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Abstract. We consider stochastic dynamical systems on R, i.e. random processes defined by
Xx

n = Ψn(Xx
n−1), Xx

0 = x, where Ψn are i.i.d. random continuous transformations of some

unbounded closed subset of R. We assume here that Ψn behaves asymptotically like Anx, for
some random positive number An (the main example is the affine stochastic recursion Ψn(x) =
Anx + Bn). Our aim is to describe invariant Radon measures of the process Xx

n in the critical

case, when E logA1 = 0. We prove that those measures behave at infinity like dx
x
. We study

also the problem of uniqueness of the invariant measure. We improve previous results known for

the affine recursions and generalize them to a larger class of stochastic dynamical systems which
includes, for instance, reflected random walks, stochastic dynamical systems on the unit interval
[0, 1], additive Markov processes and a variant of the Galton-Watson process.

1. Introduction

1.1. Stochastic dynamical systems. Let F be the semigroup of continuous transformations of
an unbounded closed subset R of the real line R endowed with the topology of uniform convergence
on compact sets. In the most interesting examples R is the real line, the half-line [0,+∞) or the
set of natural numbers N. Given a regular probability measure µ on F, we define the stochastic
dynamical system (SDS) on R by

Xx
0 = x;

Xx
n = Ψn(X

x
n−1),

(1.1)

where {Ψn} is a sequence of i.i.d. random functions, distributed according to µ.
The aim of this paper is to study conditions for the existence and uniqueness, as well as behavior

at infinity, of an invariant infinite Radon measure of the process Xx
n , i.e. of a measure ν on R such

that

(1.2) µ ∗F ν(f) = ν(f),

for any f ∈ CC(R), where

µ ∗F ν(f) =
∫
R
E
[
f(Xx

1 )
]
ν(dx) =

∫
F

∫
R
f(Ψ(x))ν(dx)µ(dΨ).

There is quite an extensive literature on the case when the process Xn is positive recurrent,
that is, it possesses an invariant probability measure. The existence of such a measure can be proved
supposing that the process has some contractive property (for example, if Ψn are Lipschitz mappings
with Lipschitz coefficients Ln = L(Ψn) and E[logL1] < 0), [11]). This invariant probability measure
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is well described in several specific cases, such as affine recursions (i.e. Ψ(x) = Ax+B), namely in
the seminal paper of H.Kesten [17]. C.M.Goldie [15] and recently M. Mirek [21] generalized Kesten’s
theorem to stochastic recursions such that Ψ(x) behaves like Ax for large x. They proved that if
EAκ = 1 (and some other hypotheses are satisfied), then

lim
z→∞

zκν{x : |x| > z} = C+ > 0.

In other words the measure ν is close at infinity to C+dx
x1+κ .

Less is known for the null recurrent case, especially in a general setting. Existence and uniqueness
of an invariant Radon measure have been the topic of two recent works: B. Deroin, V. Kleptsyn,
A. Navas and K. Parwani [10] on symmetric SDS of homeomorphism of R, and M. Peigné and
W. Woess [22] on the phenomenon of local contraction. We refer to them for a more complete
bibliography on the subject. As in the contracting case, affine recursions is one of the first models
being systematically approached. A seminal paper in this area is the one of Babillot, Bougerol and
Elie [2]. They proved existence and uniqueness of a Radon measure and gave a first result on its
behavior at infinity.

The goal of the present work is twofold. First of all we investigate the behavior at infinity of
invariant measures and, for a large class of SDS’s, we generalize and improve results known for affine
recursions. Secondly, we consider the problem of uniqueness of the invariant measure. We give a
relatively simple criterium that can be applied for very concrete examples.

1.2. Behavior at infinity. It turns out that to prove existence and to describe the tail of the
measure it is sufficient to control the maps that generate the SDS near infinity. In particular we
suppose that they are asymptotically linear, in the sense that there exists 0 ≤ α < 1 such that for
all ψ ∈ F

(ALα) |ψ(x)−Aα(ψ)x| ≤ Bα(ψ)(1 + |x|α) for all x ∈ R
with Aα(ψ) and Bα(ψ) strictly positive. We study here the critical case, i.e. E[logAα] = 0.

