
Submitted to the Annals of Applied Probability
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This paper concerns optimal stopping problems driven by the
running maximum of a spectrally negative Lévy process X. More
precisely, we are interested in modifications of the Shepp-Shiryaev
optimal stopping problem [2, 21, 22]. First, we consider a capped
version of the Shepp-Shiryaev optimal stopping problem and pro-
vide the solution explicitly in terms of scale functions. In particular,
the optimal stopping boundary is characterised by an ordinary dif-
ferential equation involving scale functions and changes according to
the path variation of X. Secondly, in the spirit of [23], we consider
a modification of the capped version of the Shepp-Shiryaev optimal
stopping problem in the sense that the decision to stop has to be
made before the process X falls below a given level.

1. Introduction. Let X = {Xt : t ≥ 0} be a spectrally negative Lévy
process defined on a filtered probability space (Ω,F ,F = {Ft}t≥0,P) satis-
fying the natural conditions (cf. p.39, Section 1.3 of [5]). For x ∈ R , denote
by Px the probability measure under which X starts at x and for simplicity
write P0 = P. We associate with X the maximum process X = {X t : t ≥ 0}
given by Xt := s∨sup0≤u≤tXu for t ≥ 0, s ≥ x. The law under which (X,X)
starts at (x, s) is denoted by Px,s.

In this paper we are mainly interested in the following optimal stopping
problem:

(1) V ∗
ǫ (x, s) = sup

τ∈M
Ex,s

[

e−qτ+Xτ∧ǫ
]

,

where ǫ ∈ R, q > 0, (x, s) ∈ E := {(x, s) ∈ R
2 |x ≤ s} and M is the set

of all finite F-stopping times. Since the constant ǫ bounds the process X
from above, we refer to it as the upper cap. Due to the fact that the pair
(X,X) is a strong Markov process, (1) has also a Markovian structure and
hence the general theory of optimal stopping [16] suggests that the optimal
stopping time is the first entry time of the process (X,X) into some subset
of E. Indeed, it turns out that under some assumptions on q and ψ(1), where
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2 CURDIN OTT

ψ is the Laplace exponent of X (see (∗), p. 5, for a formal definition), the
solution of (1) is given by

τ∗ǫ := inf{t ≥ 0 : Xt −Xt ≥ gǫ(X t)}

for some function gǫ which is characterised as a solution to a certain ordinary
differential equation involving scale functions. The function s 7→ s− gǫ(s) is
sometimes referred to as the optimal stopping boundary. We will show that
the shape of the optimal boundary has different characteristics according to
the path variation of X. The solution of problem (1) is closely related to the
solution of the Shepp-Shiryaev optimal stopping problem

(2) V ∗(x, s) = sup
τ∈M

Ex,s

[

e−qτ+Xτ
]

,

which was first studied by Shepp and Shiryaev [21, 22] for the case when
X is a linear Brownian motion and later by Avram, Kyprianou and Pisto-
rius [2] for the case when X is a spectrally negative Lévy process. Shepp and
Shiryaev [21] introduced the problem as a means to pricing Russian options.
In the latter context the solution of (2) can be viewed as the fair price of
such an option. If we introduce a cap ǫ, an analogous interpretation of the
solution of (1) applies but for a Russian option whose payoff was moderated
by capping it at a certain level (a fuller description is given in Section 2).

Our method for solving (1) consists of a verification technique, that is,
we heuristically derive a candidate solution and then verify that it is indeed
a solution. In particular, we will make use of the principle of smooth and
continuous fit [1, 14, 16, 17] in a similar way to [15, 21].

It is also natural to ask for a modification of (1) with a lower cap. Whilst
this is already included in the starting point of the maximum process X ,
there is a stopping problem that captures this idea of lower cap in the sense
that the decision to exercise has to be made before X drops below a certain
level. Specifically, consider

(3) V ∗
ǫ1,ǫ2

(x, s) = sup
τ∈Mǫ1

Ex,s

[

e−qτ+Xτ∧ǫ2
]

,

where ǫ1, ǫ2 ∈ R such that ǫ1 < ǫ2, q > 0,Mǫ1 := {τ ∈ M| τ ≤ Tǫ1}
and Tǫ1 := inf{t ≥ 0 : Xt ≤ ǫ1}. In the special case of no cap (ǫ2 = ∞),
this problem was considered by Shepp, Shiryaev and Sulem [23] for the case
where X is a linear Brownian motion. Inspired by their result we expect the
optimal stopping time to be of the form Tǫ1 ∧ τ

∗
ǫ2
, where τ∗ǫ2 is the optimal

stopping time in (1). Our main contribution here is that, with the help of
excursion theory (cf. [4, 10]), we find a closed form expression for the value
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OPTIMAL STOPPING FOR THE MAXIMUM PROCESS 3

function associated with the strategy Tǫ1 ∧ τ
∗
ǫ2
, thereby allowing us to verify

that it is indeed an optimal strategy.
This paper is organised as follows. In Section 2 we provide some motiva-

tion for studying (1) and (3). Then we introduce some more notation and
collect some auxiliary results in Section 3. Our main results are presented
in Section 4, followed by their proofs in Sections 5 and 6. Finally, some
numerical examples are given in Section 7.

2. Application to pricing capped Russian options. The aim of
this section is to give some motivation for studying (1) and (3).

Consider a financial market consisting of a riskless bond and a risky asset.
The value of the bond B = {Bt : t ≥ 0} evolves deterministically such that

(4) Bt = B0e
rt, B0 > 0, r ≥ 0, t ≥ 0.

The price of the risky asset is modeled as the exponential spectrally negative
Lévy process

(5) St = S0e
Xt , S0 > 0, t ≥ 0.

In order to guarantee that our model is free of arbitrage we will assume that
ψ(1) = r. If Xt = µt+σWt, whereW = {Wt : t ≥ 0} is a standard Brownian
motion, we get the standard Black-Scholes model for the price of the asset.
Extensive empirical research has shown that this (Gaussian) model is not
capable of capturing certain features (such as skewness and heavy tails)
which are commonly encountered in financial data, for example, returns on
stocks. To accommodate for these problems, an idea, going back to [13],
is to replace the Brownian motion as model for the log-price by a general
Lévy process X (cf. [7]). Here we will restrict ourselves to the model where
X is given by a spectrally negative Lévy process. This restriction is mainly
motivated by analytical tractability. It is worth mentioning, however, that
Carr and Wu [6] as well as Madan and Schoutens [12] have offered empirical
evidence to support the case of a model in which the risky asset is driven
by a spectrally negative Lévy process for appropriate market scenarios.

A capped Russian option is an option which gives the holder the right to
exercise at any almost surely finite stopping time τ yielding payouts

e−ατ
(

M0 ∨ sup
0≤u≤τ

Su ∧ C

)

, C > M0 ≥ S0, α > 0.

The constant M0 can be viewed as representing the “starting” maximum
of the stock price (say, over some previous period (−t0, 0]). The constant C
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4 CURDIN OTT

can be interpreted as cap and moderates the payoff of the option. The value
C = ∞ is also allowed and corresponds to no moderation at all. In this case
we just get the normal Russian option. Finally, when C = ∞ it is necessary
to choose α strictly positive to guarantee that it is optimal to stop in finite
time and that the value is finite (cf. Proposition 3.1).

Standard theory of pricing American-type options [24] directs one to solv-
ing the optimal stopping problem

(6) Vr(M0, S0, C) := B0 sup
τ

E

[

B−1
τ e−ατ

(

M0 ∨ sup
0≤u≤τ

Su ∧ C

)]

where the supremum is taken over all [0,∞)-valued F-stopping times. In
other words, we want to find a stopping time which optimizes the expected
discounted claim. The right-hand side of (6) may be rewritten as

Vr(M0, S0, C) = V ∗
ǫ (x, s) = sup

τ∈M
Ex,s

[

e−qτ+Xτ∧ǫ],

where q = r + α, x = log(S0), s = log(M0) and ǫ = log(C).
In (6) one might only allow stopping times that are smaller or equal

than the first time the risky asset S drops below a certain barrier. From
a financial point of view this corresponds to a default time after which all
economic activity stops (cf. [23]). Including this additional feature leads in
an analogous way to above to the optimal stopping problem (3).

3. Notation and auxiliary results. The purpose of this section is to
introduce some notation and collect some known results about spectrally
negative Lévy processes. Moreover, we state the solution of the Shepp-
Shiryaev optimal stopping problem (2) which will play an important role
throughout this paper.

