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Abstract. We review higher order tangent spaces and influence functions
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1. MAIN DISCUSSION

The concept of influence function of an estimator was originally coined in the
theory of robust statistics, and as asymptotic influence function played a role
in the development of semiparametric statistics ([2],[3]). If an estimator T}, of a
quantity p based on a random sample of observations X, Xo,..., X, possesses
an asymptotic expansion of the form

(1.1 =t L300 +onln™ ),

then the function v is its asymptotic influence function. The name derives from
the fact that if an observation X, is replaced by a value x, then the change in
the estimator is n~! (¢ (z) — ¥(X;)), at least if the remainder term op(n~1/?) is
neglected. The estimator is ‘asymptotically robust’ if this change is bounded in
x, i.e. if the influence function ¢ is bounded.

Semiparametric theory as developed in the 1980s/90s was not concerned with
robustness, but with efficient estimation. Provided that the variables ¢ (X;) have
zero mean and finite variance, the expansion (1.1) implies that the sequence
vn(T, — p) is asymptotically normally distributed with mean zero. Among differ-
ent asymptotically unbiased estimators the ones with small asymptotic variance
are preferred. Semiparametric lower bound theory showed that under so-called
‘asymptotic regularity’ estimators with an expansion (1.1) with ¢ the efficient
influence function attain the smallest variance. Furthermore, it showed how to
compute the latter function from the tangent space of the underlying semipara-
metric model ([4], [7], [1], and [17]).

Higher order tangent spaces and influence functions are generalizations of these
concepts, but were developed by Robins et al. [9] from the perspective of con-
structing estimators rather than asymptotic efficiency. Thus it will be fruitful to
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2 VAN DER VAART

gives the definitions of influence functions and tangent spaces also from the point
of view of constructing estimators.

Assume that the observations X7,..., X, are a random sample from a distri-
bution P, with density p, relative to a measure y on a sample space (X, .A). The
parameter 7 is known to belong to a subset H of a normed space, and it is desired
to estimate the value x(n) of a functional x: H — R. Interest is in the situation of
a semiparametric or nonparametric model, where H is infinite-dimensional, and
the dependence 7 — p, is assumed smooth (as in [16]).

Given a ‘consistent’ initial estimator 7 of 7, the ‘plug-in estimator’ x(7) is
typically consistent for the parameter of interest x(n), but it may not be a good
estimator. In particular, if 7} is a general purpose estimator, not specially con-
structed to yield a good plug-in, then x(7) will often have a suboptimal precision.
To gain insight in this situation assume that the parameter permits a Taylor ex-
pansion of the form

(1.2) x(m) = x(1) + x(n = 2) + O(lln = il1?).

Such an expansion suggests that the plug-in estimator will have an error of the
order Op(|ln — 7||), unless the linear term X;(n — 1) in the expansion vanishes
and the error has the square of this order. For a large parameter set the latter
estimation error will typically be large.

The expansion (1.2) also suggests that better estimators can be obtained by
‘estimating’ the linear term. To achieve this assume a ‘generalized von-Mises
representation’ of the derivative of the form

(13) Xy — ) =/>‘<,%d(Pn—Pﬁ> — Pyxh + O (I —l1?),

for some measurable function X717 X — R. Here Pf is short for the integral [ f dP,

and it is assumed that Pn)'(}? = 0 for every n (which can always be arranged by a
recentering, as [ 1d(P, — P;) = 0). The von-Mises representation (1.3) and (1.2)
suggest the ‘corrected plug-in estimator’

(1'4) Ty = X(ﬁ) + ]P)nxrlp

where P, f = n713"" | f(X;) is the expectation n™'Y"" | f(X;) of a function f
under the empirical measure P,. It is reasonable to assume that (P, — Pn))’(}7
is asymptotically equivalent to (P, — Pn)j(,l] up to the order op(n~—'/2), as the
difference (P, — Pn)j(}] is ‘centered’ and ought to have ‘variance’ of the order
O(1/n). (We put ‘centered’ and ‘variance’ in quotes, because the randomness in
the initial estimator 7} prevents a simple calculation of mean and variance.) Thus
under reasonable regularity conditions the corrected plug-in estimator (1.4) will
satisfy

(1.5) T — x(n) = x(7) = x(n) + Pyxj + (Bn — Py)Xs
= O(ln —nl?) + (Pn — Py, + op(n~'/?).

