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Recent work of Dupire [16] and Carr and Lee [5] has highlighted
the importance of understanding the Skorokhod embedding originally
proposed by Root [33] for the model-independent hedging of variance
options. Root’s work shows that there exists a barrier from which one
may define a stopping time which solves the Skorokhod embedding
problem. This construction has the remarkable property, proved by
Rost [35], that it minimises the variance of the stopping time among
all solutions.

In this work, we prove a characterisation of Root’s barrier in terms
of the solution to a variational inequality, and we give an alternative
proof of the optimality property which has an important consequence
for the construction of subhedging strategies in the financial context.

1. Introduction. In this paper, we analyse the solution to the Sko-
rokhod embedding problem originally given by Root [33], and generalised
by Rost [35]. Our motivation for this is recent work connecting the solution
to this problem to questions arising in mathematical finance — specifically
model-independent bounds for variance options — which has been observed
by Dupire [16], Carr and Lee [5] and Hobson [18]. The financial motiva-
tion can be described as follows: consider a (discounted) asset which has
dynamics under the risk-neutral measure

dSt

St
= σt dWt,

where the process σt is not necessarily known. We are interested in vari-
ance options, which are contracts where the payoff depends on the realised
quadratic variation of the log-price process: specifically, we have

d(lnSt) = σt dWt −
1

2
σ2

t dt

and therefore

〈lnS〉T =

∫ T

0
σ2

t dt.
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An option on variance is then an option with payoff F (〈lnS〉T ). Important
examples include variance swaps, which pay the holder 〈lnS〉T − K, and
variance calls which pay the holder (〈lnS〉T −K)+. We shall be particularly
interested in the case of a variance call, but our results will extend to a wider
class of payoffs. Let dXt = Xt dW̃t for a suitable Brownian motion W̃t and
we can find a (continuous) time change τt such that St = X̃τt , and so:

dτt =
σ2

t S
2
t

S2
t

dt.

Hence (
X̃τT

, τT
)

=

(
ST ,

∫ T

0
σ2

u du

)
= (ST , 〈lnS〉T ) .

Now suppose that we know the prices of call options on ST with maturity T ,
and at all strikes (recall that σt is not assumed known). Then we can derive
the law of ST under the risk-neutral measure from the Breeden-Litzenberger
formula. Call this law µ. This suggests that the problem of finding a lower
bound on the price of a variance call (for an unknown σt) is equivalent to:
(1.1)

find a stopping time τ to minimise E(τ −K)+, subject to L(X̃τ ) = µ.

This is essentially the problem for which Rost has shown that the solution
is given by Root’s barrier. (In fact, the result trivially extends to payoffs of
the form F (〈lnS〉T ) where F (·) is a convex, increasing function.)

In this work, our aim is twofold: firstly, to provide a proof that Root’s
barrier can be found as the solution to a particular variational inequality,
which can be thought of as the generalisation of an obstacle problem; sec-
ondly, we show that the lower bound which is implied by Rost’s result can
be enforced through a suitable hedging strategy, which will give an arbitrage
whenever the price of a variance call trades below the given lower bound.
To accomplish this second part of the paper, we will give a novel proof of
the optimality of Root’s construction, and from this construction we will be
able to derive a suitable hedging strategy.

The use of Skorokhod embedding techniques to solve model-independent
(or robust) hedging problems in finance can be traced back to Hobson [19].
More recent results in this direction include Cox et al. [12], Cox and Ob lój
[10] and Cox and Ob lój [11]. For a comprehensive survey of the literature
on the Skorokhod embedding problem, we refer the reader to Ob lój [28].
In addition, Hobson [18] surveys the literature on the Skorokhod embed-
ding problem with a specific emphasis on the applications in mathematical
finance.
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Variance options have been a topic of much interest in recent years, both
from the industrial point of view, where innovations such as the VIX index
have contributed to a large growth in products which are directly depen-
dent on quantities derived from the quadratic variation, and also on the
academic side, with a number of interesting contributions in the literature.
The academic results go back to work of Dupire [15] and Neuberger [26], who
noted that a variance swap — that is a contract which pays 〈lnS〉T , can be
replicated model-independently using a contract paying the logarithm of the
asset at maturity through the identity (from Itô’s Lemma):

(1.2) ln(ST ) − ln(S0) =

∫ T

0

1

St
dSt −

1

2
〈lnS〉T .

More recently, work on options and swaps on volatility and variance, (in a
model-based setting) includes Howison et al. [20], Broadie and Jain [3] and
Kallsen et al. [21]. Other work [22, 23] has considered the differences be-
tween the theoretical payoff (〈lnS〉T ) and the discrete approximation which
is usually specified in the contract (

∑
k ln(S(k+1)δ/Skδ)2). Finally, several pa-

pers have considered variants on the model-independent problems [5, 6, 13]
or problems where the modelling assumptions are fairly weak. This latter
framework is of particular interest for options on variance, since the mar-
kets for such products are still fairly young, and so making strong modelling
assumptions might not be as strongly justified as it could be in a well-
established market.

The rest of this paper is structured as follows: in Section 2 we review
some known results and properties concerning Root’s barrier. In Section 3,
we establish a connection between Root’s solution and an obstacle problem,
and then in Section 4 we show that by considering an obstacle problem in
a more general analytic sense (as a variational inequality), we are able to
prove the equivalence between Root’s problem and the solution to a vari-
ational inequality. In Section 5, we give a new proof of the optimality of
Root’s solution, and in Section 6 we show how this proof allows us to con-
struct model-independent subhedges to give bounds on the price of variance
options.

2. Features of Root’s solution. Our interest is in Root’s solution to
the Skorokhod embedding problem. Simply stated, for a process (Xt)t≥0,
the Skorokhod embedding problem is to find a stopping time τ such that
Xτ ∼ µ. In this paper, we will consider firstly the case where X0 = 0,
and Xt is a continuous martingale and a time-homogeneous diffusion, and
later the case where X0 ∼ ν, is a centred, square integrable measure. In
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such circumstances, it is natural to restrict to the set of stopping times for
which (Xt∧τ )t≥0 is a uniformly integrable (UI) process. We will occasionally
call stopping times for which this is true UI stopping times. In the case
where µ is centered and has a second moment and the underlying process
X is a Brownian motion (or more generally, a diffusion and martingale with
diffusion coefficient σ such that σ2 ≥ ε for some strictly positive constant ε),
this is equivalent to the fact that Eτ <∞. For the case of a general starting
measure, there is a natural restriction on the measures involved, which is
that we require:

(2.1) ∞ > Uν(x) := −
∫

R

|y − x| ν(dy) ≥ −
∫

R

|y − x|µ(dy) =: Uµ(x),

for all x ∈ R. This assumption implies that m :=
∫
xν( dx) =

∫
xµ( dx) (see

Chacon [7]). By Jensen’s inequality, such a constraint is clearly necessary
for the existence of a suitable pair ν and µ; further, by Rost [34], it is the
only additional constraint on the measures we will need to impose. We shall
write

(2.2) S(µ) = {τ : τ is a stopping time,Xτ ∼ µ, (Xt∧τ )t≥0 is UI}.

There are a number of important papers concerning the construction of
Root’s barrier. The first work to consider the problem is Root [33], and
this paper proved the existence of a certain Skorokhod embedding when Xt

is a Brownian motion. Specifically, Root showed that if Xt is a Brownian
motion with X0 = 0, and µ is the law of a centered random variable with
finite variance, then there exists a stopping time τ , which is the first hitting
time of a barrier, which is defined as follows:

Definition 2.1 (Root’s barrier). A closed subset B of [−∞,+∞] ×
[0,+∞] is a barrier if

1. (x,+∞) ∈ B for all x ∈ [−∞,+∞];
2. (±∞, t) ∈ B for all t ∈ [0,∞];
3. if (x, t) ∈ B then (x, s) ∈ B whenever s > t.

We provide representative examples of barrier functions in Figure 1.
In a subsequent paper Loynes [24] proved a number of results relating

to barriers. From our perspective, the most important are, firstly, that the
barrier B can be written as: B = {(x, t) : t ≥ R(x)}, where R : R → [0,∞]
is a lower semi-continuous function (with the obvious extensions to the defi-
nition to cover R(x) = ∞); we will make frequent use of this representation.
In addition, Loynes [24], Theorem 1 says that Root’s solution is essentially
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D

β

−α

R(x) = −λ(x + α)(x − β)1(−α,β)

(WτD
, τD)

x

t

0

(a)

x

t

(WτD
, τD)

0

(b)

Fig 1. Examples of Root’s barriers: the representation 1(a) is an example of a ‘nice’
barrier, where some explicit calculations can be made (see Example 5.6); in 1(b) we observe
some of the nastier features which a barrier may possess, including spikes, corresponding
to atoms of the distribution µ, and regions in which the barrier can be unbounded.

unique: if there are two barriers which embed the same distribution with a
UI stopping time, then their corresponding stopping times are equal with
probability one. The case where two different barriers can occur are then
only the cases where, say R(x0) = 0 for x0 > 0, and then R(x) is undeter-
mined for all x > x0.

The other important reference for our purposes is Rost [35]. This work
vastly extends the generality of the results of Root and Loynes, and uses
mostly potential-theoretic techniques. Rost works in the generality of a
Markov process Xt on a compact metric space E, which satisfies the strong
Markov property and is right-continuous. Then Rost recalls (from an orig-
inal definition of Dinges [14] in the discrete setting) the notion of minimal

residual expectation:

Definition 2.2. A stopping time τ∗ ∈ S(µ) is of minimal residual ex-

pectation if, for each t ∈ R+, it minimises the quantity:

E(τ − t)+ = E

∫ τ

τ∧t
ds =

∫ ∞

t
P(τ > s) ds,

over all τ ∈ S(µ).

Then Rost proves that (under (2.1)) there exists a stopping time of min-
imal residual expectation [35, Theorem 1], and that the hitting time of any
barrier is of minimal residual expectation [35, Theorem 2]. Finally, Rost also
shows that the barrier stopping times are, to a degree, unique [35, Corol-
lary to Theorem 2]. The relevant result for our purposes (where there is a
stronger form of uniqueness) is the corollary to Theorem 3 therein, which
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says that if Xt is a process for which the one-point sets are regular, then
any stopping time of minimal residual expectation is Root’s stopping time.
The class of processes for which the one-point sets are regular include the
class of time-homogenous diffusions we consider.