Existence of an invariant measure supported in R is relatively easy to deduce from the well-known
literature, because in this case the SDS is bounded by a recurrent process (we give more details in
subsection 2.3). The main result of the paper is the description of the tail of invariant measures at
infinity.

Theorem 1.3. Suppose that there exists 0 ≤ α < 1 such that the maps Ψn satisfy (ALα) µ-a.s.
and that

E[logAα] = 0 and P[Aα = 1] < 1,(1.4)

E
[
(| logAα|+ log+ |Bα|)2+ε

]
<∞,(1.5)

the law of logAα is aperiodic, i.e. there is no p ∈ R such that logAα ∈ pZ a.s.(1.6)

Let ν be an invariant Radon measure ν for the process {Xx
n}n. Suppose that ν is supported by R and

it is positive on any neighborhood of +∞. Then the family of dilated measures δz−1 ∗ ν(I) := ν(zI)
converges vaguely on R∗

+ = (0,∞) to C+
da
a as z goes to infinity for some C+ > 0, i.e.

lim
z→∞

∫
R∗

+

ϕ(z−1u)ν(du) = C+

∫
R∗

+

ϕ(a)
da

a
,

for any ϕ ∈ CC(R∗
+).

The key example of an asymptotic linear SDS is the affine recursion (called also the random
difference equation). Then F is the set of affine mappings of the real line Ψ(x) = Ax+B with A > 0
and the process is given by the following formula

(1.7) Xx
n = AnX

x
n−1 +Bn, Xx

0 = x.
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Our results are also valid for Goldie’s recursions, e.g. Ψ(x) = max{Ax,B} + C (with A > 0) and

Ψ(x) =
√
A2x2 +Bx+ C (with A,B,C positive). Since the problem can be reduced, without any

loss of generality, to the case α = 0 (see Lemma 2.1), our hypotheses essentially coincide, in the
one dimensional situation, with the class introduced by M.Mirek [21]. Our main theorem should be
viewed as an analog of Kesten’s and Goldie’s results in the critical case.

Other interesting examples can be obtained conjugating asymptotic linear systems with an appro-
priate homeomorphism. For instance, our result can also be applied to describe invariant measures
of SDS on the interval generated by functions that have the same derivative at the two extrem-
ities. Theorem 1.3 also says that invariant measures of SDS on [0,+∞) generated by mappings
exponentially asymptotic to translations, i.e.

|ψ(x)− x+ uψ| ≤ vψe
−x, ∀x ≥ 0

behave at infinity as the Lebesgue measure dx of R, if E(uϕ) = 0. This result can be compared with
the Choquet-Deny Theorem saying that the only invariant measure for centered random walks on
R is the Lebesgue measure. Another interesting process that is α-asymptotically linear for α > 1/2
is a Galton-Watson evolution process with random reproduction laws. In Section 6, we give more
details on the different examples.

Let us mention that in our previous papers [3, 6, 7] we have already studied the behavior at
infinity of the invariant measure ν for the random difference equation (1.7). However the main
results were obtained there under much stronger assumptions, namely we assumed existence of
exponential moments, that is E[Aδ + A−δ + |B|δ] < ∞ for some δ > 0. Theorem 1.3 improves all
our previous results for affine recursions and describes the asymptotic behavior of ν under optimal
assumptions, that is the weakest known conditions implying existence of the invariant measure [2].
To our knowledge, for all the other recursions even partial results are not known.

We would like also to remark that, in the contracting case, Kesten’s theorem requires moment
of order at least κ and, as far as we know, there exist no results on the behavior of the tail of the
invariant probability when the measure is supposed to have only logarithmic moment.

