ξ̃ 2
u(j)|Fn] =

(σ(Xn, u(j + 1)) + 1)(σ(Xn, u(j + 1)) + 2)

(σ(Xn, u(j)0) + σ(Xn, u(j)1) + 2)(σ(Xn, u(j)0) + σ(Xn, u(j)1) + 3)
.

Using the conditional independence statement in Proposition 2 we see that we have
a telescoping product again, so that

E[X∞(u)2|Fn] =
(σ(Xn, u) + 1)(σ(Xn, u) + 2)

(n+ 1)(n+ 2)
for all u ∈ Xn ∪ ∂Xn.
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The set V \Xn can be written as the disjoint union of the subtrees rooted at the
n+ 1 external nodes of Xn, and we have

E[ξ2u|Fn] = E[(1− ξu)2|Fn] =
1

3
for all u /∈ Xn.

Therefore,∑
u/∈Xn

E[X∞(u)2|Fn]

=
1

(n+ 1)(n+ 2)

∑
u∈∂Xn

(
σ(Xn, u) + 1

)(
σ(Xn, u) + 2

) ∑
v∈V,v≥u

(
1

3

)|v|−|u|

=
2

(n+ 1)(n+ 2)

∑
u∈∂Xn

∞∑
k=0

2k
(

1

3

)k
=

6

n+ 2

in view of σ(Xn, u) = 0 for u ∈ ∂Xn. Taken together this gives

Zn =
1

(n+ 1)(n+ 2)

∑
u∈Xn

(
σ(Xn, u) + 1

)(
σ(Xn, u) + 2

)
+

6

n+ 2
.

Using (26) we get∑
u∈Xn

(
σ(Xn, u) + 1

)(
σ(Xn, u) + 2

)
=

∑
u∈Xn

σ(Xn, u)2 + 3 · IPL(Xn) + 5n

so that, with (35),

1

(n+ 1)(n+ 2)
WI(Xn) =

n

(n+ 1)(n+ 2)
IPL(Xn) +

n2

(n+ 1)(n+ 2)
− Zn + Rn,

where Rn tends to 0 almost surely and in quadratic mean. From Theorem 6 we
know that

1

n
IPL(Xn) − 2 log n → 2γ − 4 + Y∞

in the same sense. Combining the last two statements we obtain (37), with W∞ as
in (38). �

4.3. Metric silhouette. In our third application we consider an infinite-dimensional
tree functional.

Each element v = (vk)k∈N of ∂V defines a path through a binary tree via the
sequence (v(k))k∈N of nodes given by v(k) = (v1, . . . , vk), k ∈ N. In [Grü09] the
‘silhouette’ Sil(x) of x ∈ B was introduced in an attempt to obtain a search tree
analogue of the famous Harris encoding of simply generated trees: With each path
v, we record its exit level when passing through x, i.e.

Sil(x)(v) := min
{
k ∈ N : v(k) /∈ x

}
, v ∈ ∂V.

The tree silhouette can be visualized as a function on the unit interval via the
binary expansion

(39) Φ : [0, 1)→ ∂V, t 7→ (vk)k∈N with vk := d2k+1te − 2d2kte.



METRIC SEARCH TREES 19

It was shown in [Grü09] that for the BST chain (Xn)n∈N some smoothing is neces-
sary to obtain an interesting limit for the stochastic processes

(
Sil(Xn)(Φ(t))

)
0≤t<1

as n→∞.
We have seen in the previous sections that for search trees it makes sense to

replace the canonical tree distance implicit in the above definition of Sil(x) by
the subtree size metric. A corresponding variant of the silhouette is the metric
silhouette,

mSil(x)(v) :=

∞∑
k=1

σ
(
x, v(k)

)
, v ∈ ∂V.

Again, our aim is to obtain a strong limit theorem in the BST situation, together
with a representation of the limit as a function of X∞. In addition, and going
beyond the individual arguments v ∈ ∂V, we regard mSil(Xn) as a random function
on ∂V. With dV as in (8) this is a compact and separable metric space (V is open
in the completion V̄ that we introduced in Section 2.3). We write C(∂V, dV) for the
space of continuous functions f : ∂V→ R. Together with

‖f‖∞ := sup
v∈∂V

|f(v)|

this is a separable Banach space.
Remember that the values of X∞ are probability measures on (∂V,B(∂V)). Let

Σ∞ : ∂V→ [0,∞] be defined by

Σ∞(v) := −
∫
∂V

log2(dV(u, v))X∞(du), v ∈ ∂V.