If the first term on the right is sufficiently small, specifically || — 7| = op(n~1/%),
then T, satisfies (1.1) with X, as the influence function.
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HIGHER ORDER INFLUENCE FUNCTIONS 3

The improvement of the estimator (1.4) over the ordinary plug-in estimator
is that the estimation error ||fj — || need have order Op(n~'/4) rather than
Op(n~1/2) for the estimator to have error Op(n~'/2). For small ‘parametric’
models this is not very relevant, but for semi- or nonparametric models the gain
can be substantial. For instance, if 7 involves an ordinary smoothing estimator of
a regression function on a d-dimensional domain, then a typical rate of estimation
is n=/(2a+d) for o the number of derivatives of the true regression function. This
is never Op(n~'/2), but Op(n=1/%) for a > d/2.

The function X717 in the von Mises representation (1.3) is exactly an ‘influence
function’ as in the theory of semiparametric models (see [4], [7], [17], [2]), and
can be related to the ‘tangent set’. Informally, a tangent set (at P,;) of a model
(P:n € H) is the set of all score functions at t =0

o)
5¥ﬁ:0pm

logpy, = ———,

1.6 In: = =
(1.6) I = Bt o Py

of (smooth) one-dimensional submodels (P,,:t > 0) with ng = 7. (Here t — 1,
is a map from a neighbourhood of 0 € R to H such that the derivative (1.6)
exists.) An influence function (of the real parameter x(n) at P,) is defined as a
measurable map x +— X%(w) such that, for all paths ¢ — 7; considered,

d

1.7 —
(17) dt |t=0

x(m) = Pnf(}ygn-

Combining (1.2)-(1.3) (with 7; in the role of  and 7 in the role of 77) we see that
x(n¢) is to first order given by x(n) + P, X717 Since, according to (1.6), g, dP, is
the derivative at ¢ = 0 of dP,,, we next conclude that the function X,17 in the
von-Mises expansion (1.3) is an influence function also in the sense of (1.7).

An influence function is not necessarily unique, as only its inner products with
elements ¢, of the tangent set matter. An influence function that is contained in
the closed linear span of the tangent set is called the efficient influence function. It
minimizes the variance var,, Pn){% over all influence functions, and is the influence
function of asymptotically efficient estimators.

The theory developed by Robins et al. in [9] extends the preceding from linear
to higher order approximations. The motivation is that the parameter n may
be so high-dimensional that no estimator 7 attains the rate Op(n~/%). The
preceding suggests that then the corrected plug-in estimator will be suboptimal,
as in the expansion (1.5) the ‘bias’ x(7) — x(n) + P,]X}] dominates the ‘variance’
(P, —Py) X}, For this situation Robins et al. [9] introduced higher-order expansions
and influence functions, as follows.

A tangent set of order m (at P,) are all derivatives of the type, for given
one-dimensional submodels (P,,:t > 0),

ool T ()
[[Zpy(zi)
The functions on the right side are higher order score functions ([14], [6]). These

are defined relative to the joint density (x1,...,2m) — [[j=,pn(2;) of m obser-
vations, not as higher-order derivatives of a single density, because higher order

(1.8) gz, Tm) =

i=1,2,...,m.
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4 VAN DER VAART

derivatives of the log likelihood of n observations do not reduce to sums over single
observations, as do first order derivatives. The relationship between expansions
on a single observation and the joint likelihood can be seen from:

n

n

p . .

D) = [T+ tgn(@o) + 58 (@) +-)
i=14" i=1

=1+ tzgn(wi) +¢2 <%Zgn(ajz) + Z Z 977(331)977(373)) +--
' i=1

i=1 1<i<j<n

Inspection of this expansion shows that the coefficient of #/ is a U-statistic of
degree j (cf. equation (1.11) below). The kernels of these U-statistics up to order
m can also be obtained as higher order derivatives of products of m densities,
as in (1.8). Furthermore, they are degenerate in the sense that the integral of a
kernel with respect to a single coordinate relative to the true density p,, is zero,
generalizing the property that a score function has mean zero; equivalently this
property can be described as orthogonality of higher order score functions relative
to lower order score functions.

Correspondingly an influence function of order m (of the map n — x(n) at
P,) is a measurable map (x1,...,Zm) = Xy(21,..., %) such that, for every given
one-dimensional submodel (P,,:t > 0),

I

1. —
(1.9) ot’ |t=0

X(Pm):Panngm J=12,....,m

This influence function is determined only up to its inner products with the
tangent set and hence is not unique. A minimal version could be defined as one
such that the variance of the U-statistic with kernel x;, is minimal.