The proof of Theorem 1.3 is given in sections 3 and 4. In order to describe ν at infinity, we
give first an upper bound of this measure and prove some regularity properties of its quotient. The
techniques we use in the present paper are more powerful than those applied in [6], and are heavily
based on the renewal theory for random walks on the affine group. Among other results we prove
directly that ν[−z, z] grows as log z (Proposition 3.1). Next, in Section 4 we consider the Poisson
equation for the additive convolution on R

f(x) = µ ∗ f(x) + g(x),

where f(x) =
∫
ϕ(e−xu)ν(du) for some ϕ ∈ CC(R∗

+) and µ is the law of − logA. Notice that the
asymptotic behavior of f and ν is the same, therefore it is sufficient to study f . In the contrast to
[6] we do not solve explicitly this equation. We apply techniques borrowed from the work of Durrett
and Liggett [12] (see also Kolesko [18]), reduce the problem to the classical renewal equation with
drift and deduce its asymptotic behavior from the renewal theorem.

1.3. Uniqueness of the invariant measure. Another fundamental question is to determine
whether the invariant measure is unique or not. The nature of this problem is different from
the ones we have considered so far. In fact uniqueness depends on the local behavior of the system
and it is no more sufficient to control the random maps only at the infinity.

In the non-contracting case, this problem was studied first by Babillot, Bougerol and Elie [2] in the
context of the affine recursion and they proved uniqueness under the assumptions of Theorem 1.3.
Relying on their ideas Benda [3] studied in full generality recurrent and locally contractive SDS’s.
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The SDS is called recurrent if there exists a closed set L such that every open set intersecting L is
visited by Xx

n infinitely often with probability 1. The SDS is locally contractive if for any x, y ∈ R
and every compact set K ⊂ R,

(1.8) lim
n→∞

|Xx
n −Xy

n| · 1K(Xx
n) = 0 almost surely.

Benda [3] proved that if {Xx
n} is a recurrent and locally contractive SDS, then it possesses a unique

(up to a multiplicative constant) invariant Radon measure. He didn’t publish his results, however
they have been recently incorporated, with a complete and simplified proof, into two papers of
Peigné and Woess [22, 23], where they also investigated ergodicity of SDS generated by Lipschitz
maps with centered Lipschitz’s coefficient.

Our aim is to consider very concrete families of Lipschitz mappings of R+, as the one presented in
Goldie’s work [15]. Although recurrence of the corresponding SDS’s is immediate, the main obstacle
in applying Benda’s theorem is the local contraction hypothesis (1.8). In [23] the authors considered
the reflected affine stochastic recursion, being a mixture of the reflected random walk (described
below) and the affine stochastic recursion (defined in 1.7). Unfortunately the method of hyperbolic
extensions they introduce cannot be applied to dynamical systems, whose dependence on the affine
recursion cannot be expressed in such a direct way.

A different approach can be found in [10], where the authors proved a local contraction property
for a symmetric SDS generated by homeomorphisms of R. Their proof is very elegant but is heavily
based on the additional assumption that the SDS is generated by invertible mappings distributed
according to a symmetric measure. In particular their results cannot be applied to noninvertible
SDS, as the one generated by ψ(x) = max{Ax,B}+C, one of the most interesting in applications.

Our contribution to the subject is to give sufficient conditions for uniqueness that can be applied
to some concrete mappings of R+ = [0,∞), such as ψ(x) = max{Ax,B} + C and other Goldie’s
recursions.

Theorem 1.9. Suppose that R = [0,∞), α = 0 and that the hypotheses of Theorem 1.3 are satisfied.
Assume moreover that

(1) there exists β > 0 such that P(Ψ[0,+∞) ⊆ [β,+∞)) > 0;
(2) A(Ψ)x ≤ Ψ(x) ≤ A(Ψ)x+B(Ψ) for all x ≥ 0;
(3) the functions Ψ are Lipschitz and their Lipschitz coefficients are equal to A(Ψ).

Then the SDS defined on [0,∞) by (1.1) is locally contractive. Therefore there exists a unique
invariant Radon measure of the process {Xx

n} on [0,+∞).

The proof of this theorem is contained in Section 5.