3.1. Spectrally negative Lévy processes. It is well known that a spec-
trally negative Lévy process X is characterised by its Lévy triplet (γ, σ,Π),
where σ ≥ 0, γ ∈ R and Π is a measure on (−∞, 0) satisfying the condi-
tion

∫

(−∞,0)(1 ∧ x
2)Π(dx) <∞. By the Lévy-Itô decomposition, X may be

represented in the form

(7) Xt = σBt − γt+X
(1)
t +X

(2)
t ,

where {Bt : t ≥ 0} is a standard Brownian motion, {X
(1)
t : t ≥ 0} is a

compound Poisson process with discontinuities of magnitude bigger than

or equal to one and {X
(2)
t : t ≥ 0} is a square integrable martingale with

imsart-aap ver. 2011/01/24 file: main_aap_revised_1.tex date: October 23, 2012



OPTIMAL STOPPING FOR THE MAXIMUM PROCESS 5

discontinuities of magnitude strictly smaller than one and the three processes
are mutually independent. In particular, if X is of bounded variation, the
decomposition reduces to

(8) Xt = dt− ηt

where d > 0 and {ηt : t ≥ 0} is a driftless subordinator. Furthermore, the
spectral negativity of X ensures existence of the Laplace exponent ψ of X,
that is, E[eθX1 ] = eψ(θ) for θ ≥ 0, which is known to take the form

(∗) ψ(θ) = −γθ +
1

2
σ2θ2 +

∫

(−∞,0)

(

eθx − 1− θx1{x>−1}

)

Π(dx).

Its right-inverse is defined by

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}

for q ≥ 0.
For any spectrally negative Lévy process having X0 = 0 we introduce the

family of martingales
exp(cXt − ψ(c)t),

defined for any c ∈ R for which ψ(c) = logE[exp(cX1)] < ∞, and further
the corresponding family of measures {Pc} with Radon-Nikodym derivatives

(9)
dPc

dP

∣

∣

∣

∣

Ft

= exp(cXt − ψ(c)t).

For all such c the measure P
c
x will denote the translation of Pc under which

X0 = x. In particular, under Pcx the process X is still a spectrally negative
Lévy process (cf. Theorem 3.9 in [10]).

3.2. Scale functions. A special family of functions associated with spec-
trally negative Lévy processes is that of scale functions (cf. [10]) which are
defined as follows. For q ≥ 0, the q-scale function W (q) : R −→ [0,∞) is the
unique function whose restriction to (0,∞) is continuous and has Laplace
transform

∫ ∞

0
e−θxW (q)(x) dx =

1

ψ(θ)− q
, θ > Φ(q),

and is defined to be identically zero for x ≤ 0. Equally important is the scale
function Z(q) : R −→ [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W (q)(z) dz.
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6 CURDIN OTT

The passage times of X below and above k ∈ R are denoted by

τ−k = inf{t > 0 : Xt ≤ k} and τ+k = inf{t > 0 : Xt ≥ k}.

We will make use of the following four identities. For q ≥ 0 and x ∈ (a, b) it
holds that

Ex

[

e−qτ
+
b I{τ+

b
<τ−a }

]

=
W (q)(x− a)

W (q)(b− a)
,(10)

Ex

[

e−qτ
−

a I{τ+
b
>τ−a }

]

= Z(q)(x− a)−W (q)(x− a)
Z(q)(b− a)

W (q)(b− a)
,(11)

for q > 0 and x ∈ R it holds that

(12) Ex

[

e−qτ
−

0 1{τ−0 <∞}

]

= Z(q)(x)−
q

Φ(q)
W (q)(x),

and finally for q > 0 we have

(13) lim
x→∞

Z(q)(x)

W (q)(x)
=

q

Φ(q)
.

Identities (10) and (11) are Proposition 1 in [2], identity (13) is Lemma
1 of [2] and (12) can be found in Theorem 8.1 in [10]. For each c ≥ 0 we

denote byW
(q)
c the q-scale function with respect to the measure Pc. A useful

formula (cf. [10]) linking the scale function under different measures is given
by

(14) W (q)(x) = eΦ(q)xWΦ(q)(x)

for q ≥ 0 and x ≥ 0.
We conclude this subsection by stating some known regularity properties

of scale functions (cf. Lemma 2.4, Corollary 2.5, Theorem 3.10, Lemma 3.1
and Lemma 3.2 of [9]).
Smoothness: For all q ≥ 0,

W (q)|(0,∞) ∈











C1(0,∞), if X is of bounded variation and Π has no atoms,

C1(0,∞), if X is of unbounded variation and σ = 0,

C2(0,∞), σ > 0.

Continuity at the origin: For all q ≥ 0,

(15) W (q)(0+) =

{

d
−1, if X is of bounded variation,

0, if X is of unbounded variation.
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OPTIMAL STOPPING FOR THE MAXIMUM PROCESS 7

Derivative at the origin: For all q ≥ 0,

(16) W
(q)′
+ (0+) =

{

q+Π(−∞,0)
d2

, if σ = 0 and Π(−∞, 0) <∞,
2
σ2
, if σ > 0 or Π(−∞, 0) = ∞,

where we understand the second case to be +∞ when σ = 0.
For technical reasons, we require for the rest of the paper that W (q) is

in C1(0,∞) (and hence Z(q) ∈ C2(0,∞)). This is ensured by henceforth
assuming that Π is atomless whenever X has paths of bounded variation.

3.3. Solution to the Shepp-Shiryaev optimal stopping problem. In order
to state the solution of the Shepp-Shiryaev optimal stopping problem, we
introduce the function f : [0,∞) → R which is defined as

f(z) = Z(q)(z)− qW (q)(z).

It can be shown (cf. p.6 of [3]) that, when q > ψ(1), the function f is strictly
decreasing to −∞ and hence within this regime

k∗ := inf{z ≥ 0 : Z(q)(z) ≤ qW (q)(z)} ∈ [0,∞).

In particular, when q > ψ(1), then k∗ = 0 if and only if W (q)(0+) ≥ q−1.
Also, note that the requirement W (q)(0+) ≥ q−1 implies q ≥ d > ψ(1). We
now give a reformulation of a part of Theorem 1 in [3].

Proposition 3.1.

(a) Suppose that q > ψ(1) and W (q)(0+) < q−1. Then the solution of (2)
is given by

V ∗(x, s) = esZ(q)(x− s+ k∗)

with optimal strategy

τ∗ := inf{t ≥ 0 : X t −Xt ≥ k∗}.

(b) If W (q)(0+) ≥ q−1 (and hence q > ψ(1)), then the solution of (2) is
given by V ∗(x, s) = es and optimal strategy τ∗ = 0.

(c) If q ≤ ψ(1), then V ∗(x, s) = ∞.

The result in part (b) of Proposition 3.1 is not surprising. IfW (q)(0+) ≥ q−1,
then X is necessarily of bounded variation with d ≤ q which implies that
the process (e−qt+Xt)t≥0 is pathwise decreasing. As a result we have for
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8 CURDIN OTT

τ ∈ M the inequality Ex,s

[

e−qτ+Xτ
]

≤ es and hence (b) follows. An anal-
ogous argument shows that V ∗

ǫ (x, s) = es∧ǫ for (x, s) ∈ E with optimal
strategy τ∗ǫ = 0 and V ∗

ǫ1,ǫ2
(x, s) = es∧ǫ2 for (x, s) ∈ E with optimal strategy

τ∗ǫ1,ǫ2 = 0. Therefore, we will not consider the regime W (q)(0+) ≥ q−1 in
what follows. Note, however, that the parameter regime q ≤ ψ(1) will not
be degenerate for (1) and (3) due to the upper cap which prevents the value
function from exploding.

4. Main results.

4.1. Maximum process with upper cap. The first result ensures existence
of a function gǫ which, as will follow in due course, describes the optimal
stopping boundary in (1).

Lemma 4.1. Let ǫ ∈ R be given.

a) If q > ψ(1) and W (q)(0+) < q−1, then k∗ ∈ (0,∞).
b) If q ≤ ψ(1), then k∗ = ∞.
c) Under the assumptions in (a) or (b), there exists a unique solution

gǫ : (−∞, ǫ) → (0, k∗) of the ordinary differential equation

(17) g′ǫ(s) = 1−
Z(q)(gǫ(s))

qW (q)(gǫ(s))
on (−∞, ǫ)

satisfying lims↑ǫ gǫ(s) = 0 and lims→−∞ gǫ(s) = k∗.

Next, extend gǫ to the whole real line by setting gǫ(s) = 0 for s ≥ ǫ. We
now present the solution of (1).

Theorem 4.2. Let ǫ ∈ R be given and suppose that q > ψ(1) and
W (q)(0+) < q−1 or q ≤ ψ(1). Then the solution of (1) is given by

V ∗
ǫ (x, s) = es∧ǫZ(q)(x− s+ gǫ(s))

with corresponding optimal strategy

τ∗ǫ := inf{t ≥ 0 : Xt −Xt ≥ gǫ(X t)},

where gǫ is given in Lemma 4.1.

Define the continuation region

C∗
ǫ = C∗ := {(x, s) ∈ E | s < ǫ, s− gǫ(s) < x ≤ s}
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OPTIMAL STOPPING FOR THE MAXIMUM PROCESS 9

and the stopping region D∗
ǫ = D∗ := E \ C∗. The shape of the boundary

separating them, that is, the optimal stopping boundary, is of particular
interest. Theorem 4.2 together with (15) and (17) shows that

lim
s↑ǫ

g′ǫ(s) =

{

−∞, if X is of unbounded variation,

1− d/q, if X is of bounded variation.

Also, using (13) we see that

lim
s→−∞

g′ǫ(s) =

{

0, if q > ψ(1) and W (q)(0+) < q−1,

1− Φ(q)−1, if q ≤ ψ(1).

