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Abstract

We extend the spatial Λ-Fleming-Viot process introduced in [BEV10] to incorpo-
rate recombination. The process models allele frequencies in a population which is
distributed over the two-dimensional torus T(L) of sidelength L and is subject to two
kinds of reproduction events :small events of radius O(1) and much rarer large events
of radius O(Lα) for some α ∈ (0, 1]. We investigate the correlation between the times
to the most recent common ancestor of alleles at two linked loci for a sample of size
two from the population. These individuals are initially sampled from ‘far apart’ on
the torus. As L tends to infinity, depending on the frequency of the large events, the
recombination rate and the initial distance between the two individuals sampled, we
obtain either a complete decorrelation of the coalescence times at the two loci, or a
sharp transition between a first period of complete correlation and a subsequent period
during which the remaining times needed to reach the most recent common ancestor at
each locus are independent. We use our computations to derive approximate probabil-
ities of identity by descent as a function of the separation at which the two individuals
are sampled.
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École Polytechnique-Museum National d’Histoire Naturelle-Fondation X and by the ANR project MANEGE
(ANR-09-BLAN-0215).

1



1 Introduction

1.1 Background

In the 30 years since its introduction, Kingman’s coalescent has become a fundamental tool
in population genetics. It provides an elegant description of the genealogical trees relating
individuals in a sample from a highly idealised biological population, in which it is assumed
that all individuals are selectively neutral and experience identical conditions, and that
population size is constant. Spurred on by the flood of DNA sequence data, theoreticians
have successfully extended the classical coalescent to incorporate more realistic biological
assumptions such as varying population size, natural selection and genetic structure. How-
ever, it has proved surprisingly difficult to produce satisfactory extensions for populations
living (as many do) in continuous two-dimensional habitats - a problem dubbed the pain in
the torus by Felsenstein (1975).

In the classical models of population genetics, it is customary to assume that populations
are either panmictic, meaning in particular that they have no spatial structure, or that they
are subdivided into ‘demes’. The demes sit at the vertices of a graph which is chosen to
caricature the geographic region in which the population resides. Thus, for example, for a
population living in a two-dimensional spatial continuum one typically takes the graph to
be (a subset of) Z2. Reproduction takes place within demes and interaction between the
subpopulations is through migration along the edges of the graph. Models of this type are
collectively known as stepping stone models.

However, in order to apply a stepping stone model to populations that are distributed
across continuous space, one is forced to make an artificial subdivision. Moreover, the
predictions of stepping stone models fail to match observed patterns of genetic variation.
For example, they overestimate genetic diversity (often by many orders of magnitude) and
they fail to predict the long-range correlations in allele frequencies seen in real populations.

In recent work ([Eth08, BEV10, BKE10]) we introduced a new framework in which to
model populations evolving in a spatial continuum. The key idea, which enables us to
overcome the pain in the torus, is that reproduction is driven by a Poisson process of events
which are based on geographical space rather than on individuals. This leads, in particular,
to a class of models that could reasonably be called continuum stepping stone models, but
it also allows one to incorporate large-scale extinction/recolonisation events. Such events
dominate the demographic history of many species. They appear in our framework as ‘local
population bottlenecks’. In [BKE10], we show (numerically) how the inclusion of such events
can lead to long-range correlations in allele frequencies. In [BEV10] a rigorous mathematical
analysis of a class of models on a torus in R2 illustrates the reduction in genetic diversity
that can result from such large-scale demographic events. We expand further on this in §2.
Thus large-scale events provide one plausible explanation of the two deficiencies of stepping
stone models highlighted above, but of course they are not the only possible explanation.

A natural question now arises:how could we infer the existence of these large-scale events
from data? One possible answer is through correlations in patterns of variation at different
genetic loci. Recall that in a diploid population (in which chromosomes are carried in
pairs) correlations between linked genes (that is genes occurring on the same chromosome)
are broken down over time by recombination (which results in two genes on the same
chromosome being inherited from different chromosomes in the parent). We say that genes
are loosely linked, if the rate of recombination events is high (for example if the chance of
a recombination in a single generation is O(1)). In the Kingman coalescent, genealogies
relating loosely linked genes evolve independently. This is because on the timescale of the
coalescent, the states in which lineages ancestral to both loci are in the same individual
vanish instantaneously. It is well known that if a population experiences a bottleneck, this
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is no longer the case. As we trace backwards in time, when we reach the bottleneck, we
expect to see a significant proportion of surviving lineages coalesce at the same time and
so we see correlations in genealogies even at unlinked loci. With local bottlenecks we can
expect a rather more complicated picture. The degree of correlations across loci will depend
upon the spatial separation of individuals in the sample.

The purpose of this paper is to extend the model of [BEV10] to diploid populations,
to incorporate recombination, and to provide a first rigorous analysis of the correlations in
genealogies at different loci in the presence of local extinction/recolonisation events. Since
the questions we shall address and some of the methods we shall use here are related to
those of [BEV10], the reader may find it useful to have some familiarity with the results of
that paper.

1.2 The model

In [BEV10], we introduced the spatial Λ-Fleming-Viot process as a model of a haploid
population evolving in a spatial continuum. It is a Markov process taking its values in
the set of functions which associate to each point of the geographical space a probability
measure on a compact space, K, of genetic types. If Φ is the current state of the population
and x is a spatial location, the measure Φ(x) can be interpreted as the distribution of the
type of an individual sampled from location x. The dynamics are driven by a Poisson point
process of events. An event specifies a spatial region, A say, and a number u ∈ (0, 1]. As
a result of the event, a proportion u of individuals within A are replaced by offspring of a
parent sampled from a point picked uniformly at random from A. In [BEV10] the regions
A are chosen to be discs of random radius (whose centres fall with intensity proportional to
Lebesgue measure) and the distribution of u can depend on the radius of the disc. Under
appropriate conditions, existence and uniqueness in law of the process were established.

Here we wish to extend this framework in a number of directions. First, whereas in
[BEV10] a single parent was chosen from the region A, here we allow A to be repopulated
by the offspring of a finite (random) number of its inhabitants. Second, we assume that
the population is diploid. We shall follow (neutral) genes at two distinct (linked) loci,
with recombination acting between them. Writing K1 and K2 for the possible types at the
two loci, the type of an individual is an element of K1 × K2 (which we can identify with
[0, 1] × [0, 1]). As in [BEV10], we work on the torus T(L) of side L in R2 and we suppose
that there are two types of event:small events, affecting regions of radius O(1), which
might be thought of as ‘ordinary’ reproduction events; and ‘large’ events, representing
extinction/recolonisation events, affecting regions of radius O(Lα) where α ∈ (0, 1] is a
fixed parameter. In order to keep the notation as simple as possible, we shall only allow two
different radii for our events, Rs corresponding to ‘small’ reproduction events and RBLα

corresponding to ‘large’ local bottlenecks. We shall also suppose that the corresponding
proportions us and uB are fixed. Neither of these assumptions is essential to the results,
which would carry over to the more general setting in which each of Rs, RB, us and uB is
sampled (independently) from given distributions each time an event occurs.

Let us specify the dynamics of the process more precisely. Let

• Rs, RB ∈ (0,∞), us, uB ∈ (0, 1) and α ∈ (0, 1];

• λs, λB be two distributions on N = {1, 2, . . .} with bounded support and such that
λs({1}) < 1;

• (ρL)L∈N be an increasing sequence such that ρL ≥ log L for all L ∈ N, and L−2αρL

tends to a finite limit (possibly zero) as L →∞; and
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• (rL)L∈N be a non-increasing sequence with values in (0, 1].

For L ∈ N, we denote by ΠL
s a Poisson point process on R × T(L) with intensity measure

dt ⊗ dx, and by ΠL
B another Poisson point process on R × T(L), independent of ΠL

s , with
intensity measure (ρLL2α)−1dt⊗dx. The spatial Λ-Fleming-Viot process ΦL on T(L) evolves
as follows.

Small events: If (t, x) is a point of ΠL
s , a reproduction event takes place at time t within

the closed ball B(x,Rs).

• A number j is sampled according to the measure λs;

• j sites, z1, . . . , zj are selected uniformly at random from B(x, Rs); and,

• for each i = 1, . . . , j, a type (ai, bi) is sampled according to ΦL
t−(zi).

If j > 1, then for all y ∈ B(x,Rs),

ΦL
t (y) := (1− us)ΦL

t−(y) +
us(1− rL)

j

j∑

i=1

δ(ai,bi) +
usrL

j(j − 1)

∑

i1 6=i2

δ(ai1
,bi2

).

If j = 1, for each y ∈ B(x,Rs),

ΦL
t (y) := (1− us)ΦL

t−(y) + usδ(a1,b1).

In both cases, sites outside B(x,Rs) are not affected.

Large events: If (t, x) is a point of ΠL
B, an extinction/recolonisation event takes place at

time t within the closed ball B(x, LαRB).

• A number j is sampled according to the measure λB;

• j sites, z1, . . . , zj are selected uniformly at random from B(x, LαRB); and

• for each i = 1, . . . , j, a type (ai, bi) is sampled according to ΦL
t−(zi).

For each y ∈ B(x, LαRB),

ΦL
t (y) := (1− uB)ΦL

t−(y) +
uB

j

j∑

k=1

δ(ak,bk).

Again, sites outside the ball are not affected.

Remark 1.1. 1. The scheme of choosing j parental locations and then sampling a parental
type at each of those locations is convenient when one is interested in tracing lineages
ancestral to a sample from the population. It can be thought of as sampling j indi-
viduals, uniformly at random from the ball affected by the reproduction (or extinc-
tion/recolonisation) event, to reproduce. Of course this scheme allows for the possi-
bility of more than one parent contributing offspring so that we should more correctly
call this model a spatial Ξ-Fleming-Viot process, but to emphasize the close link with
previous work we shall abuse terminology and use the name Λ-Fleming-Viot process.

2. The recombination scheme mirrors that generally employed in Moran models. The
quantity rL is the proportion of offspring who, as a result of recombination, inherit
the types at the two loci from different parental chromosomes. We have chosen to
sample the types of those two chromosomes from different points in space. The result
of this is that provided the individuals sampled from the current population are in
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distinct geographic locations, if two ancestral lineages are at spatial distance zero, then
they are necessarily in the same individual. This is mathematically convenient (c.f.
Remark 3.2), but, arguably, not terribly natural biologically. However, changing the
sampling scheme, for example so that the two recombining chromosomes are sampled
from the same location, would not materially change our results.

3. We are assuming that recolonisation is so rapid after an extinction event that the
effects of recombination during recolonisation are negligible.

4. Since T(L) is compact, the overall rate at which events fall is finite for any L and
the corresponding spatial Λ-Fleming-Viot process with recombination is well-defined.
Notice that a given site, x say, is affected by a small event at rate πR2

s = O(1) (since
the centre of the event must fall within a distance Rs of x), whereas it is hit by a large
event at rate πR2

Bρ−1
L = O(ρ−1

L ). So reproduction events are frequent, but massive
extinction/recolonisation events are rare.

1.3 Genealogical relationships

Having established the (forwards in time) dynamics of allele frequencies in our model,
we now turn to the genealogical relationships between individuals in a sample from the
population.

First suppose that we are tracing the lineage ancestral to a single locus on a chromosome
carried by just one individual in the current population. Recombination does not affect us
and we see that the lineage will move in a series of jumps:if its current location is z, then
it will jump to z + x (resp. z + Lαx) due to a small (resp. large) event with respective
intensities

LRs(0, x) us
dx

πR2
s

and
LRB

(0, x)
ρL

uB
dx

πR2
B

, (1)

where LR(x, y) denotes the volume of the intersection B(x,R)∩B(y,R) (viewed as a subset
of T(L) for the first intensity measure, and of T(L1−α) for the second). To see this, note
first that by translation invariance of the model we may suppose that z = 0. In order for
the lineage to experience a small jump, say, from the origin to x, the origin and the position
x must be covered by the same event. This means that the centre of the event must lie in
both B(0, Rs) and B(x,Rs). The rate at which such events occur is LRs(0, x). The lineage
will only jump if it is sampled from the portion us of the population that are offspring of the
event and then it will jump to the position of its parent, which is uniformly distributed on
a ball of area πR2

s. Combining these observations gives the first intensity in (1). A lineage
ancestral to a single locus in a single individual thus follows a compound Poisson process
on T(L).

Suppose now that we sample a single individual, but trace back its ancestry at both loci.
We start with a single lineage which moves, as above, in a series of jumps as long as it is
in the fraction us(1− rL) of ‘non-recombinants’ in the population. However, every time it
is hit by a small event, there is a probability usrL that it was created by recombination
from two parental chromosomes, whose locations are sampled uniformly at random from
the region affected by the event. If this happens, we must follow two distinct lineages, one
for each locus, which jump around T(L) in an a priori correlated manner (since they may
be hit by the same events), until they coalesce again. This will happen if they are both
affected by an event (small or large) and are both derived from the same parent (which for
a given event has probability 1/j in our notation above).

Thus, the ancestry of the two loci from our sampled individual is encoded in a system
of splitting and coalescing lineages. If we now sample two individuals, (A,B) and (a, b),
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we represent their genealogical relations at the two loci by a process AL taking values in
the set of partitions of {A, a,B, b} whose blocks are labeled by an element of T(L). As in
[BEV10], at time t ≥ 0 each block of AL

t contains the labels of all the lineages having a
common ancestor (i.e., carried by the same individual) t units of time in the past, and the
mark of the block records the spatial location of this ancestor. The only difference with the
ancestral process defined in [BEV10] is that blocks can now split due to a recombination
event.