For computation in examples the defining equations (1.9) of a higher or-
der influence function can be tedious. It is usually easier to apply the rule
that a higher order derivative is the derivative of the previous order deriva-
tive (as shown for second order influence functions in [8], 4.3.11). One com-
putes the first order influence function z; — X,17(561) of the functional 7 — x(n)

as usual. Next one recursively for j = 2,3,...,m determines influence func-
tions, written, x; — x3(x1,...,2;) as influence functions of the functionals
n )'(Z,fl(ml, ... xj_1), for fixed (x1,...,2;-1). The function xJ, can be made

degenerate (in the sense defined previously) by subtracting its projection on the
linear span of all functions of one argument less. Then

m
Xn(Z1, . Tm) :Z%X%(Zﬁl,...,x]’)

is an mth order influence function. As we consider only a single value of m at a
time, we do not let m show up in the notation on the left. As a consequence the
formulas in the following will look as in the linear case.

Given an influence function of order m we may now generalize the definition
of the improved plug-in estimator (1.4) to
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HIGHER ORDER INFLUENCE FUNCTIONS 5

for U,,f denoting a U-statistic of order m with kernel f:

1
1.11 Unf = f( Xy, X )
( ) nn—1)---(n—m+1) 1§i1¢i§m¢im§n (Xi, )

The term U,x; should correct the plug-in estimator x(7) up to order m and
hence an argument similar to (1.5) should give the expansion

(1.12) T = x(1) = Ol = nll"™*") + (Un — By")Xey +op(n~'/?).

The bias of the plug-in estimator x(7}) would be corrected to the order O(||f —
n||™**'), and good estimators for x(n) exist even in situations where 7 is estimable
only with low precision. The only cost would be a slightly larger variance in the
U-statistic relative to the empirical measure.

Unfortunately, there is no such free lunch: one cannot seriously correct bias
without seriously increasing the variance. Although (1.12) and the preceding
heuristics are correct, they do not apply, as higher order influence functions typ-
ically do not exist. Besides by a lack of invertibility of the map n — p,, this
is caused by failure of a higher order von-Mises type representation. Whereas a
continuous, linear map B: Ly(P,) — R, such as arises from the first derivative
Xy in (1.2), is always representable as an inner product B(g) = Pn)'(}?g for some
function )'(,1], a continuous, multilinear map B:Lg(Pn)j — R is not necessarily
representable as a repeated integral of the type

B(gr,. - ;) —/--~/gl<x1>---gj<xj>>‘<n<x1,~- 23) dPy(x1) - dPy(z;).

The definition (1.10) uses such a ‘von-Mises representation’ in order to estimate
the higher derivatives using the data, by a U-statistic.

We must therefore set a more modest aim: correcting the bias in certain direc-
tions only. A key observation is that a multilinear map on a finite-dimensional
subspace L x --- x L C Lo(F,)™ is always representable by a kernel. If the invert-
ibility 1 + p;, can be resolved, we can therefore always ‘represent’ and estimate
the mth order derivative at differences n — 7 within a given finite-dimensional lin-
ear space. The bias in non-represented directions then remains, and the challenge
is to determine the directions that balance three terms:

e the bias in the non-represented directions, representation bias,
e the estimation error Op (||} — n||™*!), the estimation bias,
e the variance of the resulting U-statistic.

Regarding the third component we note that although the variance of a U-statistic
with a fixed kernel is dominated by its linear term and is of order O(1/n), the need
to represent the functionals in more and more directions given larger sample size
n results in kernels that become more and more complex with n. The resulting
variance of Uy, X is therefore typically larger than O(1/n). A new balance should
be found with the squared biases, which will also be larger than parametric.
The preceding heuristic scheme is general, but its implementation requires
finding the appropriate influence functions that create the correct bias-variance
trade-off. Robins et al. [9] achieved this for estimating a functional in a class of
high-dimensional semiparametric models that includes some popular models for
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6 VAN DER VAART

missing data or causal inference. The high dimensions arise by the inclusion of
a multivariate ‘control covariate’. The models have a technical characterization,
through a certain form of the first order influence function. They are structured
semiparametric models in that their natural parameterization is in terms of three
or more parameters, which vary independently. Thus the full parameter takes the
form n = (a, b, c, f), that is partitioned in three subparameters a, b, ¢ and f. The
parameter f is the marginal density of an observable covariate Z. The technical
characterization is that the first order influence function of the parameter of
interest 7 — x(n) can be written in the form