Note that a stopping time is of minimal residual expectation if and only if,
for every convex, increasing function F (t) (where, without loss of generality,
we take F (0) = F ′

+(0) = 0), it minimises the quantity:

EF (τ) = E

∫ ∞

0
(τ − t)+F

′′(dt),

this fact being a consequence of the above representation.
There are a number of important properties that the Root barrier pos-

sesses. Firstly, we note that, as a consequence of the fact that B is closed
and the third property of Definition 2.1, the barrier is regular (that is, if we
start at a point in the barrier, we will almost surely return to the barrier
instantly) for the class of processes we will consider (time-homogeneous dif-
fusions) this will have important analytical benefits. Secondly, for a point
(x, t) 6∈ B, we know that if the stopped process at time t is at x, then we
have not yet reached the stopping time for the embedding. This will help in
our characterisation of the law of the stopped process (Lemma 3.2).

In the rest of this paper, we will then say that a barrier is either a lower
semi-continuous function R : R → R+, with R(0) 6= 0, or the complement
of the corresponding connected open set D = {(x, t) : 0 < t < R(x)} =
R × (0,∞) \ B. As noted above, by Loynes [24] this is equivalent to the
barrier as defined in Definition 2.1. We will define the hitting time of the
barrier as: τD = inf{t > 0 : (Xt, t) /∈ D}. Note that the barrier B is
closed and regular, so that (XτD

, τD) ∈ B and P(x,t)(τD = 0) = 1 whenever
(x, t) ∈ B, where P(x,t) is the law of our diffusion started at x at time t.

Finally, we give some examples where the barrier function can be explicitly
calculated. We note that explicit examples appear to be the exception, and in
general are hard to compute. Firstly, if µ is a Normal distribution, we easily
see that R(x) is a constant. Secondly, if µ consists of two atoms (weighted
appropriately) at a < 0 < b say, the corresponding barrier is

R(x) =

{
0 x 6∈ (a, b)

∞ x ∈ (a, b)
.

In this example, observe that the function R(x) is not unique: we can choose
any behaviour outside [a, b], and achieve the same stopping time. Secondly,
we note the that there are even more general solutions to the Skorokhod
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embedding problem (without the uniform integrability condition) since there
are also barriers of the form

R(x) =





ta x = a

tb x = b

∞ x 6∈ {a, b}
,

which will embed the same law (provided ta, tb > 0 are chosen suitably),
but which do not satisfy the uniform integrability condition. In general,
a barrier can exhibit some fairly nasty features: consider for example the
canonical measure on a middle third Cantor set C (scaled so that it is on
[−1, 1]). Root’s result tells us that there exists a barrier which embeds this
distribution, and clearly the resulting barrier function must be finite only
on the Cantor set, however the target distribution has no atoms, so that
the ‘spikes’ in the barrier function can not be isolated (i.e. we must have
lim infy↑xR(y) = lim infy↓xR(y) = R(x) for all x ∈ (−1, 1) ∩C).

3. Connecting Root’s Problem and an Obstacle Problem. We
now consider alternative methods for describing Root’s barrier. We will in
general be interested in this question when our underlying process Xt is a
solution to

(3.1) dXt = σ(Xt) dWt, X0 ∼ ν,

for a Brownian motion (Wt)t≥0, and we will introduce our concepts in this
general context. Initially, we assume that σ : R → R satisfies, for some
positive constant K,

(3.2) |σ(x) − σ(y)| ≤ K|x− y|;

(3.3) 0 < σ2(x) < K(1 + x2);

(3.4) σ is smooth.

Recall that for the financial application we are interested in, we want the
specific case σ(x) = x to be included. Clearly, this case is currently excluded,
however we will show in Section 4.3 that the results can be extended to
include this case.

From standard results on SDEs, (3.2) and (3.3) imply that the unique
strong solution Xa of (3.1) with ν = δa is a strong Markov process with
generator 1

2σ
2∂xx for any initial value a ∈ R. Moreover, (3.4) implies that

the operator L := 1
2σ

2∂xx − ∂t is hypoelliptic (see Stroock [36], Theorem
3.4.1).

We will write Root’s Skorokhod embedding problem as:
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SEP(σ, ν, µ): Find a lower-semicontinuous function R(x) such that the do-
main D = {(x, t) : 0 < t < R(x)} has XτD

∼ µ, and (Xt∧τD
)t≥0 is a UI

process, where ν is the initial law of Xt, and σ the diffusion coefficient.

Our aim is to show that the problem of finding R is essentially equivalent
to solving an obstacle problem. Assuming that the relevant derivatives exist,
we shall show that the problem can be stated as:

OBS(σ, ν, µ): Find a function u(x, t) ∈ C1,1(R × R+) such that

Uν(x) = u(x, 0)(3.5a)

0 ≥ Uµ(x) − u(x, t)(3.5b)

0 ≥ ∂u

∂t
(x, t) − 1

2
σ(x)2

∂2u

∂x2
(x, t)(3.5c)

(
∂u

∂t
(x, t) − 1

2
σ(x)2

∂2u

∂x2
(x, t)

)
(Uµ(x) − u(x, t)) = 0(3.5d)

where (3.5c) is interpreted in a distributional sense — that is, we
require:

∫

R

(
φ(x)

∂u

∂t
(x, t) +

1

2
σ(x)2

∂u

∂x
(x, t)φ′(x)

)
dx ≤ 0

whenever φ ∈ C∞
K is a non-negative function. The condition (3.5d) can

be interpreted more generally as requiring

∂u

∂t
(x, t) =

1

2
σ(x)2

∂2u

∂x2
(x, t)

in a distributional sense whenever (Uµ(x) − u(x, t)) 6= 0. However, this
is an open set, and from the hypoellipticity of the operator L, if this
holds in a weak sense, it will hold in a strong sense. Hence ∂2u

∂x2 (x, t)
would be continuous even if we were only to require (3.5d) to hold in
a distributional sense.

In general, we do not expect u to be sufficiently nice that we can easily
interpret all these statements, and one of the goals of this paper is to give
a generalisation of OBS(σ, ν, µ) that will make sense more widely. Cases in
which u may not be expected to be C1,1 include the case where µ contains
atoms (and therefore Uµ is not continuously differentiable). In addition, we
specify this problem in C1,1 since in general we would certainly not expect
the second derivative to be continuous on the boundary between the two
types of behaviour in (3.5d).



ROOT’S BARRIER: CONSTRUCTION, OPTIMALITY AND APPLICATIONS 9

Theorem 3.1. Suppose D is a solution to SEP(σ, ν, µ) and is such that:

u(x, t) = −E|Xt∧τD
− x| ∈ C1,1(R × R+).

Then u solves OBS(σ, ν, µ).

This gives an initial connection between OBS(σ, ν, µ) and SEP(σ, ν, µ).
We roughly expect solutions to Root’s problem to be the unique solutions to
the obstacle problem (of course, we do not currently know that such solutions
exist or, when they do, are unique). This suggests that we can attempt
to solve the obstacle problem to find the solution D to Root’s problem.
In particular, given a solution to OBS(σ, ν, µ), we can now identify D as
D = {(x, t) : Uµ(x) < u(x, t), t > 0}.

Lemma 3.2. For any (x, t) ∈ D, P (Xt∧τD
∈ dx) = P (Xt ∈ dx, t < τD)

Proof. By the lower semi-continuity of R, since (x, t) ∈ D, there exists
h > 0 such that

(x− h, x+ h) × [0, t + h) ⊂ D,

and hence, for any y ∈ (x−h, x+h), R(y) > t. On the other hand, if τD ≤ t,
we have

R(XτD
) ≤ τD ≤ t,

and hence, XτD
/∈ (x− h, x+ h). Therefore,

P (Xt∧τD
∈ dx) = P (Xt ∈ dx, t < τD) + P (XτD

∈ dx, t ≥ τD)

= P (Xt ∈ dx, t < τD) .

Lemma 3.3. The measure corresponding to L(Xt; t < τD) has density

pD(x, t) with respect to Lebesgue on D, and the density is smooth and satis-

fies:
∂

∂t
pD(x, t) =

1

2

∂2

∂x2

[
σ(x)2pD(x, t)

]
.

This result appears to be standard, but we are unable to find concise
references. We give a short proof based on [32, V.38.5].

Proof. First note that, as a measure, L(Xt; t < τD) is dominated by the
usual transition measure, so the density pD(x, t) exists.
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Let (x0, t0) be a point in D, and we can therefore find an ε > 0 such that
A = (x0− ε, x0 + ε)× (t0− ε, t0 + ε) satisfies Ā ⊆ D. Then let f be a smooth
function, supported on A, and by Itô’s Lemma:

f(Xt∧τD
, t) =f(X0, 0) +

∫ t

0

∂f

∂x
(Xs∧τD

, s) dXs

+

∫ t

0

(
1

2
σ(Xs∧τD

)2
∂2

∂x2
+
∂

∂t

)
f(Xs∧τD

, s) ds.

Since f is compactly supported, taking t > t0 + ε, the two terms on the
left disappear, and the first integral term is a martingale. Hence, taking
expectations, and interchanging the order of differentiation, we get:

∫ t

0

∫
pD(y, s)

(
1

2
σ(y)2

∂2

∂x2
+
∂

∂t

)
f(y, s) dy ds = 0.

Interpreting pD(y, s) as a distribution, we have

1

2

∂2

∂x2

[
σ(x)2pD(x, t)

]
− ∂

∂t
pD(x, t) = 0,

for (x, t) ∈ A, and since the heat operator is hypoelliptic, we conclude that
pD(x, t) is smooth in A (e.g. Stroock [36], Theorem 3.4.1).

We are now able to prove that any solution to Root’s embedding problem
is a solution to the obstacle problem.