This is the logarithmic potential of the random measure X∞ with respect to dV;
see [Woe00, p.62]. Finally, we recall that a real function f on the metric space
(∂V, dV) is said to be (globally) Hölder continuous with exponent α if there exists
a constant C <∞ such that

|f(u)− f(v)| ≤ C dV(u, v)α for all u, v ∈ ∂V.

Theorem 8. Let α0 := log2 ρ0 = 0.33464 . . . with ρ0 as in Theorem 3.

(a) E
∥∥Σ∞‖∞ <∞.

(b) With probability 1, Σ∞ is Hölder continuous with exponent α for all α < α0.

(c) As n→∞,∥∥∥ 1

n
mSil(Xn)− Σ∞

∥∥∥
∞
→ 0 almost surely and in mean.

Proof. Because of dV(u, v) = 2−|u∧v| for all u, v ∈ ∂V we have − log2 dV(u, v) ∈ N0

and

− log2 dV(u, v) ≥ k ⇐⇒ u ∈ Av(k)
for all k ∈ N so that

(40) Σ∞(v) =

∞∑
k=1

X∞
(
v(k)

)
for all v ∈ ∂V.

Now let α be as in the statement of the theorem; we may assume that α > 0.
Let ρ := 2α. By Theorem 3 there exists a set of probability 1 such that for all
ω in this set, C(ω) := ‖X∞(ω)‖ρ < ∞. We fix such an ω and drop it from



20 RUDOLF GRÜBEL

the notation. Because of X∞(u) ≤ Cρ|u| for all u ∈ V and (40) we then have
Σ∞(v) ≤ C

∑∞
k=1 ρ

−k for all v ∈ ∂V, which implies∥∥Σ∞‖∞ ≤
1

ρ− 1

∥∥X∞‖ρ.
In particular, E‖Σ∞‖∞ <∞ by (18) in the proof of Theorem 3.

Similarly, if u, v ∈ ∂V are such that |u ∧ v| = k then

∣∣Σ∞(u)− Σ∞(v)
∣∣ =

∞∑
j=k+1

X∞(u(j)) +

∞∑
j=k+1

X∞(v(j))

≤ 2C

∞∑
j=k+1

ρ−j =
2Cρ−k

ρ− 1
≤ 2C

ρ− 1
dV(u, v)α

by definition of ρ. This proves (b).
For the proof of (c) we first consider the random functions Σn defined by

Σn(v) := E[Σ∞(v)|Fn], v ∈ ∂V.

With J := Sil(Xn)(v) we get, using monotone convergence for conditional expecta-
tions and Fn-measurability of J ,

Σn(v) =

J∑
k=1

E[X∞(v(k))|Fn] +

∞∑
k=J+1

E[X∞(v(k))|Fn]

=

J∑
k=1

σ(Xn, v(k)) + 1

n+ 1
+

σ(Xn, v(J)) + 1

n+ 1

∞∑
k=J+1

(
1

2

)k−J
=

1

n+ 1

(
mSil(Xn)(v) + J

)
+

1

n+ 1
.

Here we have used our formula (24) for E[Σ∞(u)|Fn] and its extension to nodes
outside Xn that can be obtained as in the proof of Theorem 7.

Let h(x) = max{|u| : u ∈ x} be the height of x ∈ B. Taking the supremum over
v ∈ ∂V we get ∥∥∥Σn −

1

n+ 1
mSil(Xn)

∥∥∥
∞
≤ h(Xn) + 1

n+ 1
.

It is easy to show that the right hand side converges to 0 with probability 1
(see [Dev86] for techniques and results on the height), hence it remains to prove
that Σn converges almost surely and in mean to Σ∞ in the separable Banach space(
C(∂V, dV), ‖ · ‖∞

)
. This, however, is again immediate from the vector-valued mar-

tingale convergence theorem given in [Nev75, p.104]. �

Figure 2 shows the metric silhouette for the trees in Figure 1. Note that the
continuity in Theorem 8 refers to the space (∂V, dV); for example, (tn)n∈N with
tn = 1

2 + (−1)n 1
n for all n ∈ N is a Cauchy sequence with respect to euclidean

distance, but its inverse under the function Φ defined in (39) that we used for the
illustration is not a Cauchy sequence in (∂V, dV). Loosely speaking, the function β
‘flattens’ the node set V.
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Figure 2. The metric silhouette for the odd (left) and even (right)
π-data, with n = 50 (blue) and n = 100 (black).