(1.13) X (%) = a(2)b(2)S1(x) + a(2)Sa(w) + b(2)S3() + Sa(x) — x(n),

for known functions S;(x) of the data (i.e. § = (51, S2, S3,.54) is a given statistic).
The covariate Z is assumed to range over a compact d-dimensional domain and
the parameters a,b, f are unknown functions on this domain, restricted only
nonparametrically by smoothness assumptions. The parameter c is an additional
parameter to complete the identification of the distribution of X, but it does not
appear in (1.13).

As the higher order corrections are based on von Mises representations of
higher order influence functions, which are derivatives of the first order influence
function, it is not unnatural to base a theory on the form of the first order
influence function. However, by itself (1.13) appears not insightful. The following
examples illustrate the class of models.

ExaMPLE 1.1 (Missing data). In a version of the missing data problem we
observe the triple X = (YA, A, Z), where Y and A are random variables that
take values in the two-point set {0, 1} that are conditionally independent given the
variable Z. We can think of Y as a response, which is observed only if the indicator
A takes the value 1. To ensure independence of the response and missingness,
the covariate Z would be chosen such that it contains all information on the
dependence between Y and A (‘missing at random’). Alternatively, we can think
of Y as a counterfactual outcome if a treatment were given (A =1) and estimate
(half) the treatment effect under the assumption of ‘no unmeasured confounders’.
Both applications may require that Z is high-dimensional (e.g. of dimension 10),
where there is typically insufficient a-priori information to model the form of the
dependence of A and Y on Z. The three parameters are the marginal density f
of Z and the (inverse) probabilities b(z) = P(Y =1|Z = 2) and a(z)"! = P(A =
1| Z = z). The functional of interest is the mean response EY, i.e.

X = [ vfan

The representation (1.13) can be shown to be valid with S; = —A, Sy = AY,
S3 =1 and Sy = 0 (see e.g. [10]). The parameters a and b are (transformed)
regression functions and are nonparametrically estimable at the rates n~/(2e+d)
and n~P/EB+d) if they are a-priori known to be a- and B-smooth, where d is
the dimension of Z. The parameter f is a density and can be estimated from
the covariates. Closer inspection (see (1.14) below) shows that a more crucial
parameter is the quotient f/a, which is proportional to the conditional density of
Z given A = 1 and can be estimated directly from the observed covariates and
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HIGHER ORDER INFLUENCE FUNCTIONS 7

treatment indicators, at a rate n=" @Y+ D if this function is known to be y-smooth.

The purpose of constructing higher order influence functions is to ensure that
standard nonparametric regression or density estimators can replace the unknown
parameters in theoretical expressions with optimal estimators as a result.

ExAMPLE 1.2 (Covariance model). Let a typical observation be a triple X =
(Y, A, Z), whereY and A are binary variables with values in {0,1}. We are inter-
ested in estimating the expected conditional product moment E[E(Y | Z)E(A| Z)].
In terms of the parameters a(Z) = E(A|Z) and b(Z) = E(Y|Z), and n =
(a,b, f,c), for f the marginal density of Z and ¢ an additional parameter, this
target can be written as

xn) = [ abs dv

Representation (1.13) can be seen to hold with S; = —1, S = A, S3 =Y and
Sy = 0. The parameters a and b are regression functions of Y and A on Z and
hence can be estimated at the rates n=%/ 2+ gnd n=PF/(26+d) if they are a-priori
known to be a- and B-smooth. The marginal density f can be similarly estimated
nonparametrically from the observed covariates.

The triple (a,b, f) does not fully parameterize the joint distribution of an ob-
servation, but the remaining part ¢ of the parameter does not seem to play a
role when estimating x(n). A full parameterization is obtained by adding the
treatment effect function ¢(Z) = E(Y|A = 1,Z) —E(Y|A = 0,Z). The con-
ditional distribution of Y given A can then be expressed in (a,b,c, f) through
PY=1A,2)=c(Z)(A—a(Z))+b(Z).