Of course, if rL is small, then the periods of time when the lineages are in a single
individual, that is during which they have coalesced and not split apart again, can be
rather extensive. This has the potential to create strong correlations between the two loci.
The other source of correlation is the large events which can cause coalescences between
lineages even when they are geographically far apart. To gain an understanding of these
correlations, we ask the following question:

The problem: Given α, ρL and rL, is there a minimal distance D∗
L such that, asymptoti-

cally as L →∞,

• if we sample two individuals (A,B) and (a, b) at distance at least D∗
L from each other,

then the coalescence time of the ancestral lineages of A and a is independent of that
of the ancestral lineages of B and b (in other words, genealogies at the two loci are
completely decorrelated);

• if two individuals are sampled at a distance less than D∗
L, then the genealogies at the

two loci are correlated (i.e., the lineages ancestral to A and B, and similarly those of
a and b, remain sufficiently ‘close together’ for a sufficiently long time that there is a
significant chance that the coalescence of A and a implies that of B and b at the same
time or soon after)?

1.4 Main results

Before stating our main results, we introduce some notation. We shall always denote the
types of the two individuals in our sample by (A,B) and (a, b). The same letters will be
used to distinguish the corresponding ancestral lineages. As we briefly mentioned in the last
section, the genealogical relationships between the two loci at time t ≥ 0 before the present
are represented by a marked partition of {A, a, B, b}, in which each block corresponds to an
individual in the ancestral population at time t who carries lineages ancestral to our sample.
The labels in the block are those of the corresponding lineages and the mark is the spatial
location of the ancestor. For any such marked partition aL, we write PaL for the probability
measure under which the genealogical process starts from aL, with the understanding that
marks then evolve on the torus T(L). Typically, our initial configuration will be of the form

aL :=
{({A,B}, x1

L

)
,
({a, b}, x2

L

)}
,

where the separation xL := x1
L − x2

L between the two sampled individuals will be assumed
to be large. The coalescence times of the ancestral lineages at each locus are denoted by
τL
Aa and τL

Bb. Finally, we write |x| for the Euclidean norm of x ∈ R2 (or in a torus of any
size) and σ2 > 0 is a constant, whose value is given just after (7). (It corresponds, after a
suitable space-time rescaling, to the limit as L →∞ of the variance of the displacement of
a lineage during a time interval of length one.)

For later comparison, we first record the asymptotic behaviour of the coalescence time
at a single locus. The proof of the following result is in §3.
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Proposition 1.2. Suppose that for each L ∈ N the two individuals comprising our initial
configuration aL are at separation xL ∈ T(L). Suppose also that log |xL|

log L → β ∈ (α, 1] as
L →∞. (In particular, α < 1 here.) Then,
a) For all t ∈ [β, 1],

lim
L→∞

PaL

[
τL
Aa > ρLL2(t−α)

]
=

β − α

t− α
.

b) For all t > 0,

lim
L→∞

PaL

[
τL
Aa >

1− α

2πσ2
ρLL2(1−α) log L t

]
=

β − α

1− α
e−t.

Remark 1.3. Observe that the timescale considered in case b) above coincides with the
quantity $L defined in Theorem 3.3 of [BEV10]. Indeed, using the notation of [BEV10],
the variance σ2 is given by the following limit :

σ2 = lim
L→∞

ρL

L2α
σ2

s + σ2
B,

where σ2
s and σ2

B are defined in Equation (20) of [BEV10]. Now, if ρLL−2α → 0 as in case
a) of Theorem 3.3, we obtain

1− α

2πσ2
ρLL2(1−α) log L ≈ 1− α

2πσ2
B

ρLL2(1−α) log L,

while if ρLL−2α → 1/b > 0, we have

1− α

2πσ2
ρLL2(1−α) log L ≈ 1− α

2π(1
b σ2

s + σ2
B)

1
b

L2 log L =
1− α

2π(σ2
s + bσ2

B)
L2 log L.

In both cases, the timescale considered in Proposition 1.2 is the same as the quantity $L of
Theorem 3.3 of [BEV10].

In the case α = 0, Proposition 1.2 precisely matches corresponding results of [CG86]
and [ZCD05] for coalescing random walks on a torus in Z2. For α > 0, we see that if
lineages start at a separation of O(Lβ), with β > α, then the small events don’t affect the
asymptotic coalescence times; they are the same as those for a random walk with bounded
jumps on T(L1−α) started at separation O(Lβ(1−α)). In particular, the first statement tells
us that the chance that coalescence occurs at a time ¿ ρLL2(1−α) log L is (1− β)/(1− α).
If this does not happen, then since the time taken for the random walks to reach their
equilibrium distribution is O(ρLL2(1−α) log L), in these units, the additional time that we
must wait to see a coalescence is asymptotically exponential.

When we consider the genealogies at two loci, several regimes appear depending on the
recombination rate and the initial distance between the individuals sampled.

Theorem 1.4. Suppose (aL)L∈N is as in Proposition 1.2. If

lim sup
L→∞

log
(
1 + log ρL

rLρL

)

2 log L
≤ β − α, (2)

then we have:
a) For all t ∈ [β, 1],

lim
L→∞

PaL

[
τL
Aa ∧ τL

Bb > ρLL2(t−α)
]

=
(β − α)2

(t− α)2
.

b) For all t > 0,

lim
L→∞

PaL

[
τL
Aa ∧ τL

Bb >
1− α

2πσ2
ρLL2(1−α) log L t

]
=

(β − α)2

(1− α)2
e−2t.

7



Under the conditions of Theorem 1.4, the individuals are initially sampled at a distance
much larger than the radius of the large events, and recombination is fast enough for the
coalescence times at the two loci to be asymptotically independent (see Remark 1.7). For
slower recombination rates this is no longer the case. When Condition (2) is not satisfied,
we have instead:

Theorem 1.5. Suppose (aL)L∈N is as in Proposition 1.2. Assume there exists γ ∈ (β, 1)
such that

lim
L→∞

log
(
1 + log ρL

rLρL

)

2 log L
= γ − α. (3)

Then,
a) For all t ∈ [β, γ],

lim
L→∞

PaL

[
τL
Aa ∧ τL

Bb > ρLL2(t−α)
]

=
β − α

t− α
,

b) For all t ∈ (γ, 1],

lim
L→∞

PaL

[
τL
Aa ∧ τL

Bb > ρLL2(t−α)
]

=
(β − α)(γ − α)2

(γ − α)(t− α)2
,

c) For all t > 0,

lim
L→∞

PaL

[
τL
Aa ∧ τL

Bb >
1− α

2πσ2
ρLL2(1−α) log L t

]
=

(β − α)(γ − α)2

(γ − α)(1− α)2
e−2t.

This time, we observe a ‘phase transition’ at time ρLL2(γ−α). Asymptotically, coales-
cence times are completely correlated for times of O(ρLL2(γ−α)), but conditional on being
greater than this ‘decorrelation threshold’ they are independent. To understand this thresh-
old, recall from Proposition 1.2 that, initially, coalescence of lineages ancestral to a single
locus happens on the exponential timescale ρLL2(t−α), t ∈ [β, 1] and is driven by large events.
This tells us that the effect of recombination will be felt only if exactly one of the lineages
ancestral to A and B (or to a and b) is ‘hit’ by a large event. Since recombination events
between A and B result in only a small separation of the corresponding ancestral lineages,
we can expect that many of them will rapidly be followed by coalescence of the correspond-
ing lineages (due to small events). This leads us to the idea of an ‘effective’ recombination
event, which is one following which at least one of the lineages ancestral to A and B is
affected by a large event before they coalesce due to small events. We shall see in Proposi-
tion 4.1 that recombination is ‘effective’ on the linear timescale ρL(1 + (log ρL)/(rLρL)) t,
t ≥ 0. Under condition (3) the timescales of coalescence and effective recombination cross
over precisely at time ρLL2(γ−α).

Two cases remain:

The case α < β ≤ 1, γ ≥ 1: If γ > 1, the arguments of the proof of Theorem 1.5 show
that the recombination is too slow to be effective on the timescale of coalescence and
so the coalescence times at the two loci are completely correlated and are given by
Proposition 1.2. For γ = 1, the result depends on the precise form of (log ρL)/(rLρL).
If it remains close enough to L2(1−α) (or smaller), the proof of Theorem 1.5 shows
that lineages are completely correlated on the timescale ρLL2(t−α), t ≤ 1, and then,
conditional on not having coalesced before ρLL2(1−α), they evolve independently on
the timescale ρLL2(1−α) log L t. On the other hand, if (log ρL)/(rLρLL2(1−α)) grows
to infinity sufficiently fast, then, just as in the case γ > 1, recombination is too slow
to be effective.
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The case β ≤ α ≤ 1: If we drop our assumption that the separation of the individuals in
our sample is much greater than the radius of the largest events, then we can no longer
make such precise statements. Proposition 6.4(a) in [BEV10] (with ψL = Lα) shows
that the coalescence time for lineages ancestral to a single locus will now be at most
O(ρL). This does tell us that if rLρL → 0 as L →∞, then asymptotically we will not
see any recombination before coalescence and the coalescence times τL

Aa and τL
Bb are

identical. However, in contrast to the setting of Proposition 1.2, even asymptotically,
their common value depends on the exact separation of the individuals sampled. The
same reasoning is valid when rL ¿ (log ρL)/ρL. In this case, although we may see
some recombination events before any coalescence occurs, a closer look at the proof of
Proposition 4.1 reveals that the time spent in distinct individuals by the two lineages
ancestral to A,B, say, in O(ρL) units of time is negligible compared to ρL. Thus,
with high probability, any large event affecting lineages ancestral to our sample will
occur at a time when the lineages ancestral to A and B are in the same individual,
(as are those ancestral to a and b). As a result, once again τL

Aa = τL
Bb with probability

tending to 1.

On the other hand, suppose rL remains large enough that lineages ancestral to A and
B have a chance to be hit by a large event while they are in different individuals
and thus jump to a separation O(Lα) (the effective recombination of §4.1). We are
still unable to recover precise results. The reason is that even after such an event,
we may be in a situation in which all lineages could be hit by the same large event,
or at least remain at separations O(Lα). But we shall see that a key to the proofs
of Theorems 1.4 and 1.5 is the fact that, in the settings considered there, where
individuals are sampled from far apart, whenever two lineages come to within 2RBLα

of one another, the other ancestral lineages are still very far from them. This gives
the pair time to merge without ‘interference’ from the other lineages. Since lineages
at separations O(Lα) are correlated and their coalescence times depend strongly on
their precise (geographical) paths on this scale, it is difficult to quantify the extent
to which the fact that the ancestral lines of A,B and of a, b start within the same
individuals makes the coalescence times τL

Aa and τL
Bb more correlated. Nonetheless,

this is an important question and will be addressed elsewhere.

To answer our initial question, we see from Theorems 1.4 and 1.5 (and the subsequent
discussion) that D∗

L is informally given by

log
(
1 +

log ρL

rLρL

)
≈ 2(log D∗

L − α log L), i.e. D∗
L ≈ Lα

√
1 +

log ρL

rLρL
.

When the sampling distance is greater than the radius of the largest events, correlated
genealogies are only possible when recombination is slow enough, or large events occur
rarely enough, that (log ρL)/(rLρL) À 1. If for instance rL ≡ r > 0, the two loci are
always asymptotically decorrelated. On the other hand, if γ is as in (3) (note that γ does
not need to exist for Condition (2) to hold) and the sampling distance is Lβ, Theorem 1.4
shows that if β ≥ γ the genealogies at the two loci are asymptotically independent, whereas
Theorem 1.5 tells us that if β ∈ (α, γ), there is a first phase of complete correlation. Thus,
D∗

L‘=’Lγ .
Before closing this section, let us make two remarks:

Remark 1.6. (Bounds on the rates of large events.) Recall that we imposed the
condition log L ≤ ρL ≤ CL2α. The reason for the upper bound is that in [BEV10], we
showed that the coalescence of the ancestral lineages is then driven by the large events and,
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moreover, is very rapid once lineages are at separation O(Lα) (see the proof of Theorem 3.3
in [BEV10]). Similar results should hold, although on different timescales, in the other
cases presented in [BEV10]. However, to keep the presentation of our results as simple as
possible, we have chosen to concentrate on this upper bound. The (rather undemanding)
lower bound is needed in the proof of Proposition 4.4.

Remark 1.7. (Generalisation of Theorems 1.4 and 1.5 to distinct coalescence
times.) In these two theorems, we could also consider the probabilities of events of the
form {τL

Aa > ρLL2(t−α) and τL
Bb > ρLL2(t′−α)}, with t < t′. However, they can be computed

by a simple application of Theorem 1.4 or 1.5 at time t, and the Markov property. Indeed,
arguments similar to those of the proofs of Lemma C and Lemma 3.7 in §3 tell us that
the distance between lineages ancestral to B and b at time ρLL2(t−α), conditional on not
having coalesced by this time, lies in [Lt/(log L), Lt log L]. Proposition 1.2 then enables us
to conclude. We leave this generalisation to the reader.

The rest of the paper is laid out as follows. In §2 we provide more detail of the motivation
for the question addressed here. In §3, we prove Proposition 1.2 and collect several results
on genealogies of a sample from a single locus that we shall need in the sequel. Since most of
these results are close to those established in [BEV10], or require techniques used in [CG86]
and [ZCD05] for similar questions on the discrete torus, their proofs will only be sketched.
Our main results are proved in §4:we define an effective recombination rate in §4.1, use it
to find an upper bound on the time we must wait before the two lineages ancestral to A
and B start to evolve independently in §4.2 and finally derive the asymptotic coalescence
times of our two pairs of lineages in §4.3.