4.4. Other functionals and tree structures. The fill (or saturation) level F (x)
and height H(x) of a tree x ∈ B are defined by

F (x) = max
{
k ∈ N0 : {0, 1}k ⊂ x

}
, H(x) = max

{
|u| : u ∈ x

}
respectively. For these tree functionals, the following asymptotic results are well
known,

(41)
F (Xn)

log n
→ α−,

H(Xn)

log n
→ α+ as n→∞,

both almost surely. Here α− = 0.373 . . . and α+ = 4.311 . . . are the two solutions
of the equation x log(2e/x) = 1. The survey [Dev98] gives details and references,
and explains the relation to branching processes.

In situations such as these, where the almost sure limit is a constant, projection
on the sub-σ-fields Fn would simply return the constant, hence no simplification
arises.

Both the fill level and height of a tree as well as its path length (see Subsec-
tion 4.1) can be written as functionals of the tree’s node profile. Recall that |u|
denotes the length of u ∈ V. Let

v(x, k) := #
{
u ∈ ∂x : |u| = k

}
, w(x, k) := #

{
u ∈ x : |u| = k

}
be the number of external resp. internal nodes of x ∈ B at depth k. Applied to
the BST sequence (Xn)n∈N this gives sequences (Vn)n∈N and (Wn)n∈N of random
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functions on the nonnegative integers via Vn(k) = v(Xn, k) and Wn(k) = w(Xn, k),
the external and internal node profile of the binary search tree. Clearly,

F (Xn) = min{k ∈ N : Vn(k) > 0} − 1,

H(Xn) = max{k ∈ N : Wn(k) > 0}
and

IPL(Xn) =

∞∑
k=1

kWn(k),

so such profiles go some way towards a unifying approach to tree functionals and
indeed, they have been studied extensively; see [JH01, CDJH01, CR04, CKMR05,
FHN06, DJN08]. A crucial role in [JH01, CDJH01, CR04, CKMR05] is played by
a parametrized family of martingales introduced in [JH01]. In order to connect
this to the point of view of the present paper we rephrase the basic idea using our
terminology and notation.

Fix some z ∈ R+. The external profile Vn of Xn can be regarded as the counting
density of a random finite measure on N with total mass n+ 1 and value

Yn :=

∞∑
k=1

Vn(k)zk =
∑

u∈∂Xn

z|u|

at z of its generating function. Let v be the random node that is added to Xn to
obtain Xn+1. It is easy to see that

Yn+1 = Yn + z|v|(2z − 1).

In the BST mechanism the node v is chosen uniformly at random from the n + 1
external nodes of Xn, hence

E[Yn+1|Fn] = E
[ ∑
v∈∂Xn

(
Yn + z|v|(2z − 1)

)
1{Xn+1=Xn∪{v}}

∣∣∣Fn]
= YnE

[ ∑
v∈∂Xn

1{Xn+1=Xn∪{v}}

∣∣∣Fn]
+ (2z − 1)E

[ ∑
v∈∂Xn

z|v| 1{Xn+1=Xn∪{v}}

∣∣∣Fn]
= Yn +

2z − 1

n+ 1

∑
v∈∂Xn

z|v|

=
n+ 2z

n+ 1
Yn,

which means that (Mn,Fn)n∈N with

Mn := C(n)Yn, C(n) :=

n−1∏
k=1

k + 1

k + 2z
for all n ∈ N,

is a martingale. Obviously, the martingale is strictly positive whenever z > 0.
Because of the space-time property it can therefore be written as Mn = h(Xn)
with some positive harmonic function h on B, which depends on z > 0, and which
in the present context is given by

h(x) = C(#x)
∑
u∈∂x

z|u|.
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Moreover, the distribution Ph of the corresponding h-transform, which is the
Markov chain with transition probabilities

ph(x, y) =
1

h(x)
p(x, y)h(y), x, y ∈ B,

is such that for all n ∈ N the restriction PhFn
of Ph to Fn has density

dPhFn

dPFn

=
1

2z
h(Xn)

with respect to the restriction PFn
to Fn of the distribution P of the original BST

chain. Here we have used that both chains start with the tree X1 = {∅}, and that
h({∅}) = 2z. A straightforward calculation yields