Proof of Theorem 3.1. We first observe that u(x, 0) = −E|X0 − x|,
and X0 ∼ ν, so that u(x, 0) = − ∫ |y − x| ν(dy) and (3.5a) holds. Secondly,
since (Xt∧τD

)t≥0 is a UI process, by (conditional) Jensen’s inequality:

u(x, t) = −E|x−Xt∧τD
| ≥ −E

[
E
[
|x−XτD

|
∣∣Ft∧τD

]]
= Uµ(x),

and (3.5b) holds.
We now consider (3.5c). Suppose (x, t) ∈ D, and note that:

(3.6)
∂u

∂x
= 1 − 2P(Xt∧τD

< x)

and therefore (in D) by Lemma 3.3 the function u has a smooth second
derivative in x. Further, we get:

1

2

∫ t

0
σ(x)2

∂2u

∂x2
(x, s) ds = −

∫ t

0
σ(x)2pD(x, s) ds

= lim
ε↓0

E

[
1

2ε

∫ t∧τD

0
σ(x)21[x−ε<Xs<x+ε] ds

]

= −ELx
t∧τD

= −E|x−Xt∧τD
| + |x|,(3.7)
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where Lx
t is the local time of the diffusion at x. It follows that u satisfies

(3.5c) on D, and in fact attains equality there. On the other hand, if (x, t) 6∈
D, it follows from the definition of the barrier that if τD > t, the diffusion
cannot cross the line {(x, s) : s ≥ t} in the time interval [t, τD), and hence

Lx
t∧τD

= Lx
t 1τD>t + Lx

τD
1τD≤t = Lx

τD
1τD>t + Lx

τD
1τD≤t = Lx

τD
.

Therefore, for t ≥ R(x),

E|x−Xt∧τD
| = |x| + ELx

t∧τD
= |x| + ELx

τD
= E|x−XτD

|,

where the last equality holds because τD is a UI stopping time. So (3.5b)
holds with equality when (x, t) 6∈ D. In particular, we can deduce that
either (if (x, t) ∈ D) we have equality in (3.5c), or we have equality in
(3.5b), in which case (3.5d) must hold. It remains to show that (3.5c) holds
when (x, t) 6∈ D. However, to see this, consider (x, t) 6∈ D, and note first
that u(x, s) = u(x, t) = Uµ(x) whenever s > t, since (x, s) 6∈ D. Hence
∂u

∂t
(x, t) = 0. It is straightforward to check that u(x, t) is concave in x, and

therefore that
∂2u

∂x2
(x, t) ≤ 0, and (3.5c) also holds.

This result connects Root’s problem and the obstacle problem under a
smoothness assumption on the function u. However, ideally we want a one-
to-one correspondence. We know from the results of Rost [35] that there
always exists a solution to SEP(σ, ν, µ), and from Loynes [24] that the so-
lution is unique. Our aim is to show that a similar combination of existence
and uniqueness hold for the corresponding analytic formulation. As already
noted, we cannot make a strong smoothness assumption on the function
u(x, t) as required by OBS(σ, ν, µ) and so we need a weaker formulation of
this problem. Generalisations of the obstacle problem are well understood,
and commonly called variational inequalities. In the next section, we will re-
formulate the obstacle problem as a variational inequality, and we are able
to state a problem for which existence and uniqueness are known due to
existing results.

4. Root’s Barrier and Variational Inequalities. We now study the
relation between Root’s Skorokhod embedding problem and a variational
inequality. Our notation and definitions, and some of the key results which
we will use, come from Bensoussan and Lions [1].
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4.1. Variational Inequalities. We begin with some necessary notation
and results concerning evolutionary variational inequalities. Given a con-
stant λ > 0 and a finite time T > 0, we define the Banach spaces Hm,λ ⊆
L2(R) and L2(0, T ;Hm,λ) with the norms:

‖g‖2
Hm,λ =

m∑

k=0

∫

R

e−2λ|x|

∣∣∣∣∣
∂kg

∂xk
(x)

∣∣∣∣∣

2

dx;

‖w‖2
L2(0,T ;Hm,λ) =

∫ T

0
‖w(·, t)‖2

Hm,λ dt,

where the derivatives ∂kg
∂xk (x) are to be interpreted as weak derivatives —

that is, ∂kg
∂xk (x) is defined by the requirement that

∫

R

φ(x)
∂kg

∂xk
(x) dx = (−1)k

∫

R

g(x)
∂kφ

∂xk
(x) dx,

for all φ ∈ C∞
K (R), and C∞

K is the set of compactly supported, smooth
functions on R. In particular, the spacesHm,λ and L2(0, T ;Hm,λ) are Hilbert
spaces with respect to the obvious inner products. In addition, elements of
the set H1,λ can always be taken to be continuous, and C∞

K is dense in Hm,λ

(see e.g. Friedman [17], Theorem 5.5.20).
For functions a(x, t), b(x, t) ∈ L∞(R × (0, T )), we define an operator:

aλ(t; v,w) =

∫

R

e−2λ|x|
[
a(x, t)

∂v

∂x

∂w

∂x
+ b(x, t)

∂v

∂x
w

]
dx,

for v,w ∈ L2(0, T ;H1,λ). Moreover if ∂a/∂x exits, we define, for v ∈ H2,λ,

A(t)v = − ∂

∂x

(
a(x, t)

∂v

∂x

)
+ (b(x, t) + 2λa(x, t) sgn(x))

∂v

∂x
.

And finally, for v,w ∈ H0,λ,

(v,w)λ =

∫

R
e−2λ|x|vw dx,

so that, for suitably differentiable test functions φ(x) and v ∈ H2,λ:

(φ,A(t)v)λ = aλ(t; v, φ).

Then we have the following restatement of Bensoussan and Lions [1], The-
orem 2.2, and Section 2.15, Chapter 3:

Theorem 4.1. For any given λ > 0 and T > 0, suppose:
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1. a, b,
∂a

∂t
are bounded on R × (0, T ) with a(x, t) ≥ α a.e. in R × (0, T )

for some α > 0;

2. ψ,
∂ψ

∂t
∈ L2(0, T ;H1,λ), v̄ ∈ H1,λ, v̄ ≥ ψ(0);

3. The set

X :=
{
w ∈ L2(0, T ;H1,λ) :

∂w

∂t
∈ L2(0, T ; (H1,λ)∗

)
,

w(t) ≥ ψ(t) a.e. t in [0, T ]
}

is non-empty, where (H1,λ)∗ denotes the dual space of H1,λ.

Then there exists a unique function v such that:

v ∈ L∞(0, T ;H1,λ),
∂v

∂t
∈ L2(0, T ;H0,λ);(4.1)

(
∂v

∂t
, w − v

)

λ
+ aλ(t; v,w − v) ≥ 0,

∀w ∈ H1,λ such that w ≥ ψ(t) a.e. t ∈ (0, T );

(4.2)

v(·, t) ≥ ψ(t), a.e. t ∈ (0, T );(4.3)

v(·, 0) = v̄.(4.4)

Moreover, if v ∈ L2(0, T ;H2,λ), then v is a solution to the obstacle problem:

find, v ∈ L2(0, T ;H2,λ) such that v satisfies (4.3), (4.4), and

∂v

∂t
+A(t)v ≥ 0;(4.5)

(
∂v

∂t
+A(t)v

)
(v − ψ) = 0,(4.6)

almost everywhere in R × (0, T ).

Proof. For the most part, the theorem is a restatement of Bensoussan
and Lions [1], Theorem 2.2, and Section 2.15, Chapter 3, where we have
mapped t 7→ T − t, and v 7→ −v.

We therefore only need to explain the last part of the result. If we suppose
v ∈ L2(0, T ;H2,λ) and φ ∈ H1,λ, we have

aλ(t; v, φ) =

∫

R

e−2λ|x|a(x, t)
∂v

∂x
dφ+

∫

R

e−2λ|x|φ

[
b(x, t)

∂v

∂x

]
dx

=

[
e−2λ|x|a(x, t)

∂v

∂x
φ

]∞

−∞
+

∫

R

e−2λ|x|φ ·A(t)v dx,
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where the first term on the right-hand side vanishes since v ∈ L2(0, t;H1,λ)
and φ ∈ H1,λ. Therefore, by (4.2), for any w ∈ H1,λ such that w ≥ ψ a.e. in
R, (

∂v

∂t
+A(t)v,w − v

)

λ
≥ 0, a.e. t.

Taking for example w = v + φ, for a positive test function φ, we conclude
that (4.5) holds. Moreover, let w = ψ in the inequality above, we have

∫

R
e−2λ|x|

(
∂v

∂t
+A(t)v

)
(ψ − v) dx ≥ 0.

Then (4.6) follows from (4.3) and (4.5).

4.2. Connection with Skorokhod’s Embedding Problem. To connect our
embedding problem SEP(σ, ν, µ) with the variational inequality, we need
some assumptions on σ, µ and the starting distribution ν. Firstly, on σ :
R → R+, we still assume (3.2) and (3.4) hold. In addition, we assume that:

(4.7) ∃K > 0, such that
1

K
< σ < K on R.

On µ and ν, we still assume that Uµ(x) ≤ Uν(x) to ensure the existence of
a solution to SEP(σ, ν, µ).

Under these assumptions, we can specify the coefficients in the evolution-
ary variational inequality, (4.4) and (4.5)–(4.6), to be:

a(x, t) =
σ2(x)

2
; b(x, t) = σ(x)σ′(x) − λσ2(x)sgn(x);

ψ(x, t) = Uµ(x); v̄ = Uν(x),

(4.8)

then the corresponding operators are given by A(t) = −σ2(x)
2

∂2

∂x2 and

aλ(t; v,w) =

∫

R
e−2λ|x|

[
σ2(x)

2

∂v

∂x

∂w

∂x
+
(
σ(x)σ′(x) − λσ2(x)sgn(x)

)∂v
∂x
w

]
dx.

We write the evolutionary variational inequality as:

VI(σ, ν, µ): Find a function v : R × [0, T ] → R satisfying (4.1)–(4.4), where
all the coefficients are given in (4.8).