2 Biological motivation

In this section we expand on the biological motivation for our work.
It has long been understood that for many models of spatially distributed populations,

if individuals are sampled sufficiently far from one another, then the genealogical tree that
records the relationships between the alleles carried by those individuals at a single locus
is well-approximated by a Kingman coalescent with an ‘effective population size’ capturing
the influence of the geographical structure. If the underlying population model is a stepping
stone model, with the population residing in discrete demes located at the vertices of Z2

or T(L) ∩ Z2, individuals reproducing within demes and migration modelled as a random
walk, then the genealogical trees relating individuals in a finite sample from the population
are traced out by a system of coalescing random walks. The case in which random walks
coalesce instantly on meeting corresponds (loosely) to a single individual living in each
deme in which case the stepping stone model reduces to the voter model. In this setting,
and with symmetric nearest neighbour migration, convergence to the Kingman coalescent
as the separation of individuals in the initial sample tends to infinity was established for
Z2 in [CG86, CG90], and for T(L) ∩ Z2 in [Cox89]. In [CD02, ZCD05], Zähle, Cox and
Durrett prove the same kind of convergence for coalescing random walks on T(L)∩Z2 with
finite variance jumps and delayed coalescence (describing the genealogy for a sample from
Kimura’s stepping stone model on the discrete torus in which reproduction within each
deme is modelled by a Wright-Fisher diffusion). In [LS06], Limic and Sturm prove the
analogous result when mergers between random walks within a deme are not necessarily
pairwise. In the same spirit but on the continuous space T(L) and with additional large
extinction/recolonisation events (similar to those described in §1.2), the same asymptotic
behaviour is obtained in [BEV10] for the systems of coalescing compound Poisson processes
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describing the genealogy of a sample from the spatial Λ-Fleming-Viot process, under suitable
conditions on the frequency and extent of the large events.

In all of these examples, the result stems from a separation of timescales. For example,
in [BEV10] we were concerned with the genealogy of a sample picked uniformly at random
from the whole torus. Under this assumption, the time that two lineages need to be ‘gath-
ered’ close enough together that they can both be affected by the same event dominates
the additional time the lineages take to coalesce, having being gathered. As explained in
§1.4, this decomposition does not hold when lineages start too close together, and so the
tools developed for well-separated samples are of no use in the study of local correlations.
However, although we still cannot make precise statements about the genealogy of samples
which are initially too close together, the work of §4.1 and §4.2, which are concerned with
‘effective recombination’ and ‘decorrelation’, provides a much better understanding than we
had before of the local mechanisms that create correlations between nearby lineages, how
strong these correlations are, and how to ‘escape’ them.

Our main results in this paper are concerned with samples taken at ‘intermediate’ scales.
Individuals are sampled at pairwise distances much larger than the radius of the largest
events, but these distances can still be much less than the radius of the torus. In this
case, the ‘gathering time’ of two lineages starting at separation xL depends on that sepa-
ration, but asymptotically this dependence is only through log |xL|/ log L. As in the case
of a uniform sample, the gathering time dominates the additional time to coalescence. In
Theorem 3.3 of [BEV10] we showed that if we sample a finite number of individuals uni-
formly at random from the geographic range of a population which is subject to small and
large demographic events, then measuring time in units of size $L = 1−α

2πσ2 (ρL/L2α)L2 log L
(under the assumption on ρL used here), their genealogical tree is determined by King-
man’s coalescent. In particular, if ρL < L2α (i.e., large events are not too rare), one major
effect of the presence of large extinction/recolonisation events is to reduce the effective
population size and, consequently, genetic diversity. The assumption of uniform sampling
guarantees that initially ancestral lineages are O(L/ log L) apart. Proposition 1.2 extends
the result by showing that, if we sample our individuals from much closer together, then
we should consider two timescales. The first is (ρL/L2α)L2t, t ∈ [β, 1]. The second kicks in
after O(ρLL2(1−α)), when the lineages start to feel the fact that space is limited and their
ancestries evolve on the linear timescale $Lt. Now, by the same reasoning, if there were
no large events these timescales would be, respectively, L2t, t ∈ [β, 1], and 1

2πσ2
s
L2 log Lt,

t > 0. Of course one never observes genealogies directly and so, for illustration, we intro-
duce (infinitely many alleles) mutation into our model and compute the probability that
two individuals sampled at a given separation are identical by descent (IBD) as a function
of the exponent β. In other words, what is the probability that the two individuals carry
the same type (at a given locus) because it was inherited from a common ancestor.

Since mutations are generally assumed to occur at a linear rate, whilst the first phase
of the genealogical tree develops on a much slower exponential timescale, for a given time
parameter t ∈ [β, 1], asymptotically as L → ∞, we would see either zero or infinitely
many mutations on the tree. However, let us suppose that L is large and write θ for the
mutation rate at locus A. We denote by cL the ratio ρL/L2α. Since IBD is equivalent to
our individuals experiencing no mutation between the time of their most recent common
ancestor and the present, the probability of IBD of two individuals sampled at distance Lβ
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Figure 1: Probability of IBD at a single locus, as a function of β. Here, L = 105, α = 0.1,
cL = 0.01 and θ = 10−3. The solid line corresponds to the case with small and large events,
the dash-dot line to the case with only small events. Geographical correlations vanish
around β = 0.32 without large events, and are positive up to β = 0.52 when large events
occur.

is given by

ELβ

[
e−2θτL

Aa
] ≈ ELβ

[
e−2θτL

Aa1{cLL2β≤τL
Aa≤cLL2}

]
+ ELβ

[
e−2θτL

Aa1{cLL2<τL
Aa}

]

=
∫ cLL2

cLL2β

e−2θtPLβ

[
τL
Aa ∈ dt

]
+

∫ ∞

cLL2

e−2θtPLβ

[
τL
Aa ∈ dt

]

≈ (β − α)
∫ 1

β

e−2θcLL2u

(u− α)2
du +

β − α

1− α

∫ ∞

1/ log L
e−2θcLL2 log L ue−udu, (4)

where the last line uses a change of variable and the results of Proposition 1.2. The corre-
sponding quantity when there are no large events is given by

β

∫ 1

β

e−2θL2u

u2
du + β

∫ ∞

1/ log L
e−2θL2 log L ue−udu.

The leading term in each sum is the first one, and we thus see that if cL ¿ 1 (i.e., ρL ¿ L2α),
then, as expected, the probability of IBD is higher in the presence of large events and,
moreover, as a consequence of shorter genealogies, correlations between gene frequencies
persist over longer spatial scales. See Figure 1 for an illustration (in which only the leading
terms are plotted). In classical models IBD decays approximately exponentially with the
sampling distance, at least over small scales. In [BKE10], a numerical investigation of a
similar model to that presented here revealed approximately exponential decay over small
scales followed by a transistion to a different exponential rate over somewhat larger scales.
Since the (rigorous) results of Proposition 1.2 only apply for sufficiently well separated
samples, our arguments above cannot capture this. They do, on the other hand, give a
clear indication of the reduction of effective population size due to large events.

Local bottelnecks are not the only explanations for a reduced effective population size.
For example, selection or fluctuating population sizes can have the same effect, and so we
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should like to find a more ‘personal’ signature of the presence of demographic events of
different orders of magnitude. The idea that we explore here is to consider several loci on
the same chromosome, subject to recombination, and to investigate the pattern of linkage
disequilibrium obtained under the assumptions of §1.4. Using the results of Theorems 1.4
and 1.5, we have

PLβ [IBD at both loci] = ELβ

[
e−2(θ1τL

Aa+θ2τL
Bb)

]

≈ ELβ

[
e−2θ1τL

Aa−2θ2τL
Bb1{cLL2β≤τL

Aa=τL
Bb≤cLL2γ}

]

+ ELβ

[
e−2θ1τL

Aa1{τL
Aa>cLL2γ}

]
× ELβ

[
e−2θ2τL

Bb1{τL
Bb>cLL2γ}

]
,

where θ1 and θ2 denote the mutation rates at each locus and the first integral is 0 if
Condition (2) holds (i.e., if there is no first period of complete correlation). By the same
computations as in (4), the leading terms in this expression are

(β − α)
∫ γ

β

e−2(θ1+θ2)cLL2u

(u− α)2
du + (β − α)2

(∫ 1

γ

e−2θ1cLL2u

(u− α)2
du

)(∫ 1

γ

e−2θ2cLL2u

(u− α)2
du

)
. (5)

On the other hand, when there are no large events, the analysis of Lemma 4.3 (with effective
recombination replaced by recombination and the separation to attain of the order of L)
tells us that the time two lineages initially in the same individual need to ‘decorrelate’ is of
the order of r−1

L log L. Here r−1
L is the expected time to wait until we see a recombination

event, and log L is (roughly) the mean number of recombination events before we see one
after which the lineages remain separated for a duration O(Lt) for some t ∈ [β, 1]. Hence,
when there are only small events, the leading terms in the probability of IBD at both loci
are

β

∫ γ∗L

β

e−2(θ1+θ2)L2u

u2
du + β2

(∫ 1

γ∗L

e−2θ1L2u

u2
du

)(∫ 1

γ∗L

e−2θ2L2u

u2
du

)
,

where we have set γ∗L := log(r−1
L log L)/(2 log L) and the first integral is again zero if β > γ∗L.

Figure 2 compares the different curves obtained when (i) we always have decorrelation
(γ ≤ α), (ii) we always have complete correlation (γ ≥ 1), or (iii) when we have a transition
between these two regimes (γ ∈ (α, 1)). As expected, we see that the probability of IBD at
both loci is higher in the presence of large events (when ρL ≤ L2α), and there is correlation
between the two loci when individuals are sampled over large spatial distances. Furthermore,
(5) gives us an idea of how the correlations between the two loci decay with sampling
distance, as this grows from the radius of the large events to the whole population range.
Correlations for sampling distances smaller than or equal to the size of the large events will
be the object of future work.

3 Genealogies at one locus

In this section we prove Proposition 1.2. In the process we introduce a rescaling of the spatial
motion of our ancestral lineages and collect together several results on the time required
to ‘gather’ two lineages to within distance 2RBLα which will also be needed in Section 4.
Since the techniques mirror closely those used in previous work, in the interests of brevity,
we restrict ourselves to sketching the proofs and providing references where appropriate.

Assume for the rest of this section that α < 1.
The following local central limit theorem, corresponding to Lemma 5.4 of [BEV10], is

the key to understanding the behaviour of two lineages. Suppose that for each L ∈ N, `L is
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Figure 2: Probability of IBD at both loci, as a function of β. As in Figure 1, L = 105,
α = 0.1, cL = 0.01 and θ1 = θ2 = 10−3. The solid line corresponds to the case γ ≥ 1
(complete correlation for any β), the dotted line to the case γ ≤ α (decorrelation for any
β), and the dashed line to the intermediate case γ = 0.4. The dash-dot line corresponds to
the case without large events, for which γ∗L is computed from the same parameter values
(i.e., γ∗L = 0.2).

a Lévy process on T(L) such that `L(1)− `L(0) has a covariance matrix of the form σ2
LId,

and that
(i) there exists σ2 > 0 such that σ2

L → σ2 as L →∞;
(ii) E0

[|`L(1)|4] is bounded uniformly in L.

We shall implicitly suppose that all processes `L are defined on the same probability
space, and that under the probability measure Px the Lévy process we consider starts at
x. Let (dL)L≥1 be a sequence of positive reals such that lim infL→∞ dL > 0 and log+(dL)

log L →
η ∈ [0, 1). Finally, let us write pL(x, t) for Px[`L(t) ∈ B(0, dL)] and bzc for the integer part
of z ∈ R.

Lemma A [5.4 in [BEV10]]

a) Let εL := (log L)−1/2. There exists a constant C1 < ∞ such that for every L ≥ 2,

sup
t≥bεLL2c

sup
x∈T(L)

bεLL2c
d2

L

pL(x, t) ≤ C1.

b) If vL →∞ as L →∞, then

lim
L→∞

sup
t≥bvLL2c

sup
x∈T(L)

L2

d2
L

∣∣∣∣pL(x, t)− πd2
L

L2

∣∣∣∣ = 0.

c) If uL →∞ as L →∞ and I(dL, x) := 1 + (|x|2 ∨ d2
L), then

lim
L→∞

sup
x∈T(L)

sup
uLI(dL,x)≤t≤εLL2

2σ2
Lt

d2
L

∣∣∣∣pL(x, t)− d2
L

2σ2
Lt

∣∣∣∣ = 0.
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d) There exists a constant C2 < ∞ such that for every L ≥ 1,

sup
t≥0

sup
x∈T(L)

(
1 +

|x|2
d2

L

)
pL(x, t) ≤ C2.

What Lemma A shows is that, for times which are large but of order at most O(L2),
`L behaves like two-dimensional Brownian motion (case c), and in particular it has not yet
explored the torus enough to ‘see’ that space is limited. On the other hand, `L(t) is nearly
uniformly distributed over T(L) at any time much greater than L2 (case b).

Fix R > 0. As a direct corollary of this local central limit theorem, we proved in
Lemma 5.5 of [BEV10] that, if T (R, `L) denotes the entrance time of `L into the ball
B(0, R), then the following inequality holds.

Lemma B [5.5 in [BEV10]] Let (UL)L≥1 and (uL)L≥1 be two sequences increasing to
infinity such that ULL−2 →∞ as L →∞ and 2uL ≤ L2(log L)−1/2 for every L ≥ 1. Then,
there exist C0 > 0 and L0 ∈ N such that for every sequence (U ′

L)L≥1 satisfying U ′
L ≥ UL

for each L, every L ≥ L0 and all x ∈ T(L),

Px

[
T (R, `L) ∈ [U ′

L − uL, U ′
L]

] ≤ C0uL

L2
.