This (qualitative) behaviour of gǫ and the resulting shape of the continuation
and stopping region are illustrated in Fig. 1. Note in particular that the
shape of gǫ at ǫ (and consequently the optimal boundary) changes according
to the path variation of X. The horizontal and vertical lines in Fig. 1 are

sǫ

k∗

gǫ(s)

sǫ

gǫ(s)

x

s

ǫ

k∗

D∗

C∗

x

s

ǫ

D∗

C∗

Fig 1. For the two pictures on the left it is assumed that q > ψ(1) and W (q)(0+) = 0
whereas on the right it is assumed that q ≤ ψ(1).

meant to schematically indicate the trace of the excursions of X away from
the running maximum. We thus see that the optimal strategy consists of
continuing if the height of the excursion away from the running supremum
s does not exceed gǫ(s), otherwise we stop.
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10 CURDIN OTT

4.2. Maximum process with upper and lower cap. Inspired by the result
in [23], we expect the strategy Tǫ1 ∧ τ∗ǫ2 to be optimal, where τ∗ǫ2 is given
in Theorem 4.2 and Tǫ1 = inf{t ≥ 0 : Xt ≤ ǫ1}. This means that the
optimal boundary is expected to be a vertical line at ǫ1 combined with the
curve described by gǫ2 characterised in Lemma 4.1. Before we can proceed,
we need to introduce an auxiliary quantity, namely the point on the s-axis
where the vertical line at ǫ1 and the optimal boundary corresponding to
gǫ2 intersect (see Fig. 2). If q > ψ(1) and W (q)(0+) < q−1 or q ≤ ψ(1)
define the map aǫ2 : (−∞, ǫ2) → (0, k∗) by aǫ2(s) := s − gǫ2(s). It follows
by definition of gǫ2 that aǫ2 is continuous, strictly increasing and satisfies
lims↑ǫ2 aǫ2(s) = ǫ2 and lims↓−∞ aǫ2(s) = −∞. Therefore the intermediate
value theorem guarantees existence of a unique Aǫ1,ǫ2 = A ∈ (−∞, ǫ2) such
that A − gǫ2(A) = ǫ1. Our candidate optimal strategy Tǫ1 ∧ τ∗ǫ2 splits the
state space into the stopping regions

D∗
I,ǫ1,ǫ2

= D∗
I := {(x, s) ∈ E : x = ǫ1, ǫ1 ≤ s ≤ A},

D∗
II,ǫ1,ǫ2

= D∗
II := {(x, s) ∈ E : ǫ1 ≤ x ≤ s− gǫ2(s), s > A},

and the continuation regions

C∗
I,ǫ1,ǫ2

= C∗
I := {(x, s) ∈ E : ǫ1 < x ≤ s, ǫ1 < s < A},

C∗
II,ǫ1,ǫ2

= C∗
II := {(x, s) ∈ E : s− gǫ2(s) < x ≤ s,A ≤ s < ǫ2}.

x

s

k∗ C∗

I

C∗

II

D∗

I

D∗

II

ǫ1 ǫ2

A

Fig 2. A qualitative picture of the continuation and stopping region under the assumption
that q > ψ(1) and W (q)(0+) = 0 (cf. Theorem 4.4).

Also let Eǫ1 := {(x, s) ∈ E |x ≥ ǫ1}. Clearly, if (x, s) ∈ E\Eǫ1 , then the only
stopping time in Mǫ1 is τ = 0 and hence the optimal value function is given
by es∧ǫ2 . Furthermore, when (x, s) ∈ C∗

II ∪D
∗
II we have τ∗ǫ2 ≤ Tǫ1 , so that

the optimality of τ∗ǫ2 in (1) implies V ∗
ǫ1,ǫ2

(x, s) = V ∗
ǫ2
(x, s). Consequently, the
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interesting case is really (x, s) ∈ C∗
I ∪D

∗
I . The key to verifying that Tǫ1 ∧ τ

∗
ǫ2

is optimal, is to find the value function associated with it.

Lemma 4.3. Let ǫ1 < ǫ2 be given and suppose that q > ψ(1) and
W (q)(0+) < q−1 or q ≤ ψ(1). Define

Vǫ1,ǫ2(x, s) :=











V ∗
ǫ2
(x, s), (x, s) ∈ C∗

II ∪D
∗
II ,

Uǫ1,ǫ2(x, s), (x, s) ∈ C∗
I ∪D

∗
I ,

es∧ǫ2 , otherwise,

where V ∗
ǫ2

is given in Theorem 4.2,

Uǫ1,ǫ2(x, s) := esZ(q)(x− ǫ1) + eǫ1W (q)(x− ǫ1)

∫ gǫ2(A)

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt

and A ∈ (−∞, ǫ2) is the unique constant such that A−gǫ2(A) = ǫ1. We then
have, for (x, s) ∈ E,

Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2
]

= Vǫ1,ǫ2(x, s).

Our main contribution here is the expression for Uǫ1,ǫ2 , thereby allowing
us to verify that the strategy Tǫ1 ∧ τ

∗
ǫ2

is still optimal. In fact, this is the
content the following result.

Theorem 4.4. Let ǫ1 < ǫ2 be given and suppose that q > ψ(1) and
W (q)(0+) < q−1 or q ≤ ψ(1). Then the solution to (3) is given by V ∗

ǫ1,ǫ2
=

Vǫ1,ǫ2 with corresponding optimal strategy τ∗ǫ1,ǫ2 = Tǫ1∧τ
∗
ǫ2
, where τ∗ǫ2 is given

in Theorem 4.2.

It is also possible to obtain the solution of (3) with lower cap only. To
this end, define when q > ψ(1) and W (q)(0+) < q−1 the constant function
g∞(s) := k∗ and Aǫ1,∞ := ǫ1 + k∗.

Corollary 4.5. Let ǫ1 ∈ R and suppose that ǫ2 = ∞, that is, there is
no upper cap.

(a) Assume that q > ψ(1) and that W (q)(0+) < q−1. Then the solution
to (3) is given by

(18) V ∗
ǫ1,∞(x, s) =











V ∗(x, s), (x, s) ∈ C∗
II,ǫ1,∞

∪D∗
II,ǫ1,∞

,

Uǫ1,∞(x, s), (x, s) ∈ C∗
I,ǫ1,∞

∪D∗
I,ǫ1,∞

,

es, otherwise,
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12 CURDIN OTT

where V ∗ is given in Proposition 3.1 and

Uǫ1,∞(x, s) = esZ(q)(x− ǫ1) + eǫ1W (q)(x− ǫ1)

∫ k∗

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt.

The corresponding optimal strategy is given by τ∗ǫ1,∞ = Tǫ1 ∧ τ
∗, where

τ∗ is given in Proposition 3.1.
(b) If q ≤ ψ(1), then V ∗

ǫ1,∞(x, s) = ∞ for (x, s) ∈ Eǫ1 and V ∗
ǫ1,∞(x, s) = es

otherwise.

Remark 4.6. In Theorem 4.2 there is no lower cap and hence it seems
natural to obtain Theorem 4.2 as a corollary to Theorem 4.4. This would be
possible if one merged the proofs of Theorem 4.2 and Theorem 4.4 appropri-
ately. However, a merged proof would still contain the main arguments of
both the proof of Theorem 4.2 and the proof of Theorem 4.4 (note that the
proof of Theorem 4.4 makes use of Theorem 4.2). Therefore, and also for
presentation purposes, we chose to present them separately.

Finally, if Xt = (µ − 1
2σ

2)t + σWt, where µ ∈ R, σ > 0 and (Wt)t≥0 is a
standard Brownian motion, then Corollary 4.5 is nothing else than Theorem
3.1 in [23]. However, this is not immediately clear and requires a simple but
lengthy computation which is provided in Section 7.

5. Guess and verify via principle of smooth or continuous fit.

Let us consider the solution to (1) from an intuitive point of view. We shall
restrict ourselves to the case where q > ψ(1) andW (q)(0+) < q−1. It follows
from what was said at the beginning of Subsection 3.3 that k∗ ∈ (0,∞).

It is clear that if (x, s) ∈ E such that x ≥ ǫ, then it is optimal to stop
immediately since one cannot obtain a higher payoff than ǫ and waiting is
penalised by exponential discounting. If x is much smaller than ǫ, then the
cap ǫ should not have too much influence and one expects that the optimal
value function V ∗

ǫ and the corresponding optimal strategy τ∗ǫ look similar
to the optimal value function V ∗ and optimal strategy τ∗ of problem (2).
On the other hand, if x is close to the cap, then the process X should be
stopped “before” it is a distance k∗ away from its running maximum. This
can be explained as follows: The constant k∗ in the solution to problem (2)
quantifies the acceptable “waiting time” for a possibly much higher running
supremum at a later point in time. But if we impose a cap, there is no hope
for a much higher supremum and therefore “waiting the acceptable time”
for problem (2) does not pay off in the situation with cap. With exponential
discounting we would therefore expect to exercise earlier. In other words, we
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expect an optimal strategy of the form

τgǫ = inf{t ≥ 0 : Xt −Xt ≥ gǫ(X)}

for some function gǫ satisfying lims→−∞ gǫ(s) = k∗ and lims→ǫ gǫ(s) = 0.
This qualitative guess can be turned into a quantitative guess by an adap-

tation of the argument in Section 3 of [15] to our setting. To this end, assume
that X is of unbounded variation (W (q)(0+) = 0). We will deal with the
bounded variation case later. From the general theory of optimal stopping
(cf. [16], Section 13) we informally expect the value function

Vgǫ(x, s) = Ex,s

[

e−qτgǫ+Xτgǫ

]

to satisfy the system

ΓVgǫ(x, s) = qVgǫ(x, s) for s− gǫ(s) < x < s with s fixed,
∂Vgǫ
∂s

(x, s)
∣

∣

x=s−
= 0 (normal reflection),(19)

Vgǫ(x, s)|x=(s−gǫ(s))+ = es (instantaneous stopping),

where Γ is the infinitesimal generator of the process X under P0. More-
over, the principle of smooth fit [14, 16] suggests that this system should be
complemented by

(20)
∂Vgǫ
∂x

(x, s)
∣

∣

x=(s−gǫ(s))+
= 0 (smooth fit).