We also have a stronger formulation, that is:

SVI(σ, ν, µ): For given T > 0, we seek a function v, in a suitable space,
such that (4.3)–(4.6) hold, where all the coefficients are given in (4.8).
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Our main result is then to show that finding the solution to SEP(σ, ν, µ)
is equivalent to finding a (and hence the unique) solution to VI(σ, ν, µ):

Theorem 4.2. Suppose (3.2), (3.4) and (4.7) hold and let T > 0. Also,

let D and v be the solutions to SEP(σ, ν, µ) and VI(σ, ν, µ) respectively.

Define u(x, t) := −Eν|x−Xt∧τD
| and DT by:

(4.9) DT :=
{
(x, t) ∈ R × [0, T ]; v(x, t) > ψ(x, t)

}
.

Then we have DT = D ∩ R × [0, T ], and for all (x, t) ∈ R × [0, T ],

u(x, t) = v(x, t).

Moreover, if u ∈ L2(0, T ;H2,λ) then u is also the solution to SVI(σ, ν, µ).

Proof. Let λ > 0 be fixed, and suppose D is a solution to SEP(σ, ν, µ).
We need to show u is a solution to VI(σ, ν, µ). First note that Uµ(x) + |x|
is continuous on R, and converges to 0 as x → ±∞, and hence is bounded.
So x 7→ Uµ(x) + |x| ∈ L∞(0, T ;H0,λ), and then Uµ(x) ∈ L∞(0, T ;H0,λ).
Similarly, Uν(x) ∈ L∞(0, T ;H0,λ). Since 0 ≥ Uν(x) ≥ u(x, t) ≥ Uµ(x) for

all t ∈ [0, T ], we have u ∈ L∞(0, T ;H0,λ). By (3.6), we also have
∣∣∣∂u
∂x

∣∣∣ ≤
1 since u is the potential of some probability distribution. Therefore we
have u ∈ L∞(0, T ;H1,λ). By Lemma 3.3 and the fact that u is constant

(in time) outside D,
∣∣∣∂u

∂t

∣∣∣ ≤ σ2pν(x, t) a.e. on R × [0, T ] where pν(x, t) is

the transition density of the diffusion process X starting from ν. Then by
standard Gaussian estimates (e.g. Stroock [36], Theorem 3.3.11), we know
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there exists some constant A > 0, depending only on K, such that
∥∥∥∥
∂u

∂t

∥∥∥∥
L2(0,T ;H0,λ)

≤
∫

R

∫ T

0

∫

R

A

1 ∧ t exp



−2

(
At− (x− y)2

At

)−

− 2λ|x|



 dxdt ν(dy)

=

∫

R

∫ T

0

A

1 ∧ t

∫ y+At

y−At
e−2λ|x| dxdt ν(dy)

+

∫

R

∫ T

0

Ae2At

1 ∧ t

∫

R\(y−At,y+At)
exp

{
−2(x− y)2

At
− 2λ|x|

}
dxdt ν(dy)

≤
∫

R

∫ T

0

A

1 ∧ t

∫ At

−At
e−2λ|x| dxdt ν(dy)

+

∫

R

∫ T

0

Ae2At

1 ∧ t

∫

R\(y−At,y+At)
exp

{
−2(x− y)2

At

}
dxdt ν(dy)

=
A

λ

∫ T

0

1

1 ∧ t(1 − e−2λAt) dt+ 2A

∫ T

0

e2At

1 ∧ t

∫ ∞

At
exp

{
−2z2

At

}
dz dt

≤ A

λ

∫ T

0

2Aλt

1 ∧ t dt+
A3/2π1/2

√
2

∫ T

0

e2At
√
t

1 ∧ t dt <∞,

where we have applied Hölder’s inequality in the first line to get:

∣∣∣∣
∂u

∂t

∣∣∣∣
2

=

∣∣∣∣
∫

R

p(t, y, x)ν(dy)

∣∣∣∣
2

≤
∫

R

p(t, y, x)2ν(dy).

So ∂u
∂t ∈ L2(0, T ;H0,λ), and we have shown (4.1) holds.

By the same arguments used in the proof of Theorem 3.1, (4.3) and (4.4)
hold. Now we consider (4.2). We begin by observing that, for any φ ∈ C∞

K ,
if we write µt(dx) for the law of Xt∧τD

, we have:
∫

R

∂φ

∂x

∂u

∂x
dx =

∫

R

∂φ

∂x
(1 − 2P(Xt∧τD

≤ x)) dx

= −2

∫

R

∫

R

∂φ

∂x
1{y≤x}µt(dy) dx

= 2

∫

R

φ(y)µt(dy)

= 2E [φ(Xt∧τD
)] .(4.10)

In addition, for any w ∈ H1,λ, we can find a sequence {φn} ⊂ C∞
K such that

(4.11) lim
n→∞

‖φn − (w − u(·, t))‖H1,λ = 0.
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Moreover, e−λ|x|u(x, t) is bounded, and if e−λ|x|w is also bounded then we
can in addition find a sequence {φn} ⊂ C∞

K such that e−2λ|x|φn(x) ≥ −K ′

for some constant K ′ independent of n. For any n, we therefore have
∫

R

e−2λ|x|σ
2

2

∂u

∂x

∂φn

∂x
dx = −

∫

R

e−2λ|x|
(
σσ′ − λσ2sgn(x)

) ∂u
∂x
φn dx

+

∫

R

e−2λ|x|φnσ
2 µt(dx).

(4.12)

On the other hand, since ∂u/∂t vanishes outside D, and, using the same
arguments as (3.7) (which still hold on account of Lemma 3.3), is equal to
−σ(x)2pD(x, t), we have, for almost every t ∈ [0, T ]
(4.13)∫

R

e−2λ|x|φn
∂u

∂t
dx+

∫

R

e−2λ|x|φnσ
2 µt(dx) =

∫

R\Dt

e−2λ|x|φnσ
2 µt(dx),

where Ds := {x ∈ R : (x, s) ∈ D}. By (4.12) and (4.13),
(
∂u

∂t
, φn

)

λ
+ aλ(t;u, φn)

=

∫

R

e−2λ|x|

[
∂u

∂t
φn +

σ2

2

∂u

∂x

∂φn

∂x
+
(
σσ′ − λσ2sgn(x)

) ∂u
∂x
φn

]
dx

=

∫

R
e−2λ|x|φn

∂u

∂t
dx+

∫

R
e−2λ|x|φnσ

2 µt(dx)

=

∫

R\Dt

e−2λ|x|φnσ
2 µt(dx),

for almost every t ∈ [0, T ]. Now suppose initially we have e−λ|x|w bounded,
and choose a sequence φn as above. Then we can let n → ∞ and apply
Fatou’s Lemma and the fact that u = ψ on R \Dt and w ≥ ψ to get:

−
(
∂u

∂t
, w − u

)

λ
+aλ(t;u,w − u)

=

∫

R\Dt

e−2λ|x|(w − ψ)σ2 µt(dx) ≥ 0,

for almost every t ∈ [0, T ]. So (4.2) holds when e−λ|x|w is bounded. The
general case follows from noting that max{w,−N} converges to w in H1,λ.
We can conclude that u is a solution to VI(σ, ν, µ). In addition, the final
statement of the theorem now follows from Theorem 4.1.

Conversely, suppose that we have already found the solution to VI(σ, ν, µ),
denoted by v(x, t). By Theorem 4.1 and the preceding argument, we have

−Eν |x−Xt∧τD
| = v(x, t),
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when (x, t) ∈ R × [0, T ]. Finally, we need only note (from (3.7), and the
line above) that whenever (x, t) ∈ D, we have u(x, t) > ψ(x, t), and hence
DT = D ∩ R × [0, T ].

Remark 4.3. The constant λ which appears in the variational inequality
can now be seen to be unimportant: if we consider two positive numbers
λ < λ∗, then by Theorem 4.1, there exist v and v∗ satisfying (4.1)–(4.4)
with the parameters λ and λ∗ respectively. According to Theorem 4.2,

u(x, t) = v(x, t) = v∗(x, t),

so v = v∗. Therefore, the description of Root’s barrier by the strong varia-
tional inequality is not affected by the choice of the parameter λ > 0. We
do however need λ > 0, since this assumption is used in e.g.(4.12) to ensure
we can integrate by parts.

Remark 4.4. As noted in Bensoussan and Lions [1], and which is well
known, one can connect the solution to the variational inequality VI(σ, ν, µ)
to the solution of a particular optimal stopping problem. In our context, the
function v which arises in the solution to VI(σ, ν, µ) is also the function
which arises from solving the problem:

(4.14) v(x, t) = sup
τ≤t

Ex
[
Uµ(Xτ )1{τ<t} + Uν(Xτ )1{τ=t}

]
.

This seems a rather interesting observation, and at one level extends a num-
ber of connections known to exist between solutions to the Skorokhod em-
bedding problem, and solutions to optimal stopping problems: e.g. Peskir
[29], Ob lój [27] and Cox et al. [12].

What is rather interesting, and appears to differ from these other situ-
ations, is that the above examples are all cases where the same stopping
time is both a Skorokhod embedding, and a solution to the relevant optimal
stopping problem. In the context here, we see that the optimal stopping
problem is not solved by Root’s stopping time. Rather, the problem given
in (4.14) runs ‘backwards’ in time: if we keep t fixed, then the solution to
(4.14) is:

τD = inf {s ≥ 0 : (Xs, t− s) 6∈ D} ∧ t.
In addition, our connection between these two problems is only through
the analytic statement of the problem: it would be interesting to have a
probabilistic explanation for the correspondence.
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Remark 4.5. The above ideas also allow us to construct alternative
embeddings which fail to be uniformly integrable. Consider using the varia-
tional inequality to construct the domain D in the manner described above,
but with the function ψ chosen to be Uµ(x)−α, for some α > 0. By (4.14),
one can check that the solution to the variational inequality is a decreasing
function with respect to t, and hence, B = D∁ is a barrier, which is non-
empty, so that τD < ∞ a.s., and the functions u(x, t) and v(x, t) defined in
Theorem 4.2 agree (for example by taking bounded approximations to D).
In particular, limt→∞ u(x, t) = Uµ(x)−α. Since Xt∧τD

is no longer uniformly
integrable, we cannot simply infer that this holds in the limit, but we can
consider for example

u(x, t) − u(z, t) = −E [|Xt∧τD
− x| − |Xt∧τD

− z|]

which is a bounded function. Taking the limit as t→ ∞, we can deduce that

−E [|XτD
− x| − |XτD

− z|] = Uµ(x) − Uµ(z).