Lemma B tells us about the regime in which `L has already homogenised over T(L).
Using exactly the same method, but employing parts c) and d) of Lemma A rather than b),
we obtain the analogous result for the regime in which `L behaves as Brownian motion on
R2:

Lemma 3.1. If UL ≤ L2(log L)−1/2 for each L ≥ 1, UL, uL → ∞ and uL/UL → 0 as
L →∞, then there exist C1 > 0 and L1 ∈ N such that for every sequence (U ′

L)L≥1 satisfying
UL ≤ U ′

L ≤ L2(log L)−1/2 for each L, for every L ≥ L1 and x ∈ T(L),

Px

[
T (R, `L) ∈ [U ′

L − uL, U ′
L]

] ≤ C1uL

U ′
L

.

Let us now introduce the processes to which we wish to apply these results. For each
L ∈ N, let {X̃L

Aa(t), t ≥ 0} be the process recording the difference between the locations
on T(L) of the ancestral lineages of A and a (that is, the first locus of each of the two
individuals sampled). The process X̃L

Aa is the difference between two dependent compound
Poisson processes. Under the probability measures we shall use, it is a Markov process (see
Remark 3.2). Observe that, because the largest events have radius RBLα, the lineages have
to be within a distance less than 2RBLα of each other to be hit by the same event. As a
consequence, the law of X̃L

Aa outside B(0, 2RBLα) is equal to that of the difference Ỹ L of
two i.i.d. Lévy processes, each of which follows the evolution given in (1), and thus is also
equal to the law of the motion of a single lineage run at twice the speed. We define the
processes XL

Aa and Y L by

XL
Aa(t) =

1
Lα

X̃L
Aa(ρLt) and Y L(t) =

1
Lα

Ỹ L(ρLt), t ≥ 0, (6)

both evolving on T(L1−α). Using computations from the proof of Proposition 6.2 in [BEV10]
and the jump intensities given in (1), we find that the covariance matrix of Y L(1)− Y L(0)
is the identity matrix multiplied by

2
{

usρL

πR2
sL

2α

∫

R2

(x1)2LRs(x, 0) dx+
uB

πR2
B

∫

R2

(x1)2LRB
(x, 0) dx

}
+o(1) =: 2σ2

L +o(1), (7)
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with σ2
L tending to a finite limit σ2 > 0 as L → ∞ (by our assumption on L−2αρL). The

o(1) remainder here is the error we make by considering Ỹ L as evolving on R2 instead of
T(L) (see the proof of Proposition 6.2 in [BEV10]). Assumption (ii) is also satisfied, and
so Lemma A and its corollaries apply to (Y L)L≥1, with the torus sidelength L replaced by
L1−α. Furthermore, XL

Aa and Y L follow the same evolution outside B(0, 2RB) for every L.
This will be sufficient to prove Proposition 1.2:we shall show that the time the ancestral
lineages of A and a need to coalesce once they are within distance 2RBLα of one another
(or equivalently, once XL

Aa has entered B(0, 2RB)) is negligible compared to the time they
need to be gathered at distance 2RBLα. It is therefore the ‘gathering time’ that dictates
the coalescence time of two lineages starting at separation |xL| À Lα.

Remark 3.2. It is here that we take advantage of the form of our recombination mech-
anism (recall Remark 1.1). When X̃L

Aa(t) 6= 0, its future evolution is determined by the
homogeneous Poisson point processes of events ΠL

B and ΠL
s , and depends only on the cur-

rent separation of the two lineages. If X̃L
Aa(t) = 0, the situation depends upon whether

the two lineages are in the same individual (that is they have coalesced and will require a
recombination event to separate again), or in two distinct individuals at the same spatial
location. However, because of the form of our recombination mechanism, two lineages can
jump onto the same location only if they are descendants of the same parent (in which case
they necessarily coalesce). This means that provided we choose our initial condition in such
a way that two lineages in the same spatial location are actually in the same individual, with
probability one we will never see two lineages in distinct individuals but the same spatial
location and so X̃L

Aa is indeed a Markov process under PaL.

Notation 3.3. As at the beginning of the section, we assume that all Y L’s are defined on
the same probability space, and start at x under the probability measure Px. Since XL

Aa is
a function of the genealogical process of A, a, B and b, we retain the notation PaL when
referring to it, and XL

Aa then starts a.s. at L−αxL if xL ∈ T(L) is the initial separation
between lineages A and a.

The proof of Proposition 1.2 will require two subsidiary results. For each L ∈ N,
let TL

Aa be the first time the two lineages A and a are at separation less than 2RBLα.
Equivalently, ρ−1

L TL
Aa is the entrance time of XL

Aa into B(0, 2RB). By the observation made
in the paragraph preceding Remark 3.2, ρ−1

L TL
Aa under PaL has the same distribution as

T (2RB, Y L) under PL−αxL
, which yields the following lemma.

Lemma 3.4. Under the assumptions of Proposition 1.2, we have

lim
L→∞

PaL

[
TL

Aa > ρLL2(t−α)
]

=
β − α

t− α
∀ t ∈ [β, 1], and (8)

lim
L→∞

PaL

[
TL

Aa >
1− α

2πσ2
ρLL2(1−α) log L t

]
=

β − α

1− α
e−t ∀ t > 0. (9)

Furthermore, for any β0 ∈ (α, 1) and ε > 0, the convergence in the first (resp., second)
expression is uniform in β, t ∈ [β0, 1] (resp., β ∈ [β0, 1] and t ≥ ε) and aL such that
|xL| ∈ [Lβ/(log L), Lβ log L].

Proof of Lemma 3.4. When β = 1, the results are a weaker version of Proposition 6.2 in
[BEV10], in which the convergence in (9) is uniform over t ≥ 0 and over the set of sequences
(xL)L≥1 such that |xL| ≥ L(log L)−1 for every L. Here, we relax the condition on (xL)L≥1,
but since the arguments in the proof of convergence (without requiring uniformity) only use
the asymptotic behaviour of log |xL|, they are still valid.
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If β < 1, the reasoning is the same as in the proofs of Lemma 3.6 in [ZCD05] (note
that as above we allow more general sequences of initial separations at the expense of
the uniformity of the convergence) and Theorem 2 in [CD02]. This does not come as
a surprise, since the same local central limit theorem applies to both Y L (on T(L1−α))
and Zähle, Cox & Durrett’s Y (on T(L) ∩ Z2) up to some constants depending on the
geometry of the geographical patches considered. Hence, since XL

Aa starts from L−αxL and
log(L−α|xL|)/(log L) → β−α by assumption, we can write (as in Lemma 3.6 of [ZCD05]):

lim
L→∞

sup
β≤t≤κL

∣∣∣∣PaL

[
TL

Aa > ρLL2(t−α)
]− β − α

t− α

∣∣∣∣

= lim
L→∞

sup
β≤t≤κL

∣∣∣∣PL−αxL

[
T (2RB, Y L) > L2(t−α)

]− β − α

t− α

∣∣∣∣
= 0,

where κL = 1 − (log log L)/(2 log L) (so that L2(κL−α) = L2(1−α)/(log L)). Now, as in
Lemma 3.8 of [ZCD05], there exists L0 ∈ N and a constant C such that, for every L ≥ L0

and x ∈ T(L),

Px

[
Y L(s) = 0 for some s ∈

[
L2(1−α)

log L
, L2(1−α)

]]
≤ C log log L

log L
. (10)

Combining these two results, we obtain (8).
Finally, (9) is the analogue of Theorem 2 in [CD02] and can either be proved using the

same technique or in the same way as Proposition 6.2 in [BEV10] (which, in addition, gives
the appropriate constant in the time-rescaling). The uniform convergence stated in the
second part of Lemma 3.4 follows from a direct application of the techniques of [ZCD05]
and [BEV10] cited above. ¤

The next result we need is the time that two lineages starting at separation at most
2RBLα take to coalesce. Under our assumption that (ρLL−2α)L≥1 is bounded, Proposi-
tion 6.4(a) in [BEV10] applied with ψL := Lα shows that for any sequence (φL)L≥1 tending
to infinity, we have

lim
L→∞

sup
a′L

Pa′L

[
τL
Aa > φLρL

]
= 0, (11)

where the supremum is taken over all configurations a′L such that the distance between
the blocks containing A and a is at most 2RBLα. Observe that in [BEV10], only one
individual reproduces during an event, and so if several lineages are affected by this event,
they necessarily coalesce. Here, the distributions λs and λB of the number of potential
parents are more general, but we assumed that their supports were compact. Thus, the
probability that several individuals in the area of an event come from the same parent does
not vanish as L tends to infinity, which is all that we need to prove (11).

Remark 3.5. Since (11) shows that coming to within 2RBLα is almost equivalent to coa-
lescing for two lineages, this is the only point where the distributions λs and λB appear in
our discussion.

Proof of Proposition 1.2.
Equipped with these results and the corollaries of Lemma A, we can now write for any

given t ∈ [β, 1]

PaL

[
τL
Aa > ρLL2(t−α)

]
=PaL

[
τL
Aa > ρLL2(t−α) ; TL

Aa > ρL

(
L2(t−α) − log L

)]

+PaL

[
τL
Aa > ρLL2(t−α) ; TL

Aa ≤ ρL

(
L2(t−α) − log L

)]
. (12)
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The second term on the right-hand side of (12) tends to zero by the strong Markov property
applied at time TL

Aa and (11) with φL = log L. Then, we have, for each L,
∣∣∣PaL

[
τL
Aa > ρLL2(t−α) ; TL

Aa > ρL

(
L2(t−α) − log L

)]− PaL

[
TL

Aa > ρLL2(t−α)
]∣∣∣

≤PaL

[
ρL

(
L2(t−α) − log L

) ≤ TL
Aa ≤ ρLL2(t−α)

]

= PL−αxL

[
L2(t−α) − log L ≤ T (2RB, Y L) ≤ L2(t−α)

]
,

which tends to zero by Lemma 3.1 applied with L replaced by L1−α (the size of the torus
on which Y L evolves) if t < 1, and by (10) if t = 1. Lemma 3.4 enables us to deduce a).

For b), the same technique applies but with the last argument replaced by the use of
Lemma B. ¤

Proposition 1.2 is, in fact, a particular case of a more general result which we shall
use in §4.3 (with k = 4). Suppose we follow the ancestry at one locus of k ≥ 2 different
individuals. By analogy with above, we label individuals 1, . . . , k, we write xL

ij for the initial
separation of lineages i and j, TL

ij for the time at which their ancestral lineags first come
within 2RBLα and τL

ij for their coalescence time. We also write TL∗ (resp., τL∗ ) for the
minimum over {i 6= j} of the TL

ij ’s (resp., the τL
ij ’s). Although (in the same way as above)

we could state a result for a more general sequence (aL)L≥1 of inititial configurations, for the
proof of Theorem 1.4 we shall need some uniformity in the convergence. For this reason, we
consider Γ(L, k, η), the set of all configurations of k lineages on T(L) such that all pairwise
distances |xL

ij | belong to [Lη/(log L), Lη log L].

Proposition 3.6. For any β ∈ (α, 1], ε > 0 and i 6= j, we have

lim
L→∞

sup
β≤η≤t≤1

sup
aL∈Γ(L,k,η)

∣∣∣∣PaL

[
τL
∗ = τL

ij ≤ ρLL2(t−α)
]− 1(

k
2

)
(

1−
(η − α

t− α

)(k
2)

)∣∣∣∣ = 0,

lim
L→∞

sup
t≥ε,β≤η≤1

sup
aL∈Γ(L,k,η)

∣∣∣∣PaL

[
τL
∗ = τL

ij ≤
1− α

2πσ2
ρLL2(1−α) log L t

]

− 1(
k
2

)
(

1−
(η − α

1− α
e−t

)(k
2)

)∣∣∣∣ = 0.

The same is true with τL replaced by TL.

In essence, Proposition 3.6 tells us that on the timescale ρLL2(t−α), t ∈ [η, 1], the time of
the first coalescence (or of the first ‘gathering’) is approximately the same as that of the first
merger in a Kingman coalescent timechanged by log

(
t−α
η−α

)
, and that the approximation is

uniform over η’s bounded away from α. Moreover, asymptotically, just as in the Kingman
coalescent, each pair of lineages has the same chance to be the first to coalesce. On the
other hand, on the timescale 1−α

2πσ2 ρLL2(1−α) log L t, conditional on TL∗ > ρLL2(1−α), the
asymptotic behaviour corresponds to Kingman’s coalescent run at speed 1.

Sketch of proof. The proof of Proposition 3.6 is a straightforward adaptation of those of
Lemma 4.2 and of Lemma 5.2 in [ZCD05] (see also the comments given in the paragraph
following the proof of Lemma 4.2). The interested reader will also find there references to
earlier results for the random walks with instantaneous coalescence which are dual to the
two-dimensional voter model. ¤

Let us end this section by recalling a lemma of [BEV10] and by stating an analogous
result. For every L ∈ N, i 6= j and t ≥ 0, let X̃L

ij(t) be the separation (on T(L) at time t)
of lineages i and j.
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Lemma C [6.9 in [BEV10]] Suppose k = 4 and

lim
L→∞

mini6=j log |xL
ij |

log L
= lim

L→∞
maxi 6=j log |xL

ij |
log L

= 1. (13)

Then,

lim
L→∞

PaL

[
τL
∗ = τL

12 ;
∣∣X̃L

13(τ
L
∗ )

∣∣ ≤ L

log L

]
= 0,

lim
L→∞

PaL

[
τL
∗ = τL

12 ;
∣∣X̃L

34(τ
L
∗ )

∣∣ ≤ L

log L

]
= 0.

These results are also true if τL is replaced by TL.