Estimating x(n) is relevant to the biostatistical setup through a detour, which
relates x(n) to the treatment effect function c. First, in terms of statistical diffi-
culty the functional x(n) is equivalent to the functional Ecov(Y, Al Z) = E(Y A)—
x(n), as E(YA) can be estimated at the rate n='/? by a simple sample average.
Second, the problem of estimating Ecov(Y,A| Z) is a template for estimating
W(t):=Ecov(Y —tA, A| Z), for every given t, which can next be inverted to give
an estimate for the value T that satisfies (1) = 0. The latter value can be shown
to be equal to the variance weighted average treatment effect

_ Evar(A| Z)e(2)
Evar(A| Z)

(See [12], Section 4 for details.) Under the assumption of non-confounding this
parameter is nonzero if and only if the treatment A has a nonzero causal effect,
and it may be the ultimate purpose to ascertain this.

EXAMPLE 1.3 (Average treatment effect). Suppose a clinical trial with two
possible treatments, indicated by A € {0,1}, has two binary outcome variables
Y1 and Ys, and let aj(Z) = E(Y;|A =1,2) — E(Y;| A = 0,Z) be the treatment
effects at level Z of an observed covariate, for j = 1,2. We observe a random
sample of the variables (Y1,Ya, A, Z), and are interested in estimating the average
treatment effect

x(n) = /alazde~

Here n parameterizes the distribution of (Y1,Ya2, A, Z), and f is the density of
the covariate Z, relative to some measure v, for instance Lebesgue measure on a
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8 VAN DER VAART

compact subset of RY. The parameter n includes the triplet (a1, az, f), and possibly
other unknown aspects of the distribution of an observation. In a clinical trial the
probability m(Z) = P(A = 1| Z) that an individual with covariate Z is treated will
be a known function of the covariate.

As the tangent space is a true subspace of the full tangent space, there are
multiple influence functions for x. It can be shown that any influence function of
X can be represented in the form (1.13) with, for some measurable function C,

L 24(A-7(2)) . A-n(2)
=l T e -n@)y
A—n(2) A—n(2)

@a-nz); T Crmaone

S3 =Y
™

Perhaps the special case that Y1 = Y3 is of most interest. The parameter (ai,az, f)
then reduces to a pair (a, f), and So = Ss, but the general setup remains the same.

In models with first order influence function of the form (1.13) the error of
the first order von-Mises representation (1.2) -(1.3) can be computed to be, for a
given initial estimator 1 = (a, b, f),

(1.14) X () = X(1) + By = / (6— a)(b— b) 3y1 f dv.

for 5, ;(2) = E,(Si| Z = z). (From the fact that a, b and f are only nonparamet-
rically restricted and that (1.13) gives the influence function it can be shown that
necessarily 5,1b+ 5,2 = 0 = 5, 1a + 5,3, after which identity (1.14) follows by
algebra.) This is quadratic in the errors @ — a and b — b of the initial estimators,
but is special in that the squares of the estimation errors |a — a| and |b — b| of
the two initial estimators @ and b do no arise, but only their product. This prop-
erty, termed ‘double robustness’ in [11], [13], makes that in first order inference
it suffices that one of the two parameters is estimated well. If initial estimators
of a and b attain estimation rates n=®/(2e+d) and n=P/(26+d)  regpectively, then
the order of the remainder term in the expansion is the product of these rates.
This shows that the linear estimator (1.4) attains a rate Op(n~1/?) if
o g

1
1.15 >
(1.15) %atd 281d-2

If this condition fails, then the ‘bias’ (1.14) is greater than Op(n~'/2). The linear
estimator (1.4) then does not balance bias and variance and is suboptimal.

For moderate to large dimensions d inequality (1.15) is a restrictive require-
ment, whose validity is questionable for many applications. Higher order influence
functions allow to construct better estimators than the linear estimator (1.4). As
shown in [9], [10], [15], [12], [5] there are two cases:

e (a+[)/2 > d/4. In this case estimation at rate n~'/2 is possible by using a
higher order estimator (1.10) of sufficiently large order m. If the inequality
is strict, then this estimator is also semiparametrically regular and efficient,
even though (1.15) need not be satisfied.

e (a+[)/2 < d/4. In this case the minimax rate of estimation is slower than
n~1/2. If the function 5p,1f has a regularity v bigger than a certain cut-off
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HIGHER ORDER INFLUENCE FUNCTIONS 9

(that depends on (a, 3)), then the minimax rate is n~(2@+20)/(2a+26+1) 4pq
is attainable by a higher order estimator (1.10) with a carefully constructed
approximate influence function x;,.