From this expression, we can divide through by (x − z) and take the limit
as x ↓ z to get 2P(XτD

> z) − 1. The law of XτD
now follows.

Note also that there is no reason that the distribution above needed to
have the same mean as ν, and this can lead to constructions where the
means differ. In general, these constructions will not give rise to a uniformly
integrable embedding, but if we take two general (integrable) distributions,
there is a natural choice, which is to find the smallest α ∈ R such that
Uν(x) ≥ Uµ(x) − α. In such a case, we conjecture that the resulting con-
struction would be minimal in the sense that there is no other construction
of a stopping time which embeds the same distribution, and is almost surely
smaller. See Monroe [25] and Cox [8] for further details regarding minimality.

4.3. Geometric Brownian motion. An important motivating example for
our study is the financial application of Root’s solution described in the
introduction. In both [16] and [5], the case σ(x) = x plays a key role in
both the pricing and the construction of a hedging portfolio. However, in the
previous section, we only discussed the relation between Root’s construction
and variational inequalities under the assumptions (3.2), (3.4) and (4.7),
where the last assumption is not satisfied by σ in this special case.

In this section, we study this special case: σ(x) = x, so that Xt is a
geometric Brownian motion. In addition, we will assume that the process
is strictly positive, so that ν and µ are supported on (0,∞). We therefore
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consider the Skorokhod embedding problem SEP(σ, ν, µ) with starting dis-
tribution ν, where ν and µ are integrable probability distributions satisfying

supp(µ) ⊂ (0,∞), supp(ν) ⊂ (0,∞), Uµ(x) ≤ Uν(x), and

∫
x2 dν <∞.

(4.15)

We recall from (2.1) that this implies in particular that the means of µ and
ν agree.

The solution to the stochastic differential equation

dXt = Xt dWt, X0 = x0

is the geometric Brownian motion x0 exp{Wt − t/2}, and, for y > 0, the
transition density of the process is:

(4.16) pt(y, x) :=
1

x

1√
2πt

1{x>0} exp

{
−(lnx− ln y + t/2)2

2t

}
.

By analogy with Theorem 3.1, if D is the solution to SEP(σ, ν, µ), then
we would expect

∂u

∂t
=
x2

2

∂2u

∂x2
, on D; u(x, t) = Uµ(x) on R × (0,∞) \D;

where u is defined as before by u(x, t) = −E|x−Xt∧τD
|. However, if we follow

the arguments in Section 4.2, we find that we need to set a(x, t) = x2/2 in
VI(σ, ν, µ), which would not satisfy the first condition of Theorem 4.1. To
avoid this we will perform a simple transformation of the problem. We set

v(x, t) = u(ex, t), (x, t) ∈ R × [0, T ].

Define the operator A(t) := −1
2

∂2

∂x2 + 1
2

∂
∂x , then we have, when (ex, t) ∈ D,

(4.17)
∂v

∂t
+A(t)v = 0.

We state our main result of this section as follows:

Theorem 4.6. Suppose σ(x) = x on (0,∞) and µ and ν satisfy (4.15).
Moreover, assume D solves SEP(σ, ν, µ), and u(x, t) := −E|x − Xt∧τD

|.
Then v(x, t) := u(ex, t) is the unique solution to (4.1)–(4.4) where we set

a(x, t) =
1

2
; b(x, t) =

1

2
− λ · sgn(x); ψ(x, t) = Uµ(ex);

v̄ = Uν(ex); λ >
1

2
.

(4.18)
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Proof. Much of the proof will follow the proof of Theorem 4.2. As before,
(4.3) and (4.4) are clear. In addition, we note that ψ− ex is continuous and
converges to 0 as x → ∞ and converges to Uµ(0) < ∞ as x → −∞, so
x 7→ ψ − ex ∈ L∞(0, T ;H0,λ). Hence ψ ∈ L∞(0, T ;H0,λ) since we have

λ >
1

2
. Thus, v ∈ L∞(0, T ;H0,λ). Moreover, we can easily see |∂v/∂x| is

bounded by ex. Therefore, v ∈ L∞(0, T ;H1,λ) when λ >
1

2
. On the other

hand, since |∂v/∂t| is bounded by e2x
∫
pt(y, e

x) ν(dy), we have, by Hölder’s
inequality,

∣∣∣∣
∂v

∂t

∣∣∣∣
2

≤
∫

R+

1

2πt
exp

{
−(x− ln y + t/2)2

t
+ 2x

}
ν( dy),

and hence,

∥∥∥∥
∂v

∂t

∥∥∥∥
L2(0,T ;H0,λ)

≤
∫

R+

∫ T

0

∫

R

e−2λ|x|

2πt
exp

{
−(x− ln y + t/2)2

t
+ 2x

}
dxdt ν(dy)

≤
∫

R+

∫ T

0

∫

R

1

2πt
exp

{
−(x− ln y − t/2)2

t
+ 2 ln y

}
dxdt ν(dy)

≤
∫

R+

y2 ν(dy)

∫ T

0

1

2
√
πt

dt <∞.

Therefore (4.1) is verified.
Using (4.10), for φ ∈ C∞

K we get

∫

R

(
∂φ

∂x
(x) + φ(x)

)
∂v

∂x
dx =

∫ ∞

0

∂

∂y
[φ(ln(y))y]

∂u

∂x
(y, t) dy

= 2E [φ(ln(Xt∧τD
))Xt∧τD

] ,(4.19)

and so we define the measure νt by
∫
φ(x) νt(dx) = E [φ(ln(Xt∧τD

))Xt∧τD
] .

Now take any w ∈ H1,λ, and take {φn} ⊂ C∞
K satisfying (4.11). By (4.17)

and (4.19), similar arguments to those used in the proof of Theorem 4.2 give

∫

R

e−2λ|x| ∂v

∂x

(
1

2

∂φn

∂x
+

1

2
φn − λ · sgn(x)

)
dx =

∫

R

e−2λ|x|φn νt(dx),

and
∫

R

e−2λ|x|∂v

∂t
φn dx+

∫

R

e−2λ|x|φn νt(dx) =

∫

R\D̃t

e−2λ|x|φn νt(dx),
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for almost all t ∈ [0, T ], where D̃t := {x ∈ R : (ex, t) ∈ D}. Thus, for almost
every t ∈ [0, T ],

(
∂v

∂t
, φn

)

λ
+aλ(t; v, φn)

=

∫

R

(
∂v

∂t
φn +

1

2

∂φn

∂x

∂v

∂x
+

(
1

2
− λ · sgn(x)

)
φn
∂v

∂x

)
dx

=

∫

R\D̃t

e−2λ|x|φn νt(dx).

Finally, following the same arguments as in the proof of Theorem 4.2, we
conclude (4.2) holds. Therefore v is a solution to (4.1)–(4.4) with coefficients
determined by (4.18). The uniqueness is clear since it is easy to check the
coefficients defined in (4.18) satisfy the conditions in Theorem 4.1.

5. Optimality of Root’s Solution. For a given distribution µ, Rost
[35] proves that Root’s construction is optimal in the sense of ‘minimal
residual expectation’. It is easy to check that this is equivalent to the slightly
more general problem:

minimise E
[
F (τ)

]

subject to: L(Xτ ) = µ;

τ is a UI stopping time.

Here we assume µ is a given integrable and centred distribution, X is the
diffusion process defined by (3.1), where the diffusion coefficient σ satisfies
(3.2)–(3.4), with initial distribution L(X0) = ν, and F is a given convex,
increasing function with right derivative f and F (0) = 0.

Our aim in this section is twofold. Firstly, since Rost’s original proof
relies heavily on notions from potential theory, to give a proof of this result
using probabilistic techniques. Secondly, we shall be able to give a ‘pathwise
inequality’ which encodes the optimality in the sense that we can find a
submartingale Gt, and a function H(x) such that

(5.1) F (t) ≥ Gt +H(Xt)

and such that, for τD, equality holds in (5.1) and Gt∧τD
is a UI martingale.

It then follows that τD does indeed minimise EF (τ) among all solutions
to the Skorokhod embedding problem. The importance of (5.1) is that we
can characterise the submartingale Gt, which will correspond in the finan-
cial setting to a dynamic trading strategy for constructing a sub-replicating
hedging strategy for call-type payoffs on variance options.
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We first define the key functions G(x, t) and H(x), where the submartin-
gale in (5.1) is Gt = G(Xt, t), and give key results concerning these functions.

We suppose that we have solved Root’s problem for the given distribu-
tions, and hence have our barrier B = D∁. Define the function

(5.2) M(x, t) = E(x,t)f(τD),

where τD is the corresponding Root stopping time. In the following, we shall
assume:

(5.3) M(x, t) is locally bounded on R × R+.

We suppose also (at least initially) that (3.2)–(3.4) and (4.7) still hold. Note
that M(x, t) now has the following important properties. First, since f is
right-continuous (it is the right derivative of F ), M(x, t) = f(t) whenever
(x, t) 6∈ D and t > 0. In addition, since f is increasing, for all x and t we
have M(x, t) ≥ f(t).

Now define a function Z(x) by:

(5.4) Z(x) = 2

∫ x

0

∫ y

0

M(z, 0)

σ2(z)
dz dy.

So in particular, we have Z ′′(x) = 2M(x,0)
σ2(x)

and Z(x) is a convex function.

Define also:

(5.5) G(x, t) =

∫ t

0
M(x, s) ds− Z(x),

and

(5.6) H(x) =

∫ R(x)

0
(f(s) −M(x, s)) ds + Z(x),

where R(x) is the barrier function. Two key results concerning these func-
tions are then:

Proposition 5.1. We have, for all (x, t) ∈ R × R+:

(5.7) G(x, t) +H(x) ≤ F (t).