(42) ph(x, x ∪ {v}) =
1

n+ 2z

∑
u∈∂x z

|u| + z|v|(2z − 1)∑
u∈∂x z

|u|

for all x ∈ B, v ∈ ∂x. Note that this agrees with the transition mechanism of
the BST chain if z = 1/2 or z = 1. For general z > 0 a corresponding chain
may be constructed by a marking mechanism that makes use of an additional spine
variable. This idea was introduced in the context of branching processes; for search
trees it has been used in [CKMR05], to which paper we refer for more details. The
following direct construction of a Markov chain with transitions as in (42) may be
of interest: Given Xn, we choose an external node u with probability proportional
to z|u|. With probability (2z)/(n+ 2z) we then accept u as the node v to be added
to Xn; if u is rejected, then v is chosen uniformly at random from the other n
external nodes of Xn.

In the first three subsections of the present section we began our analysis by
relating the functionals in question to the subtree sizes. As the latter fully describe
the tree this must also be possible in the profile context. For x ∈ B, z > 0 let

Ψz(x) :=
∑
u∈x

σ(x, u) z|u|.

Each v ∈ Vk+1 with v̄ ∈ x is either an internal or an external node of x, which
means that v(x, k+ 1) = 2w(x, k)−w(x, k+ 1). Also, the number of internal nodes
with depth at least k is the sum of all subtree sizes of the nodes with level exactly
equal to k, i.e.

∑
u∈x,|u|=k σ(x, u) =

∑∞
j=k w(x, j). Taken together, this gives

∞∑
k=1

v(x, k) zk =
(

2z − 3 +
1

z

)
Ψz(x) +

(
2− 1

z

)
#x + 1

which leads to

Yn =
(

2z − 3 +
1

z

)
Ψz(Xn) +

(
2− 1

z

)
n + 1

(note that the bracketed term vanishes for z = 1/2 and z = 1). This could serve as
the basis for an analysis along the lines of the first three subsections. We do not
pursue this here but show instead that the general theory can be used to obtain an
interpretation of the function that represents the limit of Jabbour’s martingale in
terms of the Doob-Martin limit of the BST sequence: Recall that Mn/(2z) is the
density associated with the change of measure from PFn

to PhFn
. If the convergence

Mn → M∞ is in L1 (see below), then M∞/(2z) is a density of Ph with respect
to P . Thus we have M∞ = 2zΨ(X∞), with Ψ a density of the distribution of X∞
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under the transformed measure Ph with respect to the distribution of X∞ under
the original P .

It is shown in [CKMR05] that L1-convergence holds if and only if the parameter
z is inside a specific bounded interval I = (c−, c+), that M∞ ≡ 0 if z /∈ I, and that,
with α+, α− as in (41), c− = α−/2 and c+ = α+/2. These two phase transitions
are related to the asymptotics of the maximum and minimum node size respectively
at a specific level of the limit X∞: If z is too small, then nodes close to the root
are favoured too much by ph, if z is too large, then too much weight is given to
nodes far away from the root, and in both cases Ph is then singular with respect to
P . For the weighted subtree size metric considered in Section 3 only one of these
caveats matters in that node sizes must not be inflated too much. Hence there is
only one such phase transition, which should be related to the height constant, and
indeed, a straightforward calculation shows that ρ0 = (2e)/α+.

Finally, let us mention that the approach towards strong asymptotics of dynamic
data structures that we have developed in detail for binary search trees should be
applicable in many related situations. The necessary modifications may be minor,
such as for the discounted path length that appears in [Grü09], or straightforward,
as for the random recursive trees that are often treated in parallel with binary trees,
see e.g. [Nei02] for the Wiener index, or they may be challenging, for example when
we wish to amplify the weak convergence results for node depth profiles obtained
in [DJN08] for a wide class of trees to strong limit theorems as we have done for the
Wiener index in Section 4.2. Of course, convergence in distribution and convergence
along paths are rather different phenomena, see Figures 1 and 2. It is interesting
that for a given dynamical structure we may have a strong limit theorem (with
non-trivial limit) for some aspects (functionals), but not for others; see [DG10] for
such results in connection with the subtree size profile of binary search trees.

Acknowledgment. I thank the referee for the stimulating comments, and for
providing several valuable references.
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