In words, when two lineages meet and coalesce, with probability tending to one the others
are at distance at least L/ log L of each other and of the coalescing pair (in particular, such
a merger involves at most two lineages at a time). When the initial distance between the
lineages is of the order of Lβ with β < 1, we have instead:

Lemma 3.7. Suppose again k = 4 and the limit in (13) is equal to β ∈ (α, 1). Then,

lim
L→∞

PaL

[
τL
∗ = τL

12 ≤
ρLL2(1−α)

log L
;

∣∣X̃L
13(τ

L
∗ )

∣∣ /∈
[

Lα

log L

√
τL∗√
ρL

, Lα log L

√
τL∗√
ρL

]]
= 0,

lim
L→∞

PaL

[
τL
∗ = τL

12 ≤
ρLL2(1−α)

log L
;

∣∣X̃L
34(τ

L
∗ )

∣∣ /∈
[

Lα

log L

√
τL∗√
ρL

, Lα log L

√
τL∗√
ρL

]]
= 0.

The result is also true if τL is replaced by TL.

Notice the rescalings of time by ρL and space by Lα introduced in (6) under which the
behaviour of the lineages is close to that of finite variance random walks. In fact, although
their formulations are rather different, Lemma 3.7 is very similar to Lemma 1 in [CG86] or
Lemma 5.1 in [ZCD05] for coalescing random walks.

Sketch of proof of Lemma 3.7. The method of proof is identical to that of Lemma 6.9 in
[BEV10], to which we refer for more complete arguments. It is based on two facts. First,
by time ρLL2(1−α)/(log L) the separation of the lineages is never on the order of the side of
the torus. Second, if TL∗ = TL

12, then L−αX̃L
13(ρL·) and L−αX̃L

34(ρL·) considered separately,
follow the same law as the difference of two independent lineages (on R2, by the first fact)
conditioned on not entering B(0, 2RB) before TL∗ /ρL. By Lemma 3.4, with high probability
TL∗ /ρL À L2(β−α), and so the result for TL follows from a standard central limit theorem.

The modifications needed for τL use the very rapid coalescence of two lineages gathered
at distance 2RBLα to obtain that, with probability tending to 1, if τL∗ = τL

12 then no other
pairs of lineages come within 2RBLα of one another before time τL∗ . An application of
Lemma 3.7 (with TL) completes the proof. ¤

4 Genealogies at two loci

From now on, we work with the rescaling of time and space introduced in (6). As we saw in
the previous section, these are the appropriate scales on which to understand the behaviour
of a collection of independent processes following the dynamics driven by (1). Because our
lineages move independently as long as they are at distance greater than 2RB (in rescaled
units) of each other, it is also the relevant regime in which to understand ‘gathering’ and
coalescence of ancestral lineages.
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The aim of §4.1 and §4.2 is to understand how two lineages, initially present in the same
individual, can ‘decorrelate’ and how much time they need to do so. Once this phenomenon
is understood for two lineages, we can consider the more complex situation described in the
§1.4 and prove Theorems 1.4 and 1.5. This is achieved in §4.3.

4.1 Effective recombination time

For every L, let XL
AB be the process that records the (rescaled) difference between the

locations of the lineages labelled A and B. Recall that under our working assumptions,
these lineages start within the same individual (in other words, A and B belong to the
same block of the marked partition aL).

By construction, recombination occurs only during small events. In our rescaled space
and time units, a recombination event results in a separation of the lineages of O(L−α), and
then small events affect them at rate O(ρL). Hence, it is very likely that (in our rescaled
time units) the lineages very rapidly coalesce and have to wait for the next recombination
event (that is, roughly (ρLrL)−1 units of rescaled time) to be geographically separated
again, and so on. An efficient way for the lineages to escape this ‘flickering’ due to small
events is for a large event to send them to a separation of O(1). This necessarily occurs
at a time when XL

AB 6= 0. Thus, let us define SL as the first time t at which at least one
of the two lineages is affected by a large event and XL

AB(t−) 6= 0 (which does not prohibit
XL

AB(t) = 0). We call SL the effective recombination time. Its large-L behaviour is given
by the following proposition.

Proposition 4.1. There exist θ1, θ2 > 0 such that for every θ > θ2 and every non-vanishing
sequence (φL)L≥1 satisfying φL ≤ L2/(ρL log L) for every L, we have for L large enough

PaL

[
SL ≥ φL

(
1 +

θ log(φLρL)
rLρL

)]
≤ e−θ1φL + e−(θ−θ2)φL log(φLρL).

The idea of the proof of Proposition 4.1 is to show that, with very high probability, the
number of visits to 0 of XL

AB before it has accumulated a time φL outside 0 is less than
φL log(φLρL). Since each visit lasts a time proportional to (rLρL)−1, the total amount of
time it takes for XL

AB to accumulate φL units of time outside zero is at most of the order
of φL + φL log(φLρL)/(rLρL). The probability that by this time the two lineages have not
been affected by a large event while in distinct locations is bounded by a quantity of the
form e−CφL .

Let us write RL(x) for the rate at which at least one of the lineages is affected by a
large event when XL

AB = x, and recall that time is rescaled by a factor ρL. From the
expression for the intensity of ΠL

B, we can find a constant CB > 0 such that RL(x) ≥ CB

for all x ∈ T(L1−α) \ {0} (in fact, one can even show that the function x 7→ RL(x) is
increasing in |x|, and so one can take CB := RL(0) > 0). Let X̂L be a T(L1−α)-valued
Markov process distributed in the same way as the difference between two lineages subject
only to the events of ΠL

s , and ŜL be an exponential random variable with instantaneous
rate RL(X̂L(t))1{X̂L(t)6=0}. By the preceding remark, ŜL is stochastically bounded by an
exponential random variable with instantaneous rate CB1{X̂L(t) 6=0}. Because large events
have no effect when XL

AB = 0, the law of the stopped process {XL
AB(t), t ∈ [0, SL]} is the

same as that of {X̂L(t), t ∈ [0, ŜL]}. Thus for the proof of Proposition 4.1 we work with
X̂L and ŜL and use Px to denote the law of X̂L under which P[X̂L(0) = x] = 1.

For each L ∈ N, let us define the stopping times (Q̂L
i )i≥0 and (q̂L

i )i≥0 by:Q̂L
0 = q̂L

0 = 0
and for every i ≥ 1,

Q̂L
i := inf

{
t ≥ q̂L

i−1 : X̂L(t) 6= 0
}

q̂L
i := inf

{
t ≥ Q̂L

i : X̂L(t) = 0
}
.
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(Note that Q̂L
1 = 0 if X̂L(0) 6= 0, in which case q̂L

1 is the first hitting time of 0.) By
construction, the random variables (Q̂L

i − q̂L
i−1)i∈N are i.i.d. and distributed according to an

exponential random variable with parameter CrecrLρL, where Crec := πR2
sus(1−λs({1})) >

0 (the last factor arises since the number of reproducing individuals needs to be greater
than one for recombination to occur). We have the following result for the excursions of
X̂L away from 0.

Lemma 4.2. There exist Ce > 0 and ue > 0 such that for every L ≥ 1 and ue ≤ u ≤
L2/(log L), for every x ∈ B(0, 2RsL

−α) \ {0},

Px

[
q̂L
1 > uρ−1

L

] ≥ Ce

log u
.

Proof of Lemma 4.2. Here (and only here) it is easier to work with the initial time and
space units and show that the probability of an excursion outside 0 of length greater
than u is bounded from below by Ce/(log u) when u is large. Let us thus define X̃L by
X̃L(t) := LαX̂L(ρ−1

L t) for all t ≥ 0, with the understanding that X̃L starts at Lαx under
the probability measure Px.

The desired result is shown in [RR66] for standard discrete space random walks whose
jumps have finite variance as well as for Brownian motion (with the hitting time of 0 replaced
by the entrance time into a ball of fixed radius) in two dimensions. To see why it is true for
X̃L on T(L), observe first that by time L2/(log L), the process X̃L does not see that space
is limited, and so it behaves as though it were moving in R2. More precisely, there exists a
constant C > 0 such that for all z ∈ B(0, 6RsL

−α),

Pz

[
sup

u≤L2/(log L)

∣∣X̃L(u)
∣∣ >

L

3

]
≤ C

log L
.

(Use the L2-maximal inequality and the fact that |X̃L| is bounded by the corresponding
quantity for the same process defined on R2, which is proportional to L2/(log L) by Equation
(22) in [BEV10]). Hence, let us assume that X̃L is defined on R2 instead of T(L). Since
the evolution due to small events depends on L only through the torus sidelength, with our
new convention all X̃L’s have the same distribution and we can drop the exponent L in
the notation. For the same reason, we also write q̃1 for the random times ρLq̂L

1 , that is the
length of the first excursion outside 0 of X̃.

Let T̃(4Rs) denote the first time X̃ leaves B(0, 4Rs) (and so X̃(T̃(4Rs)) ∈ B(0, 6Rs) \
B(0, 4Rs) by our assumption on the jump sizes), and let T̃[2Rs] be the first return time of
X̃ into B(0, 2Rs) after T̃(4Rs). We have for every x ∈ B(0, 2RsL

−α) \ {0},

Px

[
q̃1 > u

]≥Px

[
q̃1 > u ; T̃(4Rs) < q̃1

]

≥Px

[
q̃1 − T̃(4Rs) > u; T̃(4Rs) < q̃1

]

= Ex

[
1{T̃(4Rs)<q̃1}PX̃(T̃(4Rs))

[q̃1 > u]
]

≥Ex

[
1{T̃(4Rs)<q̃1}PX̃(T̃(4Rs))

[
T̃[2Rs] > u

]]

≥
(

inf
B(0,2Rs)\{0}

PL−αy

[
T̃(4Rs) < q̃1

])(
inf

B(0,6Rs)\B(0,4Rs)
PL−αz

[
T̃[2Rs] > u

])
.(14)

The first infimum is strictly positive. To see this, note that PL−αy[T̃(4Rs) < q̃1] is bounded
from below by the probability that the first four small events affecting the lineages send
them to a distance at least 4Rs of each other before they coalesce, and the infimum over
B(0, 2Rs) \ {0} of the latter probability is positive since us < 1 (if us = 1, only one of the
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lineages can be in the geographical range of such separating events, and so their probability
of occurrence shrinks to 0 as |y| → 0).

For the second infimum in (14), we use the same construction as in the proof of Sko-
rokhod embedding (see e.g. [Bil95]) to write the path of X̃ as that of a standard Brownian
motion W considered at particular times. More precisely, if (σ̃i)i∈N is the sequence of jump
times of X̃, we can find a sequence of Brownian stopping times (σi)i∈N such that (W (σi))i≥0

has the same joint distributions as (X̃(σ̃i))i≥0. For every i ∈ N, conditional on W (σi−1),
σi is the first time greater than σi−1 at which W leaves B(W (σi−1), li), where the random
variable li is independent of W and of {σj , j < i} and has the same distribution as the
length of the first jump of X̃. As a consequence, if ñ(u) := max{i : σ̃i ≤ u}, by comparing
the paths of X̃ and of W we obtain

PL−αz

[
T̃[2Rs] > u

] ≥ Pz

[
W (t) /∈ B(0, 2Rs), ∀ t ≤ σñ(u)

]
.

Now, each σ̃i−σ̃i−1 is stochastically bounded from below by an exponential random variable
with positive parameter k1 > 0, and so by standard large deviation results we can find k2 > 0
large enough and k3 > 0 such that for all u > 1 and y ∈ R2,

Py[ñ(u) > k2u] ≤ e−k3u.

By construction, each σi − σi−1 is stochastically bounded from above by the first time
Brownian motion started at 0 leaves B(0, 2Rs), which also has an exponential moment.
Hence, there exist k4, k5 > 0 such that for all u > 1 and y ∈ R2,

Py

[
σbk2uc+1 > k4u

] ≤ e−k5u.

Using these bounds and the result already established in [RR66] for Brownian motion at
time k4u, Lemma 4.2 is proved. ¤

We now have all the ingredients we require to prove Proposition 4.1.
Proof of Proposition 4.1.

Set

ψL := φL

(
1 +

θ log(φLρL)
rLρL

)
, (15)

and call t(ψL) the time X̂L spends away from 0 before time ψL. We have, for every L,

P0

[
ŜL ≥ ψL

]
= P0

[
ŜL ≥ ψL; t(ψL) ≤ φL

]
+ P0

[
ŜL ≥ ψL; t(ψL) > φL

]

≤P0

[
t(ψL) ≤ φL

]
+ e−CBφL ,

where CB is the lower bound on the rate of effective large events introduced just below the
statement of the proposition. Next, if we set k̂L := sup {i : Q̂L

i ≤ ψL}, that is k̂L is the
number of excursions of X̂L away from 0 which start before time ψL, we can write

P0

[
t(ψL) ≤ φL

]
= P0

[
t(ψL) ≤ φL; k̂L ≤ φL log(φLρL)

]

+P0

[
t(ψL) ≤ φL; k̂L > φL log(φLρL)

]
.

On the one hand,

P0

[
t(ψL) ≤ φL; k̂L > φL log(φLρL)

]≤P0

[ bφL log(φLρL)c∑

i=1

(q̂L
i − Q̂L

i ) ≤ φL

]

≤P0

[
q̂L
1 − Q̂L

1 ≤ φL

]bφL log(φLρL)c

≤
(

1− Ce

log(φLρL)

)bφL log(φLρL)c

≤ e−C′eφL ,
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for a constant C ′
e > 0 and L large enough. The second line is obtained by an obvious

recursion using the strong Markov property at the successive times q̂L
i in decreasing order,

and the third line uses Lemma 4.2 (recall that by assumption on φL, we have φLρL → ∞
and φLρL ≤ L2/(log L)). Hence, we can set θ1 := CB ∧ C ′

e. On the other hand,

P0

[
t(ψL) ≤ φL ; k̂L ≤ φL log(φLρL)

]

≤ P0

[ bφL log(φLρL)c+1∑

i=1

(Q̂L
i − q̂L

i−1) ≥ ψL − φL

]

= P0

[
exp

{
rLρL

bφL log(φLρL)c+1∑

i=1

(Q̂L
i − q̂L

i−1)
}
≥ exp

{
rLρL(ψL − φL)

}]

≤ e−θφL log(φLρL)E0

[
exp

{
rLρL

bφL log(φLρL)c+1∑

i=1

(Q̂L
i − q̂L

i−1)
}]

,

where the last line uses the Markov inequality. As we pointed out above, the random
variables rLρL(Q̂L

i − q̂L
i−1) are i.i.d. with law Exp(Crec). Therefore, we can write for a

constant θ2 > 0

P0

[
t(ψL) ≤ φL; k̂L ≤ φL log(φLρL)

] ≤ e−(θ−θ2)φL log(φLρL).