Note that, although the smooth fit condition is not necessarily part of the
general theory, it is imposed since by the “rule of thumb” outlined in Sec-
tion 7 in [1] it should hold in this setting because of path regularity. This
belief will be vindicated when we show that system (19) with (20) leads to
the solution of problem (1). Applying the strong Markov property at τ+s and
using (10) and (11) shows that

Vgǫ(x, s) = esEx,s
[

e
−qτ−

s−gǫ(s)1{τ−
s−gǫ(s)

<τ+s }

]

+Ex,s

[

e−qτ
+
s 1{τ−

s−gǫ(s)
>τ+s }

]

Es,s

[

e−qτgǫ+Xτgǫ

]

= es
(

Z(q)(x− s+ gǫ(s))−W (q)(x− s+ gǫ(s))
Z(q)(gǫ(s))

W (q)(gǫ(s))

)

+
W (q)(x− s+ gǫ(s))

W (q)(gǫ(s))
Vgǫ(s, s).
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Furthermore, the smooth fit condition implies

0 = lim
x↓s−gǫ(s)

∂Vgǫ
∂x

(x, s)

= lim
x↓s−gǫ(s)

W (q)′(x− s+ gǫ(s))

W (q)(gǫ(s))

(

Vgǫ(s, s)− esZ(q)(gǫ(s))
)

.

By (16) the first factor tends to a strictly positive value or infinity which
shows that Vgǫ(s, s) = esZ(q)(gǫ(s)). This would mean that for (x, s) ∈ E
such that s− gǫ(s) < x < s we have

(21) Vgǫ(x, s) = esZ(q)(x− s+ gǫ(s)).

Having derived the form of a candidate optimal value function Vgǫ , we still
need to do the same for gǫ. Using the normal reflection condition in (19)
shows that our candidate function gǫ should satisfy the ordinary differential
equation

Z(q)(gǫ(s)) + qW (q)(gǫ(s))(g
′
ǫ(s)− 1) = 0.

If X is of bounded variation (W (q)(0+) ∈ (0, q−1)), we informally expect
from the general theory that Vgǫ satisfies the first two equations of (19).
Additionally, the principle of continuous fit [1, 17] suggests that the system
should be complemented by

Vgǫ(x, s)|x=(s−gǫ(s))+ = es (continuous fit).

A very similar argument as above produces the same candidate value func-
tion and the same ordinary differential equation for gǫ.

6. Proofs of main results.

Proof of Lemma 4.1. The idea is to define a suitable bijection H from
(0, k∗) to (−∞, ǫ) whose inverse satisfies the differential equation and the
boundary conditions.

First consider the case q > ψ(1) and W (q)(0+) < q−1. It follows from
the discussion at the beginning of Subsection 3.3 that k∗ ∈ (0,∞) and

that the function s 7→ h(s) := 1 − Z(q)(s)

qW (q)(s)
is negative on (0, k∗). Moreover,

lims↓0 h(s) ∈ [−∞, 0) and lims↑k∗ h(s) = 0. These properties imply that the
function H : (0, k∗) → (−∞, ǫ) defined by

(22) H(s) := ǫ+

∫ s

0

(

1−
Z(q)(η)

qW (q)(η)

)−1

dη = ǫ+

∫ s

0

qW (q)(η)

qW (q)(η)− Z(q)(η)
dη
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is strictly decreasing. If we can also show that the integral tends to −∞ as s
approaches k∗ we could deduce that H is a bijection from (0, k∗) to (−∞, ǫ).
Indeed, appealing to l’Hôpital’s rule and using (12) we obtain

lim
z↑k∗

qW (q)(z)− Z(q)(z)

k∗ − z
= lim

z↑k∗
qW (q)(z)− qW (q)′(z)

= lim
z↑k∗

qeΦ(q)z
(

(1− Φ(q))WΦ(q)(z)−W ′
Φ(q)(z)

)

= qeΦ(q)k∗
(

(1− Φ(q))WΦ(q)(k
∗)−W ′

Φ(q)(k
∗)
)

.

Denote the term on the right-hand side by c and note that c < 0 due to
the fact that WΦ(q) is strictly positive and increasing on (0,∞) and since
Φ(q) > 1 for q > ψ(1). Hence, there exists a δ > 0 and 0 < z0 < k∗ such

that c− δ < qW (q)(z)−Z(q)(z)
k∗−z for all z0 < z < k∗. Thus,

1

qW (q)(z)− Z(q)(z)
<

1

(c− δ)(k∗ − z)
< 0 for z0 < z < k∗.

This shows that

lim
s↑k∗

H(s) ≤ ǫ+ lim
s↑k∗

∫ s

z0

qW (q)(η)

(c− δ)(k∗ − η)
dη = −∞.

The discussion above permits us to define gǫ := H−1 ∈ C1((−∞, ǫ); (0, k∗)).
In particular, differentiating gǫ gives

g′ǫ(s) =
1

H ′(gǫ(s))
= 1−

Z(q)(gǫ(s))

qW (q)(gǫ(s))

for s ∈ (−∞, ǫ), and gǫ satisfies lims→−∞ gǫ(s) = k∗ and lims↑ǫ gǫ(s) = 0 by
construction.

As for the case q ≤ ψ(1), note that by (12) and (13) we have

(23) Z(q)(x)− qW (q)(x) ≥ Z(q)(x)−
q

Φ(q)
W (q)(x) > 0

for x ≥ 0 which shows that k∗ = ∞. Moreover, (23) together with (13) im-
plies that the map s 7→ h(s) is negative on (0,∞) and satisfies lims↓0 h(s) ∈
[−∞, 0) and lims↑∞ h(s) = 1 − Φ(q)−1 ≤ 0. Defining H : (0,∞) → (−∞, ǫ)
as in (22), one deduces similarly as above that H is a continuously differen-
tiable bijection whose inverse satisfies the requirements.
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16 CURDIN OTT

We finish the proof by addressing the question of uniqueness. To this end,
assume that there is another solution g̃. In particular, g̃′(s) = h(g̃(s)) for
s ∈ (s1, ǫ) ⊂ (−∞, ǫ) and hence

s1 = ǫ−

∫

(s1,ǫ)
dη = ǫ+

∫

(s1,ǫ)

|g̃′(s)|

h(g̃(s))
ds = ǫ+

∫ g̃(s1)

0

1

h(s)
ds = H(g̃(s1))

which implies that g̃ = H−1 = gǫ.

Proof of Theorem 4.2. Define the function

Vǫ(x, s) := es∧ǫZ(q)(x− s+ gǫ(s))

for (x, s) ∈ E and let τgǫ := inf{t ≥ 0 : X t−Xt ≥ gǫ(X t)}, where gǫ is as in
Lemma 4.1. Because of the infinite horizon and Markovian claim structure
of problem (1) it is enough to check the following conditions:

(i) Vǫ(x, s) ≥ es∧ǫ for all (x, s) ∈ E,
(ii) {e−qtVǫ(Xt,X t)} is a right-continuous Px,s-supermartingale for (x, s) ∈ E,

(iii) Vǫ(x, s) = Ex,s

[

e−qτgǫ+Xτgǫ
∧ǫ
]

for all (x, s) ∈ E.

To see why these are sufficient conditions, note that (i) and (ii) together
with Fatou’s Lemma in the second inequality and Doob’s stopping theorem
in the third inequality show that for τ ∈ M,

Ex,s

[

e−qτ+Xτ∧ǫ
]

≤ Ex,s

[

e−qτVǫ(Xτ ,Xτ )
]

≤ lim inf
t→∞

Ex,s

[

e−q(t∧τ)Vǫ(Xt∧τ ,Xt∧τ )
]

≤ Vǫ(x, s),

which in view of (iii) implies V ∗
ǫ = Vǫ and τ

∗
ǫ = τgǫ .

The remainder of this proof is devoted to checking conditions (i)-(iii).
Clearly, condition (i) is satisfied since Z(q) is bigger or equal to one by
definition.