In both cases it is necessary to estimate the marginal density f, or rather the
function s, 1f, notwithstanding the fact that it does not enter the first order
influence function (1.13). Robins et al. [9] construct minimax estimators under the
assumption that this function has a minimal smoothness. A completely general
solution is apparently still more complicated.

The details of the constructions are beyond the scope of the present paper.
The approximations are based on expanding the parameters a and b on bases that
express their regularity (e.g. suitable wavelets), and representing the higher order
derivatives of the functional x on the subspaces obtained by truncating these
bases. The truncation point is chosen relative to the functional to be estimated
(and not necessarily the usual one used to estimate the functions themselves). For
orders three and up, it is in addition necessary to remove pairs of basis functions
(resulting from the pair (a,b)) whose combined index is ‘large’, in order to cut
variance without increasing bias. For an introduction to constructing truncated
second order influence functions we refer to [10].

2. CONCLUDING REMARKS

One may look at the work of Robins et al. [9] and its sequel from two perspec-
tives. The mathematical statistical point of view is the simplest: higher order
estimating functions are a means to construct estimators that are theoretically
minimax in complex semiparametric models, where the interest is not simply in
a mean of the observations, but in a parameter defined through the structure
of the model. As always in high-dimensional models minimaxity is about the
bias-variance trade-off. Inspection of higher order tangent spaces reveals in what
form the bias arises, and the connected von Mises calculus allows to correct for
it. So far no completely general method exists for trading this against variance
(other than the abstract idea to use ‘finite-dimensional approximations’), and in
fact beyond the application to models characterized by (1.13) nothing much is
known.

The second perspective is practically oriented. The models dealt with in this
paper are relevant in studies in epidemiology, econometrics, and the social sci-
ences. The parameter of interest is defined through the substantial application,
for instance measuring a response to treatment or the consequence of an inter-
vention. High dimensions arise to identify this parameter of interest from data.
Observational studies, where covariates must be included in the statistical anal-
ysis to control for possible confounding are a typical case. One has a choice to
adopt a relatively simple statistical model for this complex reality, maybe even
a classical parametric model or a one-dimensional propensity score, or to let the
data ‘speak for itself’, as much as possible. Without any model restriction one
runs into the ‘curse of dimensionality’ and no conclusions are possible. Semipara-
metric models as developed in the 1980s and 1990s are between these extremes,
but from the present perspective relatively close to finite-dimensional models.
In fact, they focus on functionals in situations where a bias-variance trade-off
is unnecessary, as the bias is negligible. The main purpose of methods based on
high-dimensional influence functions is to fill the huge gap between ‘classical semi-
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10 VAN DER VAART

parametric models’ and the model in which nothing is assumed. In a situation
with fewer or less stringent a-priori assumptions on the model, statistical bias
starts playing a role and must be traded versus variance. Estimators with big-
ger standard errors result, but bias due to model misspecification decreases. The
choice between model bias with smaller variance and larger estimation variance
is not easy to make with current statistical methodology. However, larger and
larger data bases certainly make the methodology of higher influence functions
feasible.

Thus these methods are potentially useful to answer a wide range of questions.
We close with some remarks about further research that needs to be done to
make the methods fully operational.

The improved estimators based on higher order influence functions combine
good preliminary estimators for deviations of the parameter of interest x(n) in
some directions with a-priori assumptions that the deviations in other ‘nones-
timable’ directions are small. The latter a-priori assumptions are always ques-
tionable. It is an open problem to develop estimation procedures that can ‘adapt’
to ‘scales of a-priori conditions’, for instance by implicitly estimating unknown
smoothness levels from the data.

For practical application estimation without error indications are insufficient.
Although there is some preliminary work on confidence intervals related to the
higher order estimators, these procedures remain to be explored.

The models (1.13) considered in [9] are structured semiparametric models (with
a partitioned parameter (a, b, ¢, f) and the functional of interest defined naturally
in terms of the partition), but typically nonparametric in the sense that any law
on the sample space is realized by some choice of the parameters (a,b,c, f).
Genuinely semiparametric problems, such as partially linear regression, pose a
further challenge. For such models the first order influence function is non-unique,
and as the estimation error is bigger than the first order variance, the efficient first
order influence function may not play a special role, thus increasing the degrees
of freedom in constructing suitable higher order influence functions.
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