Combining these results, the proof of Proposition 4.1 is complete. ¤
Finally, let us use Proposition 4.1 to obtain some estimates on the time two lineages

starting in the same individual need to reach a separation at which they start to evolve
independently. The following lemma will be a key result for the proof of Proposition 4.4 in
the next section. For every L ∈ N, let TL

(3RB) denote the exit time of XL
AB from B(0, 3RB).

Lemma 4.3. There exists a constant θ3 > 0 such that if (φL)L≥1 is as in Proposition 4.1,
φL → ∞ as L → ∞ and θ > θ2, there exists L0 = L0(θ, (φL)L∈N) such that for every
L ≥ L0,

PaL

[
TL

(3RB) ≥ φL

(
1 +

θ log(φLρL)
rLρL

)]
≤

√
φL e−θ3

√
φL .

Proof of Lemma 4.3. For conciseness, we again use the notation ψL introduced in (15).
This time we define QL

0 = qL
0 = 0 and

QL
i := inf

{
t > qL

i−1 : t is the epoch of an effective recombination
}
,

qL
i := inf

{
t ≥ QL

i : XL
AB(t) = 0 or XL

AB(t) /∈ B(0, 3RB)
}
,

kL := max
{
i : QL

i ≤ TL
(3RB)

}
.

First, we claim that there exists a constant ℘ > 0 independent of L such that, for L
large enough, kL +1 is stochastically bounded by a geometric random variable with success
probability ℘. In other words, the probability that XL

AB starting at x ∈ B(0, 3RB) \ {0}
leaves B(0, 3RB) before hitting 0 is bounded from below by ℘, independently of x. The
proof of this claim is given in the first paragraph of the proof of Lemma 6.6 in [BEV10].
(The quantity ℘ is taken to be the probability that a sequence of large events sends the
lineages to a distance of at least 3RB without meanwhile being counteracted by small events
bringing them too close together.) As a consequence, for any large L,

PaL

[
TL

(3RB) ≥ ψL

] ≤ PaL

[
TL

(3RB) ≥ ψL ; kL <
√

φL

]
+ (1− ℘)

√
φL .
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Next, let us write

PaL

[
TL

(3RB) ≥ ψL ; kL <
√

φL

]

= PaL

[
TL

(3RB) ≥ ψL ; kL <
√

φL ;
kL∑

i=1

(QL
i − qL

i−1) ≥
ψL

2

]
(16)

+ PaL

[
TL

(3RB) ≥ ψL ; kL <
√

φL ;
kL∑

i=1

(QL
i − qL

i−1) <
ψL

2

]
. (17)

The quantity in (16) is bounded by

PaL

[ b√φLc∑

i=1

(
QL

i − qL
i−1

) ≥ ψL

2

]
= 1− PaL

[ b√φLc∑

i=1

(
QL

i − qL
i−1

)
<

ψL

2

]

≤ 1− PaL

[
∀ i ≤ b

√
φLc, QL

i − qL
i−1 <

ψL

2
√

φL

]

≤ 1−
(

1− sup
a′L

Pa′L

[
SL ≥ ψL

2
√

φL

])b√φLc
, (18)

where the last line is obtained by recursion (notice that, conditionally on qL
i−1, QL

i − qL
i−1

has the same law as the effective recombination time SL) and the supremum is taken over
all initial configurations a′L in which lineages A and B are either at distance 0 or at distance
greater than 3RB. We can in fact restrict our attention to the set of configurations in which
A and B belong to the same block. Indeed, if |XL

AB(0)| > 3RB, we can decompose the
probability that SL ≥ ψL/(2

√
φL) into the sum of

• the probability that SL ≥ ψL/(2
√

φL) and XL
AB does not hit 0 before time ψL/(4

√
φL),

which decreases like e−CψL/
√

φL since the rate at which large events affect the lineages
when XL

AB 6= 0 is bounded from below by a positive constant;

• the probability that SL ≥ ψL/(2
√

φL) and XL
AB hits 0 before time ψL/(4

√
φL), which

boils down to the case XL
AB(0) = 0 by the strong Markov property applied at the first

time XL
AB = 0.

Now, by Proposition 4.1 applied with φL replaced by
√

φL/2, we have

Pa′L

[
SL ≥ ψL

2
√

φL

]
≤Pa′L

[
SL ≥

√
φL

2

(
1 +

θ log(
√

φLρL/2)
rLρL

)]

≤ e−(θ1/2)
√

φL + e−((θ−θ2)/2)
√

φL log(
√

φLρL/2).

Substituting in (18) and using the asymptotic relation 1− (1− e−t)t ∼ te−t as t →∞, we
obtain that for L large enough, the quantity in (16) is bounded by

√
φLe−(θ1/4)

√
φL .

As concerns (17), observe that there exists θ4 > 0 such that for every L ≥ 1, each of
the qL

i − QL
i is stochastically bounded by an exponential random variable with parameter

θ4. Indeed, when XL
AB lies within B(0, (3/2)RB), the rate at which a coalescence occurs

due to a large event is bounded from below by a positive constant. On the other hand, it
is not difficult to check that when XL

AB lies within B(0, (3/2)RB)c, the rate at which the
two lineages are sent at a distance greater than 3RB by a large event is also bounded from
below by a positive constant. The quantity in (17) is therefore bounded by

PaL

[ b√φLc∑

i=1

(qL
i −QL

i ) ≥ ψL

2

]
≤ P

[ b√φLc∑

i=1

Ei ≥ ψL

2

]
≤ exp

{
− ψL

2
+ c

√
φL

}
,
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where (Ei)i∈N is a sequence of i.i.d. exponential random variables with parameter θ4 and
c is a positive constant expressed in terms of the exponential moment of E1. The result
follows. ¤

4.2 Decorrelation time of two lineages starting in the same individual

In the previous section, we obtained some information on the time required for two lineages
starting in the same individual to become separated by a distance greater than 3RB. We
know that the lineages behave independently whenever they are at distance greater than
2RB. However, nothing guarantees that after the random time TL

(3RB) of Lemma 4.3, the
ancestral lineages of A and B will evolve independently. Indeed, it is very likely that after
some time they will once again be within distance 2RB of one another and coalescence
events will keep them close together for a potentially long period of time. Hence, in order
to prove Theorem 1.4, we would like to know how much time our lineages need before they
start ‘looking’ as if they were independent. That is, we are interested in the time until their
separation is of the same order as if they had evolved according to independent copies of `L

started from 0. Recall from Lemma A that for (large) times less than L2(1−α)/
√

log L, the
difference of two independent lineages behaves like Brownian motion on R2. The following
proposition thus tells us that the decorrelation time we are looking for is asymptotically
bounded from above by (log L)5

(
1 + log ρL

rLρL

)
.

Proposition 4.4. Let (TL)L≥1 be a sequence of times such that (log L)5
(
1+ log ρL

rLρL

) ≤ TL ≤
L2(1−α)

log L for every L. Then,

lim
L→∞

PaL

[∣∣XL
AB(TL)

∣∣ /∈
[√

TL

log L
,
√

TL log L

]]
= 0.

The scheme of the proof of Proposition 4.4 will again be to decompose the path of XL
AB

into appropriate excursions and incursions. We shall show that the proportion of the time
before TL that XL

AB spends in the region of space where it does not evolve like the difference
of two independent lineages is asymptotically negligible.

To this end, for every L ∈ N, let us define the stopping times (QL
i )i≥0 and (qL

i )i≥0 by
qL
0 = QL

0 = 0, and for every i ≥ 1,

QL
i := inf

{
t > qL

i−1 : XL
AB(t) /∈ B(0, 3RB)

}
,

qL
i := inf

{
t > QL

i : XL
AB(t) ∈ B(0, 2RB)

}
,

with the convention that inf ∅ = +∞. We also write kL for the number of ‘excursions’ that
start before time TL, that is

kL := max {i : QL
i ≤ TL}.

The first step in proving Proposition 4.4 is to show that

Lemma 4.5. For every δ ∈ (0, 1/2), there exist K(δ) > 0 such that for all L large enough,

PaL

[
kL > K(δ) log TL

] ≤ δ.

We postpone the proof of Lemma 4.5 until the end of the section and instead exploit it
to prove Proposition 4.4.
Proof of Proposition 4.4.
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We construct a coupling between XL
AB and a compound Poisson process Y L which

evolves as the difference between two independent copies of `L. Define Y L as follows:during
an excursion of XL

AB, Y L makes the same jumps as XL
AB at the same times, that is

∀ i ≥ 1, ∀ t ∈ (QL
i , qL

i ], Y L(t)− Y L(t−) = XL
AB(t)−XL

AB(t−).

During the remaining time, Y L jumps independently of XL
AB with a jump intensity equal

to twice that given in (1) rescaled in an appropriate manner. It is easy to check that the
law of Y L is indeed as claimed, since outside B(0, 2RB), XL

AB evolves like the difference
of two independent lineages and so the jump intensity corresponding to the process Y L is
equal to twice that in the rescaled version of (1) at any time. Furthermore, by construction,
the difference between XL

AB and Y L changes only during the time intervals [qL
i−1, Q

L
i ]. For

convenience, we retain the notation P for the probability measures on the (larger) space of
definition of the pair (XL

AB, Y L), and set Y L(0) = 0, PaL-a.s.
Let us call IL the amount of time before TL during which XL

AB and Y L behave inde-
pendently, that is

IL :=
kL∑

i=1

(QL
i − qL

i−1) + (TL − qL
kL

)+.

If θ2 is as in Proposition 4.1, we have

PaL

[∣∣XL
AB(TL)

∣∣ /∈
[√

TL

log L
,
√

TL log L

]]

≤ PaL

[
IL < (log L)2

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)
;

∣∣XL
AB(TL)

∣∣ /∈
[√

TL

log L
,
√

TL log L

]]

+PaL

[
IL ≥ (log L)2

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)]
. (19)

First, let us show that the second term in the right-hand side of (19) converges to 0 as
L →∞. Let δ ∈ (0, 1/2). By Lemma 4.5, there exists K > 1 such that for L large enough,
PaL [kL > K log TL] ≤ δ. Hence, we can write

PaL

[
IL≥ (log L)2

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)]

≤ PaL

[
IL ≥ (log L)2

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)
; kL ≤ K log TL

]
+ δ.

Now, by the same reasoning as in (18) we have

PaL

[
IL ≥ (log L)2

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)
; kL ≤ K log TL

]

≤ PaL

[ bK log TLc+1∑

i=1

QL
i − qL

i−1 ≥ (log L)2
(

1 +
2θ2 log

(
ρL log L

)

rLρL

)]

≤ 1−
(

1− sup
a′L

Pa′L

[
QL

1 ≥
(log L)2

K log TL + 1

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)])bK log TLc+1

,(20)

where the supremum is taken over all initial configurations a′L in which the distance between
the blocks containing A and B is at most 2RB. Again as in (18), we can restrict our attention
to initial configurations in which A and B belong to same block (recall from the proof of
Lemma 4.3 that the rate at which a sequence of ‘separating’ events occurs is bounded from
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below by a positive constant whenever XL
AB 6= 0). By assumption, log TL ≤ 2 log L and

K > 1, and so using Lemma 4.3 with φL = (log L)/(2K) for the last inequality we obtain
that for all large L, uniformly in a′L as above,

Pa′L

[
QL

1 ≥
(log L)2

K log TL + 1

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)]

≤ Pa′L

[
QL

1 ≥
log L

2K

(
1 +

2θ2 log
(
(2K)−1ρL log L

)

rLρL

)]

≤
√

(2K)−1 log L e−θ3

√
(2K)−1 log L.

Consequently, we obtain from the asymptotic relation 1 − (1 − te−t)t2 ∼ t3e−t that the
quantity in the right-hand side of (20) tends to zero as L →∞ and

lim sup
L→∞

PaL

[
IL ≥ (log L)2

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)]
≤ δ.