Supermartingale property (ii). Given the inequality

(24) Ex,s

[

e−qtVǫ(Xt,X t)
]

≤ Vǫ(x, s), (x, s) ∈ E,

the supermartingale property is a consequence of the Markov property of
the process (X,X). Indeed, for u ≤ t we have

Ex,s

[

e−qtVǫ(Xt,X t)
∣

∣Fu
]

= e−quEXu,Xu

[

e−q(t−u)Vǫ(Xt−u,X t−u)
]

≤ e−quVǫ(Xu,Xu).
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We now prove (24), first under the assumption that W (q)(0+) = 0, that
is, X is of unbounded variation. Let Γ be the infinitesimal generator of X
and formally define the function ΓZ(q) : R \ {0} → R by

ΓZ(q)(x) := −γZ(q)′(x) +
σ2

2
Z(q)′′(x)

+

∫

(−∞,0)

(

Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

)

Π(dy).

For x < 0 the quantity ΓZ(q)(x) is well-defined and ΓZ(q)(x) = 0. However,
for x > 0 one needs to check whether the integral part of ΓZ(q)(x) is well-
defined. This is done in Lemma A.1 in the Appendix which shows that this
is indeed the case. Moreover, as shown in Section 3.2 of [18], it holds that

ΓZ(q)(x) = qZ(q)(x), x ∈ (0,∞).

Now fix (x, s) ∈ E and define the semimartingale Yt := Xt−X t+ gǫ(X t).
Applying an appropriate version of the Itô-Meyer formula (cf. Theorem
71, Ch. IV of [20]) to Z(q)(Yt) yields Px,s-a.s.

Z(q)(Yt) = Z(q)(x− s+ gǫ(s)) +mt +

∫ t

0
ΓZ(q)(Yu) du(25)

+

∫ t

0
Z(q)′(Yu)(g

′
ǫ(Xu)− 1) dXu,

where

mt =

∫ t

0+
σZ(q)′(Yu−)dBu +

∫ t

0+
Z(q)′(Yu−)dX

(2)
u

+
∑

0<u≤t

(

∆Z(q)(Yu)−∆XuZ
(q)′(Yu−)1{∆Xu≥−1}

)

−

∫ t

0

∫

(−∞,0)

(

Z(q)(Yu− + y)− Z(q)(Yu−)− yZ(q)′(Yu−)1{y≥−1}

)

Π(dy)du

and ∆Xu = Xu − Xu−, ∆Z
(q)(Yu) = Z(q)(Yu) − Z(q)(Yu−). The fact that

ΓZ(q) is not defined at zero is not a problem as the time Y spends at zero has
Lebesgue measure zero anyway. By the boundedness of Z(q)′ on (−∞, gǫ(s)]
the first two stochastic integrals in the expression for mt are zero-mean
martingales and by the compensation formula (cf. Corollary 4.6 of [10]) the
third and fourth term constitute a zero-mean martingale. Next, recall that
Vǫ(x, s) = es∧ǫZ(q)(x− s+ gǫ(s)) and use stochastic integration by parts for
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semimartingales (cf. Corollary 2 of Theorem 22, Ch. II of [20]) to deduce
that

e−qtVǫ(Xt,X t) = Vǫ(x, s) +Mt

+

∫ t

0
e−qu+Xu∧ǫ(ΓZ(q)(Yu)− qZ(q)(Yu)) du(26)

+

∫ t

0
e−qu+Xu∧ǫ

(

Z(q)(Yu)1{Xu≤ǫ}
+ Z(q)′(Yu)(g

′
ǫ(Xu)− 1)

)

dXu

whereMt =
∫ t

0+ e
−qu+Xu∧ǫdmu is a zero-mean martingale. The first integral

is nonpositive since ΓZ(q)(y) − qZ(q)(y) ≤ 0 for all y ∈ R. The last inte-
gral vanishes since the process Xu only increments when Xu = Xu and by
definition of gǫ. Thus, taking expectations on both sides yields

Ex,s

[

e−qtVǫ(Xt,Xt)
]

≤ Vǫ(x, s).

If W (q)(0+) ∈ (0, q−1) (X has bounded variation), then the Itô-Meyer
formula is nothing more than an appropriate version of the change of variable
formula for Stieltjes integrals and the rest of the proof follows the same line of
reasoning as above. The only change worth mentioning is that the generator
of X takes a different form. Specifically, one has to work with

ΓZ(q)(x) = dZ(q)′(x) +

∫

(−∞,0)

(

Z(q)(x+ y)− Z(q)(x)
)

Π(dy)

which satisfies all the required properties by Lemma A.1 in the Appendix
and Section 3.2 in [18].

This completes the proof of the supermartingale property.

Verification of condition (iii). The assertion is clear for (x, s) ∈ D∗.
Hence, suppose that (x, s) ∈ C∗. The assertion now follows from the proof
of the supermartingale property (ii). More precisely, replacing t by t ∧ τgǫ
in (26) and recalling that (Γ− q)Z(q)(y) = 0 for y > 0 shows that

Ex,s

[

e−q(t∧τgǫ )Vǫ(Xt∧τgǫ ,Xt∧τgǫ )
]

= Vǫ(x, s).

Using that τgǫ <∞ a.s. and dominated convergence one obtains the desired
equality.

Proof of Lemma 4.3. For (x, s) ∈ D∗
I we have Tǫ1 = 0 so that

Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2]
= es = Uǫ1,ǫ2(x, s).
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As for the case (x, s) ∈ C∗
I , write

Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2]
= Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2 1{Tǫ1>τ

+
A
}

]

+ Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2 1{Tǫ1<τ

+
A
}

]

and denote the first expectation on the right by I1 and the second expec-
tation by I2. An application of the strong Markov property at τ+A and the
definition of V ∗

ǫ2
(see Theorem 4.2) give

I1 = Ex,s

[

e−qτ
+
A 1{Tǫ1>τ

+
A
}

]

EA,A

[

e
−qτ∗ǫ2+Xτ∗ǫ2

]

=
W (q)(x− ǫ1)

W (q)(A− ǫ1)
eAZ(q)(gǫ2(A)).

Recalling that s < gǫ2(A) and using the strong Markov property at τ+s yields

I2 = esEx,s

[

e−qTǫ11{Tǫ1<τ
+
s }

]

+Ex,s

[

e−qτ
+
s 1{Tǫ1>τ

+
s }

]

Es,s

[

e−qTǫ1+XTǫ1 1{Tǫ1<τ
+
A
}

]

= es
(

Z(q)(x− ǫ1)−W (q)(x− ǫ1)
Z(q)(s− ǫ1)

W (q)(s− ǫ1)

)

+
W (q)(x− ǫ1)

W (q)(s− ǫ1)
Es,s

[

e−qTǫ1+XTǫ1 1{Tǫ1<τ
+
A
}

]

= es
(

Z(q)(x− ǫ1)−W (q)(x− ǫ1)
Z(q)(s− ǫ1)

W (q)(s− ǫ1)

)

+
W (q)(x− ǫ1)

W (q)(s− ǫ1)
esE0,0

[

e
−qτ−ǫ1−s+Xτ

−

ǫ1−s1{τ−ǫ1−s<τ
+
A−s

}

]

.(27)

Next, we compute the expectation on the right-hand side of (27) by ex-
cursion theory. To be more precise, we are going to make use of the com-
pensation formula of excursion theory and hence we shall spend a moment
setting up some necessary notation. In doing so, we closely follow p.221–223
in [2] and refer the reader to Chapters 6 and 7 in [4] for background reading.
The process Lt := X t serves as local time at 0 for the Markov process X−X
under P0,0. Write L−1 := {L−1

t : t ≥ 0} for the right-continuous inverse of
L. The Poisson point process of excursions indexed by local time shall be
denoted by {(t, εt) : t ≥ 0}, where

εt = {εt(s) := X
L−1
t

−X
L−1
t−+s : 0 < s < L−1

t − L−1
t− }
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whenever L−1
t − L−1

t− > 0. Accordingly, we refer to a generic excursion as
ε(·) (or just ε for short as appropriate) belonging to the space E of canonical
excursions. The intensity measure of the process {(t, εt) : t ≥ 0} is given
by dt× dn, where n is a measure on the space of excursions (the excursion
measure). A functional of the canonical excursion that will be of interest
is ε = sups<ζ ε(s), where ζ(ε) = ζ is the length of an excursion. A useful
formula for this functional that we shall make use of is the following (cf. [10],
Equation (8.18)):

(28) n(ε > x) =
W ′(x)

W (x)

provided that x is not a discontinuity point in the derivative of W (which is
only a concern when X is of bounded variation, but we have assumed that in
this case Π is atomless and henceW is continuously differentiable on (0,∞)).
Another functional that we will also use is ρa := inf{s > 0 : ε(s) > a}, the
first passage time above a of the canonical excursion ε. We now proceed
with the promised calculation involving excursion theory. Specifically, an
application of the compensation formula in the second equality and using
Fubini’s theorem in the third equality gives

E

[

e
−qτ−ǫ1−s+Lτ

−

ǫ1−s1{τ−ǫ1−s<τ
+
A−s

}

]

= E

[

∑

0<t<∞

e−qL
−1
t−+t1{εu≤u−ǫ1+s ∀u<t

t<A−s

}1{εt>t−ǫ1+s}e
−qρt−ǫ1+s(εt)

]

= E

[
∫ A−s

0
dt e−qL

−1
t +t1{εu≤u−ǫ1+s∀u<t}

∫

E
1{ε>t−ǫ1+s}e

−qρt−ǫ1+s(ε)n(dε)

]

=

∫ A−s

0
et−Φ(q)t

E

[

e−qL
−1
t +Φ(q)t1{εu≤u−ǫ1+s ∀u<t}

]

f̂(t− ǫ1 + s) dt,

where in the first equality the time index runs over local times and the sum
is the usual shorthand for integration with respect to the Poisson counting

measure of excursions, and f̂(u) = Z(q)(u)W (q)′(u)

W (q)(u)
−qW (q)(u) is an expression

taken from Theorem 1 in [2]. Next, note that L−1
t is a stopping time and

hence a change of measure according to (9) shows that the expectation inside
the integral can be written as

P
Φ(q)
[

εu ≤ u− ǫ1 + s for all u < t
]

.