And also:

Lemma 5.2. Suppose that f is bounded and, for any T > 0:

(5.8) E

[∫ T

0
Z ′(Xs)2σ(Xs)

2 ds

]
<∞, EZ(X0) <∞.
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Then the process

(5.9) G(Xt∧τD
, t ∧ τD) is a martingale,

and

(5.10) G(Xt, t) is a submartingale.

Using these results, we are able to prove the following theorem, which
gives us Rost’s result regarding the optimality of Root’s construction.

Theorem 5.3. Suppose D solves SEP(σ, µ, ν), and equations (5.3) and

(5.8) hold. Then

(5.11) EF (τD) ≤ EF (τ)

whenever τ is a stopping time such that Xτ ∼ µ.

Proof. We begin by considering the case where EτD <∞,Eτ <∞ and
f is bounded. Since Z(x) is convex, by the Meyer-Itô formula (e.g. Protter
[30], Theorem IV.71):

Z(Xt) = Z(X0) +

∫ t

0
Z ′(Xr) dXr +

1

2

∫ t

0
Z ′′(Xr)σ2(Xr) dr.

By (5.8) and the fact that f is bounded (and hence alsoM(Xs, 0) is bounded)
we get

EZ(Xt∧τ ) = EZ(X0) + E

∫ t∧τ

0
M(Xs, 0) ds ≤ f(∞)Eτ + EZ(X0).

Applying Fatou’s Lemma, we deduce that for any stopping time τ with
finite expectation, Z(Xτ ) is integrable. Moreover for such a stopping time,
by convexity, Z(Xt∧τ ) ≤ E[Z(Xτ )|Ft], and so, by Lemma 5.2, G(Xt∧τ , t∧ τ)
is a submartingale which is bounded below by a UI martingale, and bounded
above by f(∞)τ . It follows that EG(Xt∧τ , t ∧ τ) → EG(Xτ , τ) as t → ∞.
The same arguments hold when we replace τ by τD.

Since R(XτD
) ≤ τD and if t ∈ [R(x),∞) then τD = t,P(x,t)-a.s., so that

M(XτD
, s) = f(s) for s ≥ τD, we have

G(XτD
, τD)+

∫ R(XτD
)

0
(f(s) −M(XτD

, s)) ds+ Z(XτD
)

=

∫ τD

0
M(XτD

, s) ds+

∫ R(XτD
)

0
(f(s) −M(XτD

, s)) ds

=

∫ τD

0
M(XτD

, s) ds+

∫ τD

0
(f(s) −M(XτD

, s)) ds

=

∫ τD

0
f(s) ds = F (τD).(5.12)
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On the other hand, since XτD
∼ Xτ , and observing that G(XτD

, τD) and
F (τD) are integrable, so too is H(XτD

), and

EH(XτD
) = EH(Xτ ).

In addition, by Lemma 5.2 and the limiting behaviour deduced above, we
have:

EG(XτD
, τD) = EG(X0, 0) ≤ lim

t→∞
EG(Xt∧τ , t ∧ τ) = EG(Xτ , τ).

Putting these together, we get

EF (τD) = E [G(XτD
, τD) +H(XτD

)]

≤ E [G(Xτ , τ) +H(Xτ )]

≤ EF (τ).

We now consider the case where at least one of τ or τD has infinite
expectation. Note that if F (·) 6≡ 0 then there is some α, β ∈ R with
β > 0 such that F (t) ≥ α + βt, and hence we cannot have Eτ = ∞
or EτD = ∞ without the corresponding term in (5.11) also being infi-
nite. The only case which need concern us is the case where Eτ < ∞,
but EτD = ∞. Note however that τD remains UI, so E[Xt∧τD

|Ft] = Xt.
In addition, from the arguments applied above, we know Z(Xτ ) is inte-
grable and since Xτ ∼ XτD

, so too is Z(XτD
). Then H(Xτ ) and H(XτD

)
are both bounded above by an integrable random variable, so their expec-
tations are well defined (although possibly not finite), and equal. Then, as
above, −E[Z(XτD

)|Ft] ≤ −Z(Xt∧τD
) ≤ G(Xt∧τD

, t ∧ τD). We can deduce
that EG(XτD

, τD) ≤ limn→∞ EG(Xt∧τD
, t ∧ τD) = G(X0, 0) ≤ EG(Xτ , τ).

The remaining steps follow as previously, and it must follow that in fact
EF (τD) ≤ EF (τ), which contradicts the assumption that Eτ < ∞ and
EτD = ∞.

To observe that the result still holds when f is unbounded, observe that
we can apply the above argument to f(t)∧N , and FN (t) =

∫ s
0 f(s)∧N ds to

get EFN (τD) ≤ EFN (τ), and the conclusion follows on letting N → ∞.

We now turn to the proofs of our key results:

Proof of Proposition 5.1. If t ≤ R(x), then the left-hand side of
(5.7) is:

∫ t

0
f(s) ds+

∫ R(x)

t
(f(s) −M(x, s)) ds = F (t) −

∫ R(x)

t
(M(x, s) − f(s)) ds
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and we know M(x, s) ≥ f(s) ≥ 0, so that the inequality holds.
Now consider the case where R(x) ≤ t. Then the left-hand side of (5.7)

becomes:

∫ t

R(x)
M(x, s) ds+

∫ R(x)

0
f(s) ds =

∫ t

R(x)
f(s) ds+

∫ R(x)

0
f(s) ds = F (t).

Proof of Lemma 5.2. We begin by noting that Z(x) is convex, and
therefore the Meyer-Itô formula (e.g. Protter [30], Theorem IV.71) gives:

Z(Xt) − Z(Xs) =

∫ t

s
Z ′(Xr) dXr +

1

2

∫ t

s
Z ′′(Xr)σ2(Xr) dr.

It follows from (5.8) that the first integral is a martingale. So we get:

E [Z(Xt) − Z(Xs)|Fs] =

∫ t

s
E [M(Xr, 0)|Fs] dr, s ≤ t.

In addition, since M(x, t) ≥ f(t) and f(t) is increasing, for r, u ≥ 0 by
the strong Markov property, writing X̃ for an independent stochastic process
with the same law as X and τ̃D for the corresponding hitting time of the
barrier, we have:

E(x,r) [f(τD)|Fr+u] = 1τD>r+uE(x,r) [f(τD)|Fr+u] + 1τD≤r+uE(x,r) [f(τD)|Fr+u]

≤ 1τD>r+uE(Xx
u ,r+u)[f(τ̃D)] + 1τD≤r+uf(r + u)

≤M(Xx
u , r + u).

When r = 0, we have E(x,0)[f(τD)|Fu] ≤M(Xx
u , u). For s, u ∈ [0, t],

E[M(Xt, u)|Fs] = EXsM(X̃t−s, u)

≥ E(Xs,u−(t−s))[f(τ̃D)]

≥M(Xs, u− (t− s)),(5.13)

when u ≥ t− s. On the other hand, if u < t− s:

E[M(Xt, u)|Fs] = E[E(Xt−u,0)
[
M(X̃u, u)

]
|Fs]

≥ E[E(Xt−u,0) [f(τ̃D)] |Fs]

≥ E[M(Xt−u, 0)|Fs].(5.14)
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Then we can write:

E [G(Xt, t)|Fs] =

∫ t

0
E [M(Xt, u)|Fs] du− E [Z(Xt)|Fs]

= G(Xs, s) +

∫ t

0
E [M(Xt, u)|Fs] du−

∫ s

0
M(Xs, u) du

− E [Z(Xt) − Z(Xs)|Fs]

≥ G(Xs, s) +

∫ t−s

0
E [M(Xt−u, 0)|Fs] du−

∫ s

0
M(Xs, u) du

−
∫ t

s
E [M(Xu, 0)|Fs] du+

∫ t

t−s
M(Xs, s− t+ u) du

≥ G(Xs, s) +

∫ t

s
E [M(Xu, 0)|Fs] du−

∫ t

s
E [M(Xu, 0)|Fs] du

+

∫ s

0
M(Xs, u) du−

∫ s

0
M(Xs, u) du

≥ G(Xs, s).

Where we have used (5.13) and (5.14) in the third line.
On the other hand, on {τD ≥ s}, from the definition of M(x, t), and the

Markov property, we get:

(5.15) E [M(Xt∧τD
, t ∧ τD − u)|Fs] = M(Xs, s− u)

when u ≤ s, and

(5.16) E [M(Xt∧τD
, t ∧ τD − u)|Fu] = M(Xu, 0)

when u ∈ [s, t ∧ τD]. Then a similar calculation to above gives, for s ≤ τD:

E [G(Xt∧τD
, t ∧ τD)|Fs]

= E

[∫ t∧τD

0
M(Xt∧τD

, t ∧ τD − u) du|Fs

]
− E [Z(Xt∧τD

)|Fs]

=

∫ s

0
M(Xs, s − u) du+ E

[∫ t∧τD

s
M(Xt∧τD

, t ∧ τD − u) du|Fs

]

− Z(Xs) − E

[∫ t∧τD

s
M(Xu, 0) du|Fs

]

= E

[∫ t

s
E [M(Xt∧τD

, t ∧ τD − u) −M(Xu, 0)|Fu]1{u≤τD} du|Fs

]

+G(Xs, s)

= G(Xs, s),

where we have used (5.15) and (5.16).
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Remark 5.4. Note that the fact that our choice of D given in the so-
lution is the domain D which arises in solving Root’s embedding problem
is only used in Theorem 5.3 to enforce the lower bound. In fact, we could
choose any barrier B, and D = B∁ as our domain, and this would result in an
lower bound, with corresponding functions G and H. The choice of Root’s
barrier gives the optimal lower bound, in that we can attain equality for
some stopping time. In this context, it is worth recalling the lower bounds
given by Carr and Lee [5], Proposition 3.1 — here a lower bound is given
which essentially corresponds to choosing the domain with R(x) = Q, for a
constant Q. The arguments given above show that similar constructions are
available for any choice of R, and the optimal choice corresponds to Root’s
construction.