Since δ was arbitrary, this limit is actually zero.
Let us now show that the first term in the right-hand side of (19) tends to zero as

L →∞. To this end, observe that it is bounded by

PaL

[
IL < (log L)2

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)
;

∣∣XL
AB(TL)− Y L(TL)

∣∣ > (log log L)(log L)
{

1 +
2θ2 log

(
ρL log L

)

rLρL

}1/2]

+ PaL

[
IL < (log L)2

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)
;

∣∣XL
AB(TL)

∣∣ /∈
[√

TL

log L
,
√

TL log L

]
;

∣∣XL
AB(TL)− Y L(TL)

∣∣ ≤ (log log L)(log L)
{

1 +
2θ2 log

(
ρL log L

)

rLρL

}1/2]
. (21)

Because the difference XL
AB − Y L changes only during the periods [qL

i−1, Q
L
i ], during which

|XL
AB| ≤ 3RB and Y L jumps around according to twice the jump intensity given by the

appropriate rescaling of (1), the first term in (21) is bounded by

PaL

[
IL < (log L)2

(
1 +

2θ2 log
(
ρL log L

)

rLρL

)
;

|Ŷ L(IL)|+ 3RB > (log log L)(log L)
{

1 +
2θ2 log

(
ρL log L

)

rLρL

}1/2]
,

where Ŷ L is an independent copy of Y L starting from 0. Hence, we also have as an upper
bound

PaL

[|Ŷ L(IL)| > (log log L)
√

IL − 3RB

]
,

which tends to zero by a standard use of Markov’s inequality and Equation (22) of [BEV10].
As concerns the second term in (21), it is bounded by

PaL

[ ∣∣Y L(TL)
∣∣ /∈

[√
TL

log L
+ (log log L)(log L)

{
1 +

2θ2 log
(
ρL log L

)

rLρL

}1/2

,

√
TL log L− (log log L)(log L)

{
1 +

2θ2 log
(
ρL log L

)

rLρL

}1/2]

= PaL

[∣∣Y L(TL)
∣∣ /∈

[√
TL

log L
(1 + ε

(1)
L ),

√
TL log L (1− ε

(2)
L )

]]
,
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where by assumption on TL and the fact that ρL ≥ log L,

ε
(1)
L :=

(log L)2 log log L√
TL

{
1 +

2θ2 log
(
ρL log L

)

rLρL

}1/2

≤ C
log log L√

log L

and

ε
(2)
L :=

log log L√
TL

{
1 +

2θ2 log
(
ρL log L

)

rLρL

}1/2

≤ C ′ log log L

(log L)5/2
.

An application of the central limit theorem then gives the result. ¤
The proof of Lemma 4.5 rests upon the following lemma.

Lemma 4.6. There exists Cq, vq > 0 such that for every L large enough, vq ≤ v ≤
L2(1−α)/(log L) and every initial condition a′L in which the separation between A and B
belongs to B(0, 5RB) \B(0, 3RB),

Pa′L

[
qL
1 > v

] ≥ Cq

log v
.

The proof of Lemma 4.6 uses the same arguments as the second half of the proof of
Lemma 4.2 (based on Skorokhod embedding) and so we omit it.
Proof of Lemma 4.5. Our strategy is to show that if we choose K large enough, the
probability that none of the first K log TL excursions outside B(0, 3RB) has duration of
O(TL) is smaller than δ. To achieve this, let K > 0. We have

PaL

[
kL > K log TL

]
=PaL

[
QL
bK log TLc+1 ≤ TL

]

=PaL

[ bK log TLc∑

i=1

(
qL
i −QL

i

)
+
bK log TLc+1∑

i=1

(
QL

i − qL
i−1

) ≤ TL

]

≤PaL

[ bK log TLc∑

i=1

(
qL
i −QL

i

) ≤ TL

]

≤PaL

[∀ i ∈ {1, . . . , bK log TLc}, qL
i −QL

i ≤ TL

]
.

Using a recursion and Lemma 4.6 together with the fact that |XL
AB(QL

i )| ∈ [3RB, 5RB]
(recall the jump lengths are bounded by 2RB), we arrive at

PaL

[∀ i ∈ {1, . . . , bK log TLc}, qL
i −QL

i ≤ TL

] ≤
(

1− Cq

log TL

)bK log TLc

→ e−KCq as L →∞.

Now choose K(δ) large enough that e−K(δ)Cq ≤ δ/2, and Lemma 4.5 is proved. ¤

4.3 Proof of the main results

Now that we understand decorrelation better, we can prove Theorems 1.4 and 1.5. Recall
the rescalings of time by a factor ρL and of space by L−α that have been in force since
the beginning of §4 and the notation τL

ij for the coalescence time of lineages i and j in
original units. In order to work in the rescaled setting, we define tLij := τL

ij/ρL for every
i, j ∈ {A, a, B, b}, and tL := tL

Aa ∧ tL
Bb. We denote the genealogical process (on the original

space and time scales) of the four loci corresponding to step L by AL. As explained in the
§1.4, this Markov process takes its values in the set of all marked partitions of {A, a, B, b}.
For any t ≥ 0, each block of AL(t) contains the labels of the lineages present in the same
individual at (genealogical) time t, and its mark gives the current location on T(L) of this
common ancestor.
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Remark 4.7. Several times during the course of the proofs below we shall apply Proposi-
tion 4.4 with TL = L2(β−α). Strictly speaking we can only do this if L2(β−α) ≥ (log L)5

(
1 +

log ρL
rLρL

)
, at least for L large enough, which is not guaranteed by (2). However, if it is not the

case, we can still find a sequence (φL)L∈N tending to infinity and such that

φLL2(β−α) ≥ (log L)5
(
1 +

log ρL

rLρL

)
, ∀ L ∈ N, and lim

L→∞
log φL

log L
= 0.

Now, for the sake of clarity we presented the results of Lemma 3.4 at times of the form
ρLL2(t−α) but its proof shows that, because log(φLL2(β−α)) ∼ log(L2(β−α)) as L → ∞, we
also have

lim
L→∞

PaL

[
TL

Aa > ρLφLL2(β−α)
]

= 1.

(Another way to see this is to use the inequality PaL

[
TL

Aa > ρLφLL2(t−α)
] ≤ PaL

[
TL

Aa >

ρLφLL2(β−α)
]

for any fixed t > β and L large enough, and then let t tend to β.) Hence, all
the above arguments carry over with L2(β−α) replaced by φLL2(β−α). Since the modifications
are minor, we work with L2(β−α) in all cases.

Proof of Theorem 1.4. The main difficulty is that we are interested in the first coalescence
times of the pairs (A, a) and (B, b), regardless of that of any other pair. As a consequence,
several coalescence and subsequent recombination events may occur before tL, creating some
correlation between lineages originally far from each other (A and b for instance). The point
is to show that on the timescale of interest, decorrelation occurs fast enough for the system
of ancestral lineages to behave like two independent genealogical processes, one for each
locus.

Let us start by showing a). Note that we can assume β < 1, since otherwise the result
follows from Proposition 1.2 and the bound

PaL

[
tL ≤ L2(1−α)

] ≤ PaL

[
tL
Aa ≤ L2(1−α)

]
+ PaL

[
tL
Bb ≤ L2(1−α)

] → 0 as L →∞.

Hence, suppose β < 1, fix t ∈ (β, 1] (the case t = β is treated as above) and let L ∈ N.
By the Markov property applied to AL at time ρLL2(β−α), we have

PaL

[
tL > L2(t−α)

]
=EaL

[
1{tL>L2(β−α)}PAL(ρLL2(β−α))

[
tL > L2(t−α) − L2(β−α)

]]

=EaL

[
PAL(ρLL2(β−α))

[
tL > L2(t−α) − L2(β−α)

]]

−EaL

[
1{tL≤L2(β−α)}PAL(ρLL2(β−α))

[
tL > L2(t−α) − L2(β−α)

]]
. (22)

Again, the second term in (22) is bounded by

PaL

[
tL
Aa ≤ L2(β−α)

]
+ PaL

[
tL
Bb ≤ L2(β−α)

]
,

which tends to 0 as L →∞ by Proposition 1.2. Since Lemma 3.7 shows that, with proba-
bility tending to 1, at most two lineages at a time can meet at distance less than 2RB, we
can define TL

1 as the first time two of the four lineages come within distance 2RB of each
other and write

EaL

[
PAL(ρLL2(β−α))

[
tL > L2(t−α) − L2(β−α)

]]

= EaL

[
PAL(ρLL2(β−α))

[
TL

1 > L2(t−α) − L2(β−α)
]]

+EaL

[
PAL(ρLL2(β−α))

[
TL

1 ≤ L2(t−α) − L2(β−α) ; tL > L2(t−α) − L2(β−α)
]]

. (23)
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Setting aside the first term in the right-hand side of (23) for a moment, we further decompose
the event corresponding to the second term:

EaL

[
PAL(ρLL2(β−α))

[
TL

1 ≤ L2(t−α) − L2(β−α) ; tL > L2(t−α) − L2(β−α)
]]

= EaL

[
PAL(ρLL2(β−α))

[
TL

1 ≤ L2(t−α) − L2(β−α);mL
1 /∈ {Aa,Bb}; tL > L2(t−α) − L2(β−α)

]]

+EaL

[
PAL(ρLL2(β−α))

[
TL

1 ≤ L2(t−α) − L2(β−α); mL
1 ∈ {Aa, Bb};

tL > L2(t−α) − L2(β−α)
]]

, (24)

where mL
1 denotes the pair of labels of the lineages which ‘meet’ at time TL

1 . Let us
show that the second term in (24) tends to 0 as L → ∞. Using Lemma 3.4, we know
that, with probability tending to one, no pairs of lineages starting at (rescaled) separation
L−αxL have met at distance less than 2RB by time L2(β−α). Hence, until this time any of
these pairs taken separately evolves like two independent compound Poisson processes, and
their mutual distance at time L2(β−α) lies within [Lβ−α/(log L), Lβ−α log L] with probability
tending to one (by a standard application of the Central Limit Theorem). On the other
hand, by Condition (2) we can use Proposition 4.4 with TL = L2(β−α) (see Remark 4.7)
and conclude that with probability tending to 1, the distance at time TL between each pair
of lineages starting within the same individual also lies in [Lβ−α/(log L), Lβ−α log L]. The
situation has thus become rather symmetric by time L2(β−α). Suppose for instance that
mL

1 = Aa. Then, either TL
1 < L2(t−α) − L2(β−α) − log L and tL > L2(t−α) − L2(β−α) or

TL
1 ∈ [L2(t−α) −L2(β−α) − log L,L2(t−α) −L2(β−α)]. The probability of the first event tends

to 0 by (11), which shows that once A and a are gathered at distance smaller than 2RB,
they coalesce in a time smaller than log L. Lemma 3.1 (if t < 1) or (10) (if t = 1) shows
that the probability of the second event also tends to 0 as L →∞. Hence, the second term
in (24) does indeed vanish as L →∞.

So far, we have obtained

PaL

[
tL > L2(t−α)

]
=EaL

[
PAL(ρLL2(β−α))

[
TL

1 > L2(t−α) − L2(β−α)
]]

+EaL

[
PAL(ρLL2(β−α))

[
TL

1 ≤ L2(t−α) − L2(β−α) ; mL
1 /∈ {Aa,Bb} ;

tL > L2(t−α) − L2(β−α)
]]

+ δ1
L, (25)

where δ1
L → 0 as L → ∞. Next, by the strong Markov property applied to AL at time

ρLTL
1 and the fact that TL

1 < tL a.s., we have

EaL

[
PAL(ρLL2(β−α))

[
TL

1 ≤ L2(t−α) − L2(β−α) ; mL
1 /∈ {Aa,Bb} ; tL > L2(t−α) − L2(β−α)

]]

= EaL

[
EAL(ρLL2(β−α))

[
1{TL

1≤L2(t−α)−L2(β−α); mL
1 /∈{Aa,Bb}}

×PAL(ρLTL
1 )

[
tL > L2(t−α) − L2(β−α) − TL

1

]]]
.

If t < 1, Lemma 3.7 tells us that with probability tending to 1, the mutual distance be-
tween each of the 5 pairs of lineages different from mL

1 at time TL
1 belongs to the inter-

val
[
(TL

1 )1/2/(log L), (TL
1 )1/2 log L

]
. If t = 1, Equation (10) shows that we can replace

1{TL
1≤L2(1−α)−L2(β−α)} by 1{TL

1≤L2(1−α)/(log L)}, up to an asymptotically vanishing error term,
and so Lemma 3.7 still applies. Hence, by the uniform convergence stated in Lemma 3.4
the probability that one of these pairs meet at distance less than 2RB before 2TL

1 tends
to zero. Furthermore, Proposition 4.4 guarantees that with very high probability, the pair
that meet at time TL

1 is also at a distance belonging to
[
(TL

1 )1/2/(log L), (TL
1 )1/2 log L

]
after
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another TL
1 units of time. (This statement uses a conditioning on TL

1 , which turns 2TL
1 into

a deterministic time and enables us to use Proposition 4.4.) Defining TL
2 and mL

2 in the
same manner as above (we number the different quantities which appear here to make the
recursion clearer) and using exactly the same arguments as those leading to (25), we can
thus write that with probability tending to 1,

PAL(ρLTL
1 )

[
tL > L2(t−α) − L2(β−α) − TL

1

]

= EAL(ρLTL
1 )

[
PAL(ρLTL

1 )

[
TL

2 > L2(t−α) − L2(β−α) − 2TL
1

]]

+ EAL(ρLTL
1 )

[
PAL(ρLTL

1 )

[
TL

2 ≤ L2(t−α) − L2(β−α) − 2TL
1 ; mL

2 /∈ {Aa,Bb} ;

tL > L2(t−α) − L2(β−α) − 2TL
1

]]
+ δ2

L,

with δ2
L → 0 as L → ∞. It is easy to check that the above equality is also valid if

L2(t−α) − L2(β−α) − 2TL
1 ≤ 0. By induction, we obtain for any k ∈ N

PaL

[
tL > L2(t−α)

]

= EaL

[
PAL(ρLL2(β−α))

[
TL

1 > L2(t−α) − L2(β−α)
]]

+ EaL

[
EAL(ρLL2(β−α))

[
1{TL

1≤L2(t−α)−L2(β−α);mL
1 /∈{Aa,Bb}}

×PAL(2ρLTL
1 )

[
TL

2 > L2(t−α) − L2(β−α) − 2TL
1

]]]

+ . . .