Using the properties of the Poisson point process of excursions (indexed by

imsart-aap ver. 2011/01/24 file: main_aap_revised_1.tex date: October 23, 2012



OPTIMAL STOPPING FOR THE MAXIMUM PROCESS 21

local time) and with the help of (28) and (14) we may deduce

P
Φ(q)

[

εu ≤ u− ǫ1 + s for all u < t
]

= exp

(

−

∫ t

0
nΦ(q)(ε > u− ǫ1 + s) du

)

= eΦ(q)t W (q)(s− ǫ1)

W (q)(t− ǫ1 + s)
,

where nΦ(q) denotes the excursion measure associated with X under PΦ(q).
By a change of variables and the fact that A− ǫ1 = gǫ2(A) we further obtain

E0,0

[

e
−qτ−ǫ1−s+Lτ

−

ǫ1−s1{τ−ǫ1−s<τ
+
A−s

}

]

=W (q)(s− ǫ1)e
ǫ1−s

∫ gǫ2(A)

s−ǫ1

et
f̂(t)

W (q)(t)
dt

= −W (q)(s − ǫ1)e
ǫ1−s

∫ gǫ2 (A)

s−ǫ1

et
(

Z(q)

W (q)

)′

(t)dt.

Integrating by parts on the right-hand side, plugging the resulting expression
into (27) and finally adding I1 and I2 gives the result.

Proof of Theorem 4.4. Recall that Tǫ1 := inf{t ≥ 0 : Xt ≤ ǫ1} and from
Lemma 4.3 that, for (x, s) ∈ E,

(29) Vǫ1,ǫ2(x, s) = Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2]
.

Similarly to the proof of Theorem 4.2, it is now enough to prove that

(i) Vǫ1,ǫ2(x, s) ≥ es∧ǫ2 for all (x, s) ∈ Eǫ1 ,
(ii) {e−q(t∧Tǫ1 )Vǫ1,ǫ2(Xt∧Tǫ1

,X t∧Tǫ1
)} is a right-continuous Px,s-supermar-

tingale for all (x, s) ∈ Eǫ1 .

Condition (i) is clearly satisfied, we devote the remainder of this proof to
checking condition (ii).

Supermartingale property (ii). Let Yt := e−qtVǫ1,ǫ2(Xt,X t) for t ≥ 0.
Analogously to the proof of Theorem 4.2, it suffices to show that for (x, s) ∈
Eǫ1 we have the inequality

(30) Ex,s

[

Yt∧Tǫ1
]

≤ Vǫ1,ǫ2(x, s).

The latter is clear for (x, s) ∈ D∗
I . If (x, s) ∈ C∗

II ∪D
∗
II inequality (30) can be

extracted from the proof of Theorem 4.2 where it is shown that the process
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(e−qtV ∗
ǫ2
(Xt,X t))t≥0 is a Px,s-supermartinagle for all (x, s) ∈ E. In particu-

lar, the process (Yt)t≥0 is a Px,s-supermartingale for (x, s) ∈ C∗
II ∪D

∗
II . The

supermartingale property is preserved when stopping at Tǫ1 and therefore
we obtain, for (x, s) ∈ C∗

II ∪D
∗
II ,

(31) Ex,s

[

Yt∧Tǫ1
]

≤ Vǫ1,ǫ2(x, s).

Thus, it remains to establish (30) for (x, s) ∈ C∗
I . To this end, we first prove

that the process
(

Yt∧Tǫ1∧τ∗ǫ2

)

t≥0
is a Px,s-martingale. The strong Markov

property gives

Ex,s

[

YTǫ1∧τ∗ǫ2

∣

∣Ft
]

= YTǫ1∧τ∗ǫ2
1{Tǫ1∧τ∗ǫ2≤t}

(32)

+e−qtEXt,Xt

[

YTǫ1∧τ∗ǫ2

]

1{Tǫ1∧τ∗ǫ2>t}
.

By definition of Vǫ1,ǫ2 we see that

YTǫ1∧τ∗ǫ2
=

{

exp
(

− qTǫ1 +XTǫ1

)

, on {Tǫ1 ≤ τ∗ǫ2},

exp(−qτ∗ǫ2 +Xτ∗ǫ2
), on {Tǫ1 > τ∗ǫ2},

which shows that the second term on the right-hand side of (32) equals

e−qtEXt,Xt

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

]

(1{t≤τ+
A
} + 1{t>τ+

A
})1{Tǫ1∧τ∗ǫ2>t}

=
(

e−qtUǫ1,ǫ2(Xt,X t)1{t≤τ+
A
} + e−qtV ∗

ǫ2
(Xt,X t)1{t>τ+

A
}

)

1{Tǫ1∧τ∗ǫ2>t}

= e−qtVǫ1,ǫ2(Xt,X t)1{Tǫ1∧τ∗ǫ2>t}

= Yt1{Tǫ1∧τ∗ǫ2>t}
.

Thus, Ex,s
[

YTǫ1∧τ∗ǫ2

∣

∣Ft
]

= Yt∧Tǫ1∧τ∗ǫ2 which implies the martingale property

of
(

Yt∧Tǫ1∧τ∗ǫ2

)

t≥0
. Again using the strong Markov property we further obtain

for (x, s) ∈ C∗
I ,

Ex,s

[

Yt∧Tǫ1

∣

∣Fτ∗ǫ2

]

= Yt∧Tǫ11{t∧Tǫ1≤τ∗ǫ2}

+e−qτ
∗

ǫ2EXτ∗ǫ2
,Xτ∗ǫ2

[

Y(t−u)∧Tǫ1

]

∣

∣

∣

u=τ∗ǫ2

1{t∧Tǫ1>τ∗ǫ2}

≤ Yt∧Tǫ11{t∧Tǫ1≤τ∗ǫ2}
+ e−qτ

∗

ǫ2Vǫ1,ǫ2(Xτ∗ǫ2
,Xτ∗ǫ2

)1{t∧Tǫ1>τ∗ǫ2}

= Yt∧Tǫ1∧τ∗ǫ2 ,

where the inequality follows from (31) and the fact that (Xτ∗ǫ2
Xτ∗ǫ2

) ∈ D∗
II on

{t∧Tǫ1 > τ∗ǫ2}. Thus, Ex,s
[

Yt∧Tǫ1
]

≤ Uǫ1,ǫ2(x, s) = Vǫ1,ǫ2(x, s) for (x, s) ∈ C∗
I .

This completes the proof.
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Proof of Corollary 4.5. Part (a) follows from the proof of Theo-
rem 4.4 by replacing gǫ with g∞(s) = k∗ and A by ǫ1 + k∗. For part (b), let
ǫ1 ∈ R be given and recall that due to the assumption q ≤ ψ(1) we have
lims↓−∞ gǫ1(s) = ∞. For an arbitrary δ > ǫ1, the uniqueness in Lemma 4.1
implies that

gδ(s) = gǫ1(s− δ + ǫ1), s ∈ (−∞, δ).

It follows that limδ↑∞ gδ(s) = ∞ for s ∈ R and that limδ↑∞ gδ(Aδ) = ∞.
Hence, for (x, s) ∈ Eǫ1 , we have

V ∗
ǫ1,∞(x, s) := sup

τ∈Mǫ1

Ex,s

[

e−q(Tǫ1∧τ)+XTǫ1∧τ
]

≥ lim
δ↑∞

V ∗
ǫ1,δ

(x, s) = ∞.

On the other hand, if (x, s) ∈ E \ Eǫ1 , then clearly V ∗
ǫ1,∞(x, s) = es. This

completes the proof.

7. Examples. The solution of (1) and (3) are given semi-explicitly in
terms of scale functions and a specific solution gǫ and gǫ2 respectively of the
ordinary differential equation (17). The aim of this section is to look at some
examples where the solutions of (1) and (3) can be computed more explicitly.
For simplicity, we will assume from now on that every spectrally negative
Lévy process X considered below is such that q > ψ(1) andW (q)(0+) < q−1.
Also assume to begin with that there is an upper cap ǫ only.