Remark 5.5. Although the preceding section is written for a diffusion
on R, it is not hard to check that the case where σ(x) = x can also be
included without many changes. In this setting, we need to restrict the
space variable to the space (0,∞) (so we assume that τD < ∞ a.s.), and
consider a starting distribution which is also supported on (0,∞), and with
a corresponding change to (5.3).

We end this section with a brief example which illustrates some of the
relevant quantities.

Example 5.6. Suppose we take Root’s barrier D := {(x, t) : t < R(x)}
with the boundary functionR(x) = −λ(x+α)(x−β)1(−α,β), where λ, α, β >
0 (see Fig. 1(a)). Given a standard Brownian motion W and Root’s stopping
time τD = inf{t > 0 : t ≥ R(Wt)}, define µ := L(WτD

). Let F (t) = t2/2,
we will see E[F (τD)] ≤ E[F (τ)] for any UI stopping time τ such that Wτ ∼ µ.

For (x, t) ∈ R × R+, define M(x, t) = E(x,t)[τD]. Then if t ≥ R(x),
M(x, t) = t. If 0 ≤ t < R(x), since τD = λ(WτD

+ α)(WτD
− β), using

Itô’s formula, we can compute M(x, t) to be:

M(x, t) =
λ

1 + λ
[ t− (x+ α)(x− β)] , for 0 ≤ t < R(x).
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Defining G,H,Z as in (5.4)–(5.6), we get the explicit expressions:

Z(x) =
λ

6(1 + λ)
·





−β4 − 2αβ3 +
(
2β3 + 6αβ2

)
x, x ≥ β

−x4 − 2(α− β)x3 + 6αβx2, x ∈ (−α, β)

−α4 − 2α3β −
(
2α3 + 6α2β

)
x, x ≤ −α,

G(x, t) =





λ

1 + λ

[
t2

2
− t(x+ α)(x− β)

]
− Z(x), if 0 ≤ t < R(x);

R2(x)

2(1 + λ)
+

1

2
t2 − Z(x), if t ≥ R(x),

H(x) = − R2(x)

2(1 + λ)
+ Z(x) .

It is easy to check directly that G(Wt, t) is a submartingale, and that it is a
martingale up to the stopping time τD. We also can check that (5.7) holds
here:

G(x, t) +H(x) − F (t) =




− [R(x) − t ]2

2(1 + λ)
, if 0 ≤ t < R(x);

0, if t ≥ R(x).

Therefore, for any UI stopping time τ such that L(Wτ ) = µ = L(WτD
),

E
[
F (τ)

]
≥ E [G(Wτ , τ) +H(Wτ )] ≥ E [G(WτD

, τD)] + E [H(WτD
)]

= E [F (R(WτD
))] + E

[∫ τD

R(WτD
)
M(WτD

, s) ds

]
= E

[
F (τD)

]
,

(5.17)

which shows the optimality of Root’s stopping time. Figure 2 illustrates the
some of the relevant functions derived here.

6. Financial Applications. We now turn to our motivating financial
problem: consider an asset price St defined on a complete probability space(
Ω,F , (Ft)t≥0 ,P

)
, with:

(6.1)
dSt

St
= rt dt+ σt dWt

under some probability measure Q ∼ P, where P is the objective probability
measure, and Wt a Q-Brownian motion. In addition, we suppose rt is the
risk-free rate which we require to be known, but which need not be constant.
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(a) (b)

Fig 2. We give graphical representations of some of the relevant quantities derived in
Example 5.6, for α = 2, β = 3 and λ = 1/2. In 2(a) we see G(x, t) + H(x), which is a
lower bound for F (t), and in 2(b) we see the difference G(x, t) + H(x) − F (t), which is
indeed negative.

In particular, let rt, σt be locally bounded, predictable processes so that the
integral in (6.1) is well defined, and so St is an Itô process. We suppose
that the process σt is not known (or more specifically, we aim to produce
conclusions which hold for all σt in the class described). Specifically, we shall
suppose:

Assumption 6.1. The asset price process, under some probability mea-

sure Q ∼ P, is the solution to the SDE (6.1), where rt and σt are locally

bounded, predictable processes.

In addition, we need to make the following assumptions regarding the set
of call options, which are initially traded:

Assumption 6.2. We suppose that call options with maturity T , and

at all strikes {K : K ≥ 0} are traded at time 0, and the prices, C(K), are

assumed to be known. In addition, we suppose call-put parity holds, so that

the price of a put option with strike K is P (K) = e−
∫ T

0
rs dsK−S0 +C(K).

We make the additional assumptions that C(K) is a continuous, decreasing

and convex function, with C(0) = S0, C
′
+(0) = −e−

∫ T

0
rs ds

and C(K) → 0
as K → ∞.

Many of these notions can be motivated by arbitrage concerns (see e.g.
Cox and Ob lój [11]). That there are plausible situations in which these as-
sumptions do not hold can be seen by considering models with bubbles
(e.g. [9]), in which call-put parity fails, and C(K) 6→ 0 as K → ∞. Let us
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define Bt = e
∫ t

0
rs ds, and make the assumptions above. Following the per-

spective that the prices correspond to expectations under Q, the implied
law of B−1

T ST (which we will denote µ) can be recovered by the Breeden-
Litzenberger formula [2]:

(6.2) µ((K,∞)) = Q∗(B−1
T ST ∈ (K,∞)) = −2BTC

′
+(BTK).

Here we have used Q∗ to emphasise the fact that this is only an implied

probability, and not necessarily the distribution under the actual measure
Q. From (6.2) we deduce that Uµ(x) = S0 − 2C(BTx) − x, giving an affine
mapping between the function Uµ(x) and the call prices. We do not impose
the condition that the law of B−1

T ST under Q is µ, we merely note that this
is the law implied by the traded options. We also do not assume anything
about the price paths of the call options: our only assumptions are their
initial prices, and that they return the usual payoff at maturity. It can
now also be seen that the assumption that C ′

+(0) = −B−1
T is equivalent to

assuming that there is no atom at 0 — i.e. µ is supported on (0,∞). Finally,
it follows from the assumptions that µ is an integrable measure with mean
S0.

Our goal is to now to use the knowledge of the call prices to find a lower
bound on the price of an option which has payoff

F

(∫ T

0
σ2

t dt

)
= F (〈lnS〉T ) .

Consider the discounted stock price:

Xt = e−
∫ t

0
rs dsSt = B−1

t St.

Under Assumption 6.1, Xt satisfies the SDE:

dXt = Xtσt dWt.

Defining a time change τt =
∫ t
0 σ

2
s ds, and writing At for the right-continuous

inverse, so that τAt = t, we note that W̃t =
∫At

0 σs dWs is a Brownian motion

with respect to the filtration F̃t = FAt , and if we set X̃t = XAt , we have:

dX̃t = X̃t dW̃t.

In particular, X̃t is now of a form where we may apply our earlier results,
using the target distribution arising from (6.2), and noting also that X̃0 = S0

and X̃τT
= XT = B−1

T ST .
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We now define functions as in Section 5, so that f(t) = F ′
+(t) and (5.2)–

(5.6) hold. Our aim is to use (5.7), which now reads:

(6.3) G(XAt , t) +H(XAt) = G(X̃t, t) +H(X̃t) ≤ F (t) = F

(∫ At

0
σ2

s ds

)
,

to construct a sub-replicating portfolio. We shall first show that we can
construct a trading strategy that sub-replicates the G(X̃t, t) portion of the
portfolio. Then we argue that we are able, using a portfolio of calls, puts,
cash and the underlying, to replicate the payoff H(XT ).

Since G(X̃t, t) is a submartingale, we do not expect to be able to replicate
this in a completely self-financing manner. However, by the Doob-Meyer
Decomposition Theorem, and the Martingale Representation Theorem, we
can certainly find some process φ̃t such that:

G(X̃t, t) ≥ G(X̃0, 0) +

∫ t

0
φ̃s dX̃s

and such that there is equality at t = τD. Moreover, since G(X̃τD∧t, τD ∧ t)
is a martingale, and G is C2,1 in D, we have:

G(X̃τD∧t, τD ∧ t) = G(X̃0, 0) +

∫ τD∧t

0

∂G

∂x
(X̃τD∧s, τD ∧ s) dX̃s.

More generally, we would not expect ∂G
∂x to exist everywhere in D∁, however,

if for example left and right derivatives exist, then we could choose φ̃t ∈[
∂G
∂x (x−, t), ∂G

∂x (x+, t)
]

as our holding of the risky asset (or alternatively,

but less explicitly, take φ̃t = ∂/∂x
[
Ex,tG(X̃t+δ , t0 + δ)

]
, for t ∈ [t0, t0 + δ]).

It follows that we can identify a process φ̃t with

G(X̃τt , τt) ≥ G(X̃0, 0) +

∫ τt

0
φ̃s dX̃s = G(X0, 0) +

∫ t

0
φ̃τs dXs

where we have used e.g. Revuz and Yor [31], Proposition V.1.4. Finally,
writing φs = φ̃τs , we have:

G(Xt, τt) ≥ G(X0, 0) +

∫ t

0
φs dXs = G(X0, 0) +

∫ t

0
φs d

(
B−1

s Ss

)
.

If we consider the self-financing portfolio which consists of holding φsB
−1
T

units of the risky asset, and an initial investment of G(X0, 0)B−1
T −φ0S0B

−1
T

in the risk-free asset, this has value Vt at time t, where

d
(
B−1

t Vt

)
= B−1

T φt d
(
B−1

t St

)
,
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and therefore

VT = BT

(
V0B

−1
0 +

∫ T

0
B−1

T φs d
(
B−1

s Ss

))
= G(X0, 0) +

∫ T

0
φs dXs.

We now turn to the H(XT ) component in (6.3). If H(x) can be written
as the difference of two convex functions (so in particular, H ′′(dK) is a well
defined signed measure) we can write:

H(x) = H(S0) +H ′
+(S0) (x− S0) +

∫

(S0,∞)
(x−K)+H

′′(dK)

+

∫

(0,S0]
(K − x)+H

′′(dK).

Taking x = XT = B−1
T ST we get:

H(XT ) = H(S0) +H ′
+(S0)

(
B−1

T ST − S0

)
+B−1

T

∫

(S0,∞)
(ST −BTK)+H

′′(dK)

+B−1
T

∫

(0,S0]
(BTK − ST )+H

′′(dK).