+ EaL

[
EAL(ρLL2(β−α))

[
1{TL

1≤L2(t−α)−L2(β−α);mL
1 /∈{Aa,Bb}}

×EAL(2ρLTL
1 )

[
1{TL

2≤L2(t−α)−L2(β−α)−2TL
1 }1{mL

2 /∈{Aa,Bb}}

×EAL(2ρLTL
2 )

[
· · · EAL(2ρLTL

k−2)

[
1{TL

k−1<L2(t−α)−L2(β−α)−2TL
1−...−2TL

k−2}

×1{mL
k−1 /∈{Aa,Bb}}PAL(2ρLTL

k−1)

[
TL

k > L2(t−α) − L2(β−α) − . . .− 2TL
k−1

]] · · ·
]]]]

+ EaL

[
· · · PAL(2ρLTL

k−1)

[
TL

k ≤ L2(t−α) − L2(β−α) − 2TL
1 − . . .− 2TL

k−1 ;

tL > L2(t−α) − L2(β−α) − 2TL
1 − · · · − 2TL

k−1

] · · ·
]

+
k∑

i=1

δi
L, (26)

in which all occurrences of L2(1−α) are replaced by L2(1−α)/(log L) if we are considering the
case t = 1. In order to stop the recursion, let us show that for any ε > 0, there exists k ∈ N
such that the last but one term in (26) is bounded by ε for all L large enough. To this end,
define the sequence of random times (γL

i )i≥1 by

γL
1 := inf

{
t ≥ L2(β−α) : 2 rescaled lineages meet at distance less than 2RB

}
,

and for any i ≥ 2,

γL
i := inf

{
t ≥ 2γL

i−1 : 2 rescaled lineages meet at distance less than 2RB

}
.

A simple recursion shows that for all i ∈ N, γL
i and 2γL

i are stopping times. We can thus
apply the strong Markov property at time ρLγL

1 , then ρLγL
2 , and so on, and obtain that

EaL

[
EAL(ρLL2(β−α))

[
1{TL

1≤L2(t−α)−L2(β−α)}EAL(2ρLTL
1 )

[
1{TL

2≤L2(t−α)−L2(β−α)−2TL
1 }

· · · × PAL(2ρLTL
k−1)

[
TL

k ≤ L2(t−α) − L2(β−α) − 2TL
1 − . . .− 2TL

k−1

] · · ·
]]

= PaL

[
γL

k ≤ L2(t−α)
]
. (27)
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Since with probability tending to 1 at each time 2γL
i the four lineages are at distance of

the order of (γL
i )1/2 of each other, Proposition 3.6 guarantees that, up to an asymptotically

vanishing error term, the conditional probability that γL
i+1 is less than L2(t−α) − L2(β−α) −

2γL
1 − . . . − 2γL

i is bounded from above by C := (1 + c)
(
1 − (β−α

t−α

)6), where c > 0 can be
chosen arbitrarily close to 0. It remains to choose k ∈ N such that Ck ≤ ε and to notice that
the left-hand side of (27) is an upper bound for the last but one term in (26) to conclude.

Finally, let us show that the other terms in (26) are close to those corresponding to
a system of four independent lineages. Using the integer k = k(ε) obtained in the last
paragraph, we rewrite the decomposition (26) in terms of (γL

i )i∈N as follows (we retain the
notation mL

i for the labels of the two lineages meeting at time γL
i and we set γL

0 := 0):

PaL

[
tL > L2(t−α)

]
= ηL(ε) +

k∑

j=1

PaL

[
γL

j−1 ≤ L2(t−α); mL
l /∈ {Aa,Bb} ∀ l ∈ {1, . . . , j − 1};

γL
j > L2(t−α)

]
(28)

where ηL(ε) is the sum of the last but one term in (26) and of the error terms δi
L, and is

smaller than 2ε for L large enough by definition of k(ε). Now, let us denote by ÂL a system
of four independent lineages moving around on T(L) according to the law of the motion
of a single (unrescaled) lineage, and let us define (γ̂L

i )i≥1 in the same way as (γL
i )L≥1 but

with AL replaced by ÂL. Let us also write t̂L
Aa (resp., t̂L

Bb) for the smallest time t such that
the lineages A and a (resp., B and b) meet at distance less than 2RBLα at time ρLt, and
m̂L

i for the indices of the pair meeting at time γ̂L
i . Exactly the same chain of arguments as

above leads to a decomposition of PaL [̂tL
Aa ∧ t̂L

Bb > L2(t−α)] of the form (28), with another
sequence (η̂L(ε))L≥1 whose terms are bounded by 2ε whenever L is large enough. Now,
let us emphasize that Proposition 3.6 also applies to the meeting times at distance less
than 2RBLα, before which the evolutions of AL and ÂL have the same distribution. As a
consequence, morally, we should have that the distributions of the pairs of indices mL

i and
m̂L

i both converge to a uniform draw from the set of distinct pairs of labels (in other words,
each pair has asymptotically the same chance to be that meeting), and furthermore if γL

i

and γ̂L
i are of the same logarithmic order, so should γL

i+1 and γ̂L
i+1 be.

More formally, let us define, for every L ∈ N and j ≥ 1,

LL
j :=

log γL
j

2 log L
1{γL

j ≤L2(1−α)/(log L)} +∞ 1{γL
j >L2(1−α)/(log L)},

and L̂L
j in a similar manner. Our goal is to show that for each j, the vectors V L

j :=
(LL

1 , mL
1 , . . . ,LL

j ,mL
j ) and V̂ L

j := (L̂L
1 , m̂L

1 , . . . , L̂L
j , m̂L

j ) converge in distribution as L → ∞
to the same random vector, whose law is obtained by successive uses of Proposition 3.6.
Thus, let us prove by recursion that the distribution functions of the two vectors converge
to the same limit. The case j = 1 is a direct consequence of Proposition 3.6, which shows
that for any s ∈ [β, 1] and i1 6= i2,

lim
L→∞

PaL

[LL
1 ≤ s− α ; mL

1 = i1i2
]
=

1
6

(
1−

(β − α

s− α

)6
)

, and

lim
L→∞

PaL

[LL
1 = ∞ ; mL

1 = i1i2
]
=

1
6

(β − α

1− α

)6
.

(Recall the analysis made at the beginning of the proof, according to which the lineages
meet before time L2(β−α) with probability tending to zero, and at that time they are all at
pairwise distance O(Lβ−α).)
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Suppose the distribution functions of V L
j and V̂ L

j converge to the same (non-degenerate)
limit as L tends to infinity. Let then s ∈ [β, 1], i1 6= i2 and B be an event of the form
{LL

1 ≤ s1 − α ; mL
1 = i

(1)
1 i

(1)
2 ; . . . ; LL

j ≤ sj − α ; mL
j = i

(j)
1 i

(j)
2 } for some given β ≤ s1 ≤

. . . ≤ sj ≤ s. Using the strong Markov property with AL at time 2ρLγL
j = 2ρLL2LL

j and
recalling the definition of TL

1 as the first time two rescaled lineages come at distance less
than 2RB of each other, we obtain

PaL

[
V L

j ∈ B ; LL
j+1 ≤ s− α ; mL

j+1 = i1i2
]

= EaL

[
1{V L

j ∈B}PAL(2ρLL
2LL

j )

[
TL

1 ≤ L2(s−α) − 2L2LL
j ; mL

1 = i1i2
]]

= EaL

[
1{V L

j ∈B} ×
1
6

(
1−

( LL
j

s− α

)6)]
(29)

+EaL

[
1{V L

j ∈B}
{
P
AL(2ρLL

2LL
j )

[
TL

1 ≤ L2(s−α) − 2L2LL
j ; mL

1 = i1i2
]

−1
6

(
1−

( LL
j

s− α

)6)}]
.

Since V L
j converges in distribution to V ∞

j as L → ∞, and since the law of V ∞
j does not

charge the boundary of B, the first term in the right-hand side of (29) converges to

E
[
1{V∞j ∈B} ×

1
6

(
1−

( L∞j
s− α

)6)]
=: P

[
V ∞

j ∈ B; L∞j+1 ≤ s− α; m∞
j+1 = i1i2

]
.

For the second term in (29), we already saw that, up to an asymptotically vanishing error
term, we can insert the indicator function of the set {AL(2ρLL2LL

j ) ∈ Γ(L, 4,LL
j +α)} within

the expectation, where Γ(L, 4, η) is defined at the end of §3 as the set of all configurations
of four lineages in which all pairwise distances between the locations of the lineages belong
to [Lη/(log L), Lη log L]. Now, we can also replace the first probability within the curly
brackets by the probability that TL

1 ≤ L2(s−α) and mL
1 = i1i2 by Lemma 3.1. Then, the

uniform convergence stated in Proposition 3.6 easily gives us that the second term in the
right-hand of (29) tends to 0 as L →∞. Likewise, as L tends to infinity,

PaL

[
V L

j ∈ B; LL
j+1 = ∞; mL

j+1 = i1i2
]→ E

[
1{V∞j ∈B}

1
6

( L∞j
1− α

)6
]

=:P
[
V ∞

j ∈ B; L∞j+1 = ∞; m∞
j+1 = i1i2

]
,

and an analogous result can be established when we allow some of the LL
i , i ≤ j (and so the

subsequent ones) to be infinite. Since this convergence holds for all s and i1i2 as above, we
obtain the convergence in law of V L

j+1 towards V ∞
j+1, whose distribution is determined by the

above limits. By the induction principle, for every j ∈ N the sequence (V L
j )L≥1 converges

in distribution to a random vector V ∞
j . Since the same arguments apply to (V̂ L

j )L≥1, the
distribution function of V̂ L

j also converges to that of V ∞
j and convergence in distribution

also holds. As a consequence, coming back to (28), we obtain that for each term of the
sum,

∣∣∣PaL

[
γL

j−1 ≤ L2(t−α); mL
l /∈ {Aa,Bb} ∀ l ∈ {1, . . . , j − 1}; γL

j > L2(t−α)
]

−PaL

[
γ̂L

j−1 ≤ L2(t−α); m̂L
l /∈ {Aa,Bb} ∀ l ∈ {1, . . . , j − 1}; γ̂L

j > L2(t−α)
]∣∣∣ → 0

as L →∞, and so

lim sup
L→∞

∣∣∣PaL

[
tL > L2(t−α)

]− PaL

[
t̂L > L2(t−α)

]∣∣∣ ≤ 4ε.
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Since ε was arbitrary, this limit is actually zero. But ÂL is a system of four independent
lineages, and so

PaL

[
t̂L > L2(t−α)

]
= PaL

[
t̂L
Aa > L2(t−α)

]× PaL

[
t̂L
Bb > L2(t−α)

] →
(

β − α

t− α

)2

by Proposition 1.2. This concludes the proof of Theorem 1.4, a).
The arguments for the case b) are very similar, using this time Lemma B for a bound

on the probability that some lineages meet during a small interval of time, Lemma C for
the distance separating the other lineages when two of them meet and merge and setting
LL

j := γL
j /

(
1−α
2πσ2 L2(1−α) log L

)
. ¤

The proof of Theorem 1.5 uses essentially the same arguments, except that now, be-
fore time ρLL2(γ−α), we cannot use Proposition 4.4 and the lineages starting within the
same individual are still highly correlated. In fact, because recombination acts on a linear
timescale whereas ancestral relations evolve on an exponential timescale, the proof will show
that a phase transition occurs:during a first phase, recombination does not act and so the
ancestral lines of the two loci of the same individual are not yet separated, and at time
ρLL2(γ−α) recombination appears in the picture and is quick enough to fully decorrelate the
genealogies at the two loci.

Proof of Theorem 1.5. The case a) is a consequence of the result for two lineages. Indeed,
if Condition (3) is fulfilled, then necessarily (log ρL)/(rLρL) tends to infinity and for any
ε > 0 there exists L0(ε) such that for every L ≥ L0(ε),

log ρL

rLρL
≥ L2(γ−α)−ε.

Hence, since we assumed ρL ≤ CL2α, we have for t ∈ [β, γ), ε := γ − t and L ≥ L0(ε):

rLρLL2(t−α) ≤ log ρL L2(t−α−γ+α)+(γ−t) ≤ C ′L−(γ−t) log L → 0 as L →∞.

Therefore, with probability tending to one, no recombinations occur by time ρLL2(t−α) and
AL boils down to a system of two lineages, one ancestral to each of the two individuals
sampled. Proposition 1.2 enables us to conclude.

If t = γ and rLρLL2(γ−α) does not tend to zero (otherwise recombination is too slow and
the same argument as above applies), then the probability that there is no coalescence by
time r−1

L /(log L) tends to (β − α)/(γ − α). Indeed, the recombination rate on the modified
timescale is of the order of rLρL, and so with high probability no recombinations separate
the two loci in any of our two sampled individuals before time (rLρL)−1/(log L). Moreover,

log
(
(rLρL)−1/(log L)

)

log L
=

log
( log ρL

rLρL

)− log log ρL − log log L

log L
→ 2(γ − α) as L →∞,

hence by Proposition 1.2 (see also Remark 4.7), the probability that no coalescence occurs
before r−1

L /(log L) tends to (β − α)/(γ − α). The last step is to observe that, again by
Proposition 1.2 and Remark 4.7, the probability that any of the pairs of lineages Aa and
Bb (considered separately) coalesces during the time interval [r−1

L /(log L), ρLL2(γ−α)] tends
to 0 as L tends to infinity.

For b), apply the Markov property at time ψL := ρL

(
L2(γ−α) ∨ (log L)5

(
1 + log ρL

rLρL

))
:

PaL

[
τL
Aa ∧ τL

Bb > ρLL2(t−α)
]
=EaL

[
1{τL

Aa∧τL
Bb>ψL}PAL(ψL)

[
τL
Aa ∧ τL

Bb > ρLL2(t−α) − ψL

]]

=
(γ − α)2

(t− α)2
PaL

[
τL
Aa ∧ τL

Bb > ψL

]
+ o(1),
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where the second equality comes from Proposition 4.4, Theorem 1.4(a) and dominated
convergence. Now, by the case a) and Remark 4.7,

PaL

[
τL
Aa ∧ τL

Bb > ψL

] → β − α

γ − α
as L →∞,

which yields the desired result.
Case c) is identical to b). ¤
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