A first step towards more explicit solutions of (1) is looking at processes
X where explicit expressions for W (q) and Z(q) are available. In recent years
various authors have found several processes whose scale functions are ex-
plicitly known (Example 1.3, Chapter 4 and Section 5.5 in [9], for instance).
Here, however, we would additionally like to find gǫ explicitly. To the best of
our knowledge, we do not know of any examples where this is possible. One
might instead try to solve (17) numerically, but this is not straightforward
as there is no initial point to start a numerical scheme from and, moreover,
the possibility of gǫ having infinite gradient at ǫ might lead to inaccuracies
in the numerical scheme. Therefore, we follow a different route which avoids
these difficulties. Instead of looking at gǫ, we rather focus on its inverse

(33) H(s) = ǫ+

∫ s

0

(

1−
Z(q)(η)

qW (q)(η)

)−1

dη, s ∈ (0, k∗),

where k∗ ∈ (0,∞) is the unique root of Z(q)(z)− qW (q)(z) = 0. It turns out
that in some cases (including the Black-Scholes model) H can be computed
explicitly. Since H is the inverse of gǫ, plotting (H(y), y), y ∈ (0, k∗), yields
visualisations of s 7→ gǫ(s) for s ∈ (−∞, ǫ) (see Fig. 3–5). Similarly, plotting
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(H(y)−y,H(y)), y ∈ (0, k∗), produces visualisations of the optimal stopping
boundary in the (x, s)-plane (see Fig. 3–5). Unfortunately, it is often the case
that we cannot compute the integral in (33) explicitly in which case one
might use numerical integration in Matlab to obtain an approximation of
the integral. The procedure just described is carried out below for different
examples of X.

7.1. Brownian motion with drift and compound Poisson jumps. Consider
the process

Xt = σWt + µt−

Nt
∑

i=1

ξi, t ≥ 0,

where σ > 0, µ ∈ R, (Wt)t≥0 is a standard Brownian motion, (Nt)t≥0 is a
Poisson process with intensity a > 0 and ξi are i.i.d. random variables which
are exponentially distributed with parameter ρ > 0. The processes (Wt)t≥0

and (Nt)t≥0 as well as the sequence (ξi)i∈N are assumed to be mutually
independent. The Laplace exponent of X is given by

ψ(θ) =
σ2

2
θ2 + µθ −

aθ

ρ+ θ
, θ ≥ 0.

It is known (cf. Example 1.3 in [9] and Subsection 8.2 of [2]) that

(34) W (q)(x) =
eΦ(q)x

ψ′(Φ(q))
+

e−ζ1x

ψ′(−ζ1)
+

e−ζ2x

ψ′(−ζ2)
, x ≥ 0,

where −ζ2 < −ρ < −ζ1 < 0 < Φ(q) are the three real solutions of the
equation ψ(θ) = q, and that, for x ≥ 0,

(35) Z(q)(x) = D1e
Φ(q)x +D2e

−ζ1x +D3e
−ζ2x,

where D1 =
q

Φ(q)ψ′(Φ(q)) , D2 =
q

−ζ1ψ′(−ζ1)
and D3 =

q
−ζ2ψ′(−ζ2)

.

As a first example consider σ = 0. In this case ψ(θ) = q reduces to a
quadratic equation and one can calculate explicitly

ζ1 =
1

2µ

(

√

(a+ q − µρ)2 + 4µqρ− (a+ q − µρ)
)

,

Φ(q) =
1

2µ

(

√

(a+ q − µρ)2 + 4µqρ+ (a+ q − µρ)
)

.

Moreover, it follows that

k∗ =
1

ζ1 + φ(q)
log

(

Φ(q)ψ′(Φ(q))(ζ1 + 1)

ζ1ψ′(−ζ1)(1− Φ(q))

)

.
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Using elementary algebra and integration one finds, for s ∈ (0, k∗),

H(s) = ǫ+

∫ s

0

(

D1Φ(q)e
(Φ(q)+ζ1)x

D1(Φ(q)− 1)e(Φ(q)+ζ1)x −D2(ζ1 + 1)

)

dx

−

∫ s

0

D2ζ1e
−(ζ1+Φ(q))x

D1(Φ(q)− 1) −D2(ζ1 + 1)e−(ζ1+Φ(q))x
dx

= ǫ+

∫ s

0

(

Φ(q)eAx

BeAx − CD
−

ζ1e
−Ax

C−1B −De−Ax

)

dx

= ǫ+
Φ(q)

AB
log

∣

∣

∣

∣

BeAs − CD

B − CD

∣

∣

∣

∣

−
ζ1
AD

log

∣

∣

∣

∣

B − CDe−As

B − CD

∣

∣

∣

∣

,

where A := ζ1 +Φ(q), B := Φ(q)− 1, C := Φ(q)ψ′(Φ(q))
−ζ1ψ′(−ζ1)

and D := ζ1 + 1. An
example for a certain choice of parameters is given in Fig. 3.
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2

Stopping and continuation region

 

 

x=s
optimal boundary
x=s+k*

x

s

Fig 3. An illustration of s 7→ gǫ(s) and the corresponding optimal boundary for q = 1.6,
ǫ = 2, σ = 0, µ = 3, a = 3 and ρ = 0.1.

Next, assume σ > 0 and ρ = ∞, that is, X is a linear Brownian motion.
In particular, this includes the Black-Scholes model. Again, as explained in
Example 1.3 of [9], the equation ψ(θ) = q reduces to a quadratic equation
and ζ1 = δ − γ and Φ(q) = δ + γ, where

γ := −
µ

σ2
and δ :=

1

σ2

√

µ2 + 2qσ2.

Furthermore, (34) and (35) may be rewritten on x ≥ 0 as
(36)

W (q)(x) =
2

σ2δ
eγx sinh(δx) and Z(q)(x) = eγx cosh(δx) −

γ

δ
eγx sinh(δx),

and one can compute

(37) k∗ =
1

Φ(q) + ζ1
log
( 1 + ζ−1

1

1− Φ(q)−1

)

.
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Using elementary algebra in the first and formula 2.447.1 of [8] in the second
equality one obtains, for s ∈ (0, k∗),

H(s) = ǫ+
2q

σ2δ

∫ sδ

0

sinh(x)

(2q/σ2 + γ) cosh(x)− δ sinh(x)
dx

= ǫ+
2q

σ2δ
(

F 2 − δ2
)

(

Fδs − δ log

∣

∣

∣

∣

∣

sinh
(

tanh−1(−δF−1)
)

sinh
(

δs + tanh−1(−δF−1)
)

∣

∣

∣

∣

∣

)

,

where F := 2q/σ2+γ. An example for a certain parameter choose is provided
in Fig. 4.

In the next example we combine the first example with the second one.
More precisely, suppose that σ > and ρ ∈ (0,∞), that is, a linear Brownian
motion with exponential jumps. In this case we are unable to compute k∗ and
H explicitly. We therefore find k∗ numerically and use numerical integration
to obtain an approximation of k∗ and H respectively (see Fig. 4).
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2

Stopping and continuation region

x

s

Fig 4. Left: A visualization of s 7→ gǫ(s) for when q = 4, ǫ = 2, σ = 1 and µ = 2 (red)
and q = 4, ǫ = 2, σ = 1, µ = 2, a = 3 and ρ = 0.1 (blue). Right: An illustration of the
corresponding optimal boundaries.

7.2. Stable jumps. Suppose thatX is an α-stable process, where α ∈ (1, 2]
with Laplace exponent ψ(θ) = θα, θ ≥ 0. It is known (cf. Example 4.17 of [9]
and Subsection 8.3 of [2]) that, for x ≥ 0,

W (q)(x) = xα−1Eα,α(qx
α) and Z(q)(x) = Eα,1(qx

α),

where Eα,β is the two parameter Mittag-Leffler function which is defined for
α > 0, β > 0 as

Eα,β(x) =

∞
∑

n=0

xn

Γ(αn+ β)
.
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Again, using numerical integration and a Matlab function that computes the
Mittag-Leffler function (cf. [19]) one may approximate k∗ andH respectively
(see Fig. 5). Additionally, we have computed the value function for a choice
of parameters (Fig. 6).
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Fig 5. Left: A visualisation of s 7→ gǫ(s) when q = 2 and ǫ = 2 and X is either a linear
Brownian motion (blue curve, σ =

√
2, µ = 0) or an α-stable process (red curve, α = 1.6).

If one considers a lower cap ǫ1 and an upper cap ǫ2, then the only thing
that changes for the optimal boundary is that one has to include an addi-
tional vertical line at the value of the lower cap ǫ1. However, introducing
a lower cap will make a difference, i.e., the value functions V ∗

ǫ2
(x, s) and

V ∗
ǫ1,ǫ2

(x, s) will be different for (x, s) ∈ C∗
I,ǫ1,ǫ2

(see Theorem 4.2 and 4.4).
Exploiting the fact that H is the inverse of gǫ2 in a similar way as above, one
may also obtain numerical approximations of the value functions V ∗

ǫ2
(x, s)

and V ∗
ǫ1,ǫ2

(x, s) (see Fig. 6).

7.3. Maximum process with lower cap only. Assume the same setting as
in the second example above, i.e., Xt = σWt+µt. The scale functions and k

∗

are given by (36) and (37) respectively. If we suppose that there is a lower
cap ǫ1 ∈ R and no upper cap (ǫ2 = ∞), then Corollary 4.5 can be rewritten
more explicitly as follows.