This implies that the payoff H(XT ) can be replicated at time T by ‘holding’
a portfolio of:

B−1
T

(
H(S0) −H ′

+(S0)S0
)

in cash;

B−1
T H ′

+(S0) units of the asset;

B−1
T H ′′(dK) units of the call with strike BTK for K ∈ (S0,∞);

B−1
T H ′′(dK) units of the put with strike BTK for K ∈ (0, S0];

(6.4)

where the final two terms should be interpreted appropriately. In practice,
the function H(·) can typically be approximated by a piecewise linear func-
tion, where the ‘kinks’ in the function correspond to traded strikes of calls
or puts, in which case the number of units of each option to hold is deter-
mined by the change in the gradient at the relevant strike. The initial cost
of setting up such a portfolio is well defined provided

(6.5)

∫

(0,S0]
P (BTK) |H ′′|(dK) +

∫

(S0,∞)
C(BTK) |H ′′|(dK) <∞,

where |H ′′|(dK) is the total variation of the signed measure H ′′(dK). We
therefore shall make the following assumption:
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Assumption 6.3. The payoff H(XT ) can be replicated using a suitable

portfolio of call and put options, cash and the underlying, with a finite price

at time 0.

We can therefore combine these to get the following theorem:

Theorem 6.4. Suppose that Assumptions 6.1, 6.2 and 6.3 hold, and sup-

pose F (·) is a convex, increasing function with F (0) = 0 and right derivative

f(t) = F ′
+(t) which is bounded. Then there exists an arbitrage if the price of

an option with payoff F (〈lnS〉T ) is less than:

B−1
T G(S0, 0) +B−1

T H(S0) +B−1
T

∫

(S0,∞)
C(BTK)H ′′(dK)

+B−1
T

∫

(0,S0]
P (BTK)H ′′(dK),

(6.6)

where the functions G and H are as defined in (5.5) and (5.6), and are

determined by the solution τD to SEP(σ, δS0 , µ) for σ(x) = x, and where µ
is determined by (6.2).

Moreover, this bound is optimal in the sense that there exists a model

which is free of arbitrage, under which the bound can be attained.

Proof. It follows from Theorem 4.6 that, given µ, we can find a domain
D and corresponding stopping time τD which solves SEP(σ, δS0 , µ). Apply-
ing Proposition 5.1 (and bearing in mind Remark 5.5), we conclude that the
strategy described above will indeed sub-replicate, and we can therefore pro-
duce an arbitrage by purchasing the option, and selling short the portfolio
of calls, puts and the underlying given in (6.4), and in addition, holding the
dynamic portfolio with −φtB

−1
T units of the underlying at time t. It is not

hard to check, given that f is bounded (and choosing the lower limits in (5.4)
to be S0 rather than 0) that (Z ′(X̃s)σ(X̃s))2 ≤ (X̃s/X̃0 − 1)2, and hence
that (5.8) holds. The condition (5.3) also clearly holds. As a consequence,
we do indeed have a subhedge.

To see that this is the best possible bound, we need to show that there is
a model which satisfies Assumption 6.1, has law µ under Q at time T , and
such that the subhedge is actually a hedge. But consider the stopping time
τD for the process X̃t. Define the process

Xt = X̃ t
T−t

∧τD
for t ∈ [0, T ]

which corresponds to the choice of σ2
s = T−s+1

(T−t)2 1{ s
T−s

<τD}. Since τD < ∞
a.s., then XT = X̃τD

, τT = τD and St = XtBt is a price process satisfying
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Assumption 6.1 with

F

(∫ T

0
σ2

t dt

)
= F (τD).

Finally, it follows from (5.12) that at time T , the value of the hedging port-
folio exactly equals the payoff of the option.

Remark 6.5. The above results are given in the context of an increasing,
convex function, but there is also a similar result concerning increasing,
concave functions which can be derived. Consider a bounded, increasing
function f as before, and define the function

L(t) =

∫ t

0
(f(∞) − f(s)) ds = f(∞)t− F (t).

Using Theorem 6.4 and (1.2), it is easy to see that the price of a contract
with payoff L (〈lnS〉T ) must be bounded above by:

2f(∞)Q−2f(∞)B−1
T log(S0) −B−1

T G(S0, 0) −B−1
T H(S0)

−B−1
T

∫

(S0,∞)
C(BTK)H ′′(dK) −B−1

T

∫

(0,S0]
P (BTK)H ′′(dK),

where Q is the price of a log-contract (that is, an option with payoff ln(ST )).
As before, this upper bound is the best possible, under a similar set of
assumptions.

Remark 6.6. An analogous result can be shown for forward start op-
tions. Suppose that the option has payoff

F

(∫ T

S
σ2

t dt

)
= F (〈S〉T − 〈S〉S)

for fixed times 0 < S < T . Then we can use the previous results for general
starting distributions to deduce a similar result to Theorem 6.4 for forward
start options, provided we assume that there are calls traded at both S and
T . We use essentially the same idea as above: we aim to hold a portfolio
which (sub-)replicates G(Xt, τt) for t ∈ [S, T ], and hold the payoff H(XT )
as a portfolio of calls. However, we now have τt =

∫ t
S σ

2
s ds, and so X̃t = XAt ,

gives X̃0 = XS (recall that At was assumed right-continuous). The procedure
is much as above, except that we need to use the solution to Theorem 5.3
with a general target distribution, and the amount G(X̃0, 0) will be a FS-
random variable. The initial distribution ν can be derived using the Breeden-
Litzenberger formula (6.2) at time S. To ensure that we hold the amount
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G(X̃0, 0) at time S, we observe that G(X̃0, 0) = G(XS , 0). Hence, if e.g.
G(x, 0) can be written as the difference of two convex functions, we can
replicate this amount by holding a portfolio of calls and puts with maturity
S in a similar manner to (6.4). The remaining details follow as in the hedge
described in Theorem 6.4

Remark 6.7. We can also consider modifications to the realised vari-
ance. Consider a slightly different time-change: suppose we set

τt =

∫ t

0
σ2

sλ(Xs) ds,

for some ‘nice’ function λ(x), which in particular we suppose is bounded
above and below by positive constants. Then following the computations
above, we see that

X̃t = XAt =

∫ At

0
Xsλ(Xs)−1/2

(
σsλ(Xs)1/2 dWs

)
=

∫ t

0
XAsλ(XAs)−1/2 dW̃s,

and therefore dX̃t = σ(X̃t) dW̃t, where σ(x) = xλ(x)−1/2. We then conjec-
ture that it is possible to extend Theorem 4.6 to cover this new class of
functions σ(x) (the conditions that should be imposed on λ such that this
result may be extended remains an interesting question for future research).
It would then be possible to modify the above arguments to provide robust
hedges on convex payoffs of the form:

F

(∫ T

0
σ2

sλ(Xs) ds

)
.

An interesting special case of this would then be to give robust bounds on
the price of an option on corridor variance:

(6.7) F

(∫ T

0
σ2

s1{Ss∈[a,b]} ds

)
,

by considering λ(x) = 1{x∈[a,b]}, however this would only work in the case
where there are no discount rates (i.e. Bt = 1). In general, we can only give
a tight lower bound for options on:

F

(∫ T

0
σ2

s1{Xs∈[̃a,̃b]}
ds

)
,

although this does provide a lower bound for (6.7) by considering the case
where ã = a and b̃ = BT b.
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7. Conclusions. We conclude by summarising the results, and describ-
ing some interesting questions for future work. In this paper, we have given
a variational inequality representation of Root’s solution to the Skorokhod
embedding problem, and provided a novel proof of optimality, which allows
us to construct a model-independent subhedge for options on variance. We
believe that our results provide interesting insights into all three aspects of
the work: the construction of solutions to the Skorokhod embedding prob-
lem, proving optimality results for the same, and finally the connections
with model-independent hedging.

We also believe that there are interesting lines of research that now arise.
The construction opens up a number of questions regarding Root’s solution
to the Skorokhod embedding problem: for example, what can be said about
the shape of the boundary? Under what conditions on µ will the boundary
be smooth? When does R(x) → 0 as x → ±∞? When is R(x) bounded?
Properties of free boundaries are well-studied in the analytic literature, and
may be useful in answering these questions. The connection to minimality
and non-centred target distributions raised in Remark 4.5, and the question
asked at the end of this remark would also be interesting lines for research.

The connection with optimal stopping noted in Remark 4.4 is interesting,
and obtaining a deeper understanding between optimal stopping problems
and optimal Skorokhod embeddings seems to be an interesting area of re-
search.

Another natural question concerns the upper bound/super-hedging strat-
egy. It has been remarked by Ob lój [28], and Carr and Lee [5] that a related
construction of Rost should provide a suitable upper bound, but similar
questions to those answered here remain (although we hope to be able to
provide some answers in subsequent work). We note however that numerical
evidence (see Carr and Lee [5]) seems to suggest that the Root bounds may
be more appropriate in the financial applications. It would also be of inter-
est to see to what extent these model-independent bounds may be useful in
practice. In Cox and Ob lój [11], an analysis of the use of model-independent
bounds as a hedging strategy for barrier options was performed. A similar
analysis of the strategies derived in this work would also be of interest.

Other questions that arise from the practical standpoint include how to
incorporate additional market information (e.g. calls at an intermediate time
[4]), and how to adjust for the fact that there will generally only be a finite
set of quoted calls (see [13] for a related question). Remark 6.7 also suggests
open questions regarding more general choices of σ(x).
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abilités, Strasbourg, 25 Mai 1973.

[15] B. Dupire. Model art. Risk, 6(9):118–120, 1993.
[16] B. Dupire. Arbitrage bounds for volatility derivatives as free boundary problem.

Presentation at ‘PDE and Mathematical Finance’, KTH, Stockholm, 2005.
[17] A. Friedman. Generalized functions and partial differential equations. Prentice-Hall

Inc., Englewood Cliffs, N.J., 1963.
[18] D. Hobson. The Skorokhod Embedding Problem and Model-Independent Bounds for
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