Lemma 7.1. The V ∗ and Uǫ1,∞ part of the optimal value function V ∗
ǫ1,∞

are given by

V ∗(x, s) =
1

Φ(q) + ζ1

(

Φ(q)

(

ex

es−k∗

)−ζ1

+ ζ1

(

ex

es−k∗

)Φ(q))
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1.7

1.8

1.9

2

1.8

1.85

1.9

1.95

2
6

6.5

7

7.5

Value function

xs 1.5

1.55

1.6

1.65

1.5

1.55

1.6

1.65
4.5

5

5.5

Value function

xs

Fig 6. Left: A visualisation of V ∗

ǫ (x, s) when X is α-stable with parameter choice q = 3,
ǫ = 2 and α = 1.6. Right: An illustration of the difference between V ∗

ǫ2
(x, s) (darker

surface) and V ∗

ǫ1,ǫ2
(x, s) (lighter surface) on C∗

I,ǫ1,ǫ2
for the same X and same parameters

as on the left. In this case A ≈ 1.63, where A is formally defined in Section 4.2.

and

Uǫ1,∞(x, s) =

(

ex

eǫ1

)−ζ1[

−
eǫ1

β

(
∫ βk∗

β(s−ǫ1)

eu(1+y)

eu − 1
du− ek

∗Φ(q)

)]

+

(

ex

eǫ1

)Φ(q)[eǫ1

β

(
∫ βk∗

β(s−ǫ1)

euy

eu − 1
du− e−k

∗ζ1

)]

.

where β = Φ(q) + ζ1 = 2δ and y = β−1.

The proof of this result is a lengthy computation provided in Appendix B.
Finally, if we set ǫ1 = ǫ, µ = r−σ2/2 for some r ≥ 0 and q = λ+ r for some
λ > 0 we recover Theorem 3.1 of [23].

APPENDIX A: COMPLEMENTARY RESULTS ON THE
INFINITESIMAL GENERATOR OF X

In this section we provide some results concerning the infinitesimal gen-
erator of X when applied to the scale function Z(q).

First assume that X is of unbounded variation and define an operator
(Γ,D(Γ)) as follows. D(Γ) stands for the family of functions f ∈ C2(0,∞)
such that the integral

∫

(−∞,0)

(

f(x+ y)− f(x)− yf ′(x)1{y≥−1}

)

Π(dy)

is absolutely convergent for all x > 0. For any f ∈ D(Γ), we define the
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function Γf : (0,∞) → R by

Γf(x) = −γf ′(x)+
σ2

2
f ′′(x)+

∫

(−∞,0)

(

f(x+y)−f(x)−yf ′(x)1{y≥−1}

)

Π(dy).

Similarly, if X is of bounded variation, then D(Γ) stands for the family of
f ∈ C1(0,∞) such that the integral

∫

(−∞,0)

(

f(x+ y)− f(x)
)

Π(dy)

is absolutely convergent for all x > 0 and, for f ∈ D(Γ), we define the
function Γf : (0,∞) → R by

Γf(x) = df ′(x) +

∫

(−∞,0)

(

f(x+ y)− f(x)
)

Π(dy).

In the sequel it should always be clear from the context in which of the two
cases we are and therefore there should be no ambiguity when writing D(Γ)
and Γ.

Lemma A.1. We have that Z(q) ∈ D(Γ) and the function x 7→ ΓZ(q)(x)
is continuous on (0,∞).

Proof. We prove the unbounded and bounded variation case separately.

Unbounded variation: To show that Z(q) ∈ D(Γ) it is enough to check
that the integral part of ΓZ(q) is absolutely convergent since Z(q) ∈ C2(0,∞).
Fix x > 0 and write the integral part of ΓZ(q) as

∫

(−∞,−δ)

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣Π(dy)

+

∫

(−δ,0)

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣Π(dy)

where the value δ = δ(x) ∈ (0, 1) is chosen such that x − δ > 0. For
y ∈ (−∞,−δ) the monotonicity of Z(q) implies

(38)
∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣ ≤ 2Z(q)(x) + Z(q)′(x)
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and for y ∈ (−δ, 0), using the mean value theorem, we have

|Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)|

= q|y||W (q)(ξ(y))−W (q)(x)| where ξ(y) ∈ (x+ y, x)

= q|y|

∣

∣

∣

∣

∫ x

ξ(y)
W (q)′(z) dz

∣

∣

∣

∣

≤ qy2 sup
z∈[x−δ,x]

W (q)′(z).(39)

Using these two estimates and defining C(δ) =
∫

(−δ,0) y
2Π(dy) <∞, we see

that
∫

(−∞,0)

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣Π(dy)

≤
(

2Z(q)(x) + Z(q)′(x)
)

Π(−∞,−δ) + qC(δ) sup
z∈[x−δ,x]

W (q)′(z) <∞.

For continuity, let x > 0 and choose δ = δ(x) ∈ (0, 1) such that x−2δ > 0
as well as a sequence (xn)n∈N converging to x. Moreover, let n0 ∈ N such
that for all n ≥ n0 we have |xn−x| < δ. In particular, it holds that xn−δ > 0
for n ≥ n0 and hence, using the estimates in (38) and (39), we have for all
n ≥ n0

|Z(q)(xn + y)− Z(q)(xn)− yZ(q)′(xn)1{y≥−1}|

≤ qy2 sup
z∈[xn−δ,xn]

W (q)′(z)1{y≥−δ} +
(

2Z(q)(xn) + Z(q)′(xn)
)

1{y<−δ}

≤ qy2 sup
z∈[x−2δ,x+δ]

W (q)′(z)1{y≥−δ} +
(

2Z(q)(x+ δ) + Z(q)′(x+ δ)
)

1{y<−δ}.

Since the last term is Π-integrable, the continuity assertion follows by dom-
inated convergence and the fact that Z(q) ∈ C2(0,∞).

Bounded variation: To show that Z(q) ∈ D(Γ) it is enough to show that
the integral part of ΓZ(q) is absolutely convergent since Z(q) ∈ C1(0,∞).
Using the monotonicity and the definition of Z(q), it is easy to see that for
fixed x > 0,

∫

(−∞,0)
|Z(q)(x+ y)− Z(q)(x)|Π(dy)

≤ 2Z(q)(x)Π(−∞,−1) + qW (q)(x)

∫

(−1,0)
|y|Π(dy) <∞.

The continuity assertion follows in a straightforward manner from dominated
convergence and the fact that Z(q) ∈ C1(0,∞).
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APPENDIX B: A LENGTHY COMPUTATION

Proof of Lemma 7.1. The first part is a short calculation using the
definition of γ, δ, ζ1, Φ(q) and that cosh(z) = ez+e−z

2 and sinh(z) = ez−e−z

2 .
As for the second part, recall that, for (x, s) ∈ C∗

I ∪D
∗
I ,

Uǫ1,∞(x, s) = esZ(q)(x− ǫ1) + eǫ1W (q)(x− ǫ1)

∫ k∗

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt.

It is easy to see that

et
Z(q)(t)

W (q)(t)
= et

δσ2

2

(

1

1− e−2δt
+

1

e2δt − 1

)

− et
γσ2

2

which, after a change of variables, gives
∫ k∗

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt =

σ2

4

(
∫ βk∗

β(s−ǫ1)

eu(1+y)

eu − 1
du+

∫ βk∗

β(s−ǫ1)

euy

eu − 1
du

)

+
γσ2

2
(es−ǫ1 − ek

∗

),

where β = Φ(q) + ζ1 = 2δ and y = β−1. Denote the first integral on the
right-hand side I1 and the second integral I2. After some algebra one sees
that Uǫ1,∞(x, s) equals

es

2

(

eΦ(q)(x−ǫ1) + e−ζ1(x−ǫ1)
)

−
eǫ1+k

∗

γ

β

(

eΦ(q)(x−ǫ1) − e−ζ(x−ǫ1)
)

−
eǫ1

2β
e−ζ1(x−ǫ1)I1 +

eǫ1

2β
eΦ(q)(x−ǫ1)I2(40)

+
eǫ1

2β
eΦ(q)(x−ǫ1)I1 −

eǫ1

2β
e−ζ1(x−ǫ1)I2.

Next, note that the last line in (40) can be rewritten as

eǫ1

2β

(

eΦ(q)(x−ǫ1) + e−ζ1(x−ǫ1)
)

(I1 − I2)−
eǫ1

2β
e−ζ1(x−ǫ1)I1 +

eǫ1

2β
eΦ(q)(x−ǫ1)I2

=
eǫ1

2

(

eΦ(q)(x−ǫ1) + e−ζ1(x−ǫ1)
)

(ek
∗

− es−ǫ1)

−
eǫ1

2β
e−ζ1(x−ǫ1)I1 +

eǫ1

2β
eΦ(q)(x−ǫ1)I2

where the equality follows from evaluating I1 − I2. Plugging this into (40)
and simplifying yields

Uǫ1,∞(x, s) = −e−ζ1(x−ǫ1)eǫ1β−1I1 + eΦ(q)(x−ǫ1)eǫ1β−1I2

+eǫ1+Φ(q)(x−ǫ1)ek
∗

β−1ζ1 + eǫ1−ζ1(x−ǫ1)ek
∗

β−1Φ(q).
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Rearranging the terms completes the proof.
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