1.4. Reflected random walk. The reflected random walk is the SDS defined for x ∈ R+ = [0,∞),
by

Y x0 = x,

Y xn =
∣∣Y xn−1 − un

∣∣,(1.10)

where un is a sequence of i.i.d. real valued random variables with a given law µ.
If un ≥ 0 a.s., then it was proved by Feller [14] that this process possesses a unique invariant

probability measure ν, i.e. a measure satisfying

µ ∗ ν(f) =
∫
R+

∫
R+

f(|x− y|)ν(dx)µ(dy) =
∫
R+

f(x)ν(dx) = ν(f).
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Moreover the measure ν can be explicitly computed: ν(dx) = (1− F (x))dx, for F being the distri-
bution function of µ. The process has been also studied in more general settings, when un admits
also negative values (see Peigné, Woess [22] for recent results and a comprehensive bibliography).

Here, we are interested in the critical case when Eun = 0. Peigné and Woess [22] proved that if

E(u+1 )
3
2 < ∞, for u+1 = max{u1, 0}, then the process {Xn} is recurrent on R+. As a consequence

of Benda’s theorem, the process possesses a unique invariant Radon measure ν on R+ (local con-
tractivity is easy to prove). The reflected random walk can be transformed in an asymptotically
linear system by conjugating with an invertible function s of [0,+∞) such that s(x) = ex for large
x. Then ψ(x) = s(|s−1(x)− u|) is asymptotically linear with A(ψ) = e−u. Hence Theorem 1.3 can
be used to justify that the invariant measure of Y xn behaves at infinity like the Lebesgue measure.
Nevertheless in this case one can prove the same result under weaker moment assumptions and a
much simpler proof. A short argument based only on the duality lemma and the renewal theorem
gives:

Theorem 1.11. Assume Eu1 = 0, E(u+1 )
3
2 < ∞, E(u−1 )2 < ∞ and the law µ of u1 is aperiodic,

then for every ϕ ∈ CC(R+)

lim
x→∞

∫
R+

ϕ(u− x)ν(du) = C+

∫
R+

ϕ(u)du,

for some positive constant C+.

The proof of this theorem will be given in Section 6.6.

We are grateful to the referees for their careful reading of the manuscript and many helpful
suggestions for improvement in the presentation.

2. Notations and preliminary results

2.1. Reduction to condition (AL). Observe first that, conjugating the SDS with an appropriate
function, we can suppose without loss of generality that the distance of the random map to a
linear function is smaller than some constant. In fact we have the following lemma whose proof is
postponed to Appendix A:

Lemma 2.1. Let 0 ≤ α < 1. Suppose that ψ satisfies

(ALα) |ψ(x)−Aαx| ≤ Bα(1 + |x|α).
Then the conjugate function ψr = r ◦ψ ◦r−1, where r(x) = sign(x)|x|1−α, satisfies (AL0) with A0 =
A1−α
α . The appropriate constant B0 can be chosen such that log+B0 ≤ Cα(| logAα|+ log+Bα+1),

for the constant Cα depending only on α.

If ψ is distributed according to µ, the law ψr is given by µr = δr ∗µ∗δr−1 , and if ν is a µ-invariant
measure then νr = δr ∗ν is µr-invariant. Thus if Theorem 1.3 holds for νr then it holds for ν. Indeed

lim
z→∞

∫
R∗

+

ϕ(z−1u)ν(du) = lim
z→∞

∫
R∗

+

ϕ(z−1r−1(u))νr(du) = lim
z→∞

∫
R∗

+

ϕ(z−1u1/(1−α))νr(du)

= lim
z→∞

∫
R∗

+

ϕ((z−(1−α)u)1/(1−α))νr(du) = C+

∫
R∗

+

ϕ(a1/(1−α))
da

a

= C+(1− α)

∫
R∗

+

ϕ(a)
da

a
.

In order to simplify our notations, we’ll suppose from now on that α = 0, i.e. for all ψ ∈ F

(AL) A(ψ)x−B(ψ) < ψ(x) < A(ψ)x+B(ψ) for all x ∈ R.
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Since R is closed, we can extend the property (AL) to all x ∈ R for a suitable continuous extension
of ψ to R. With a slight abuse of notation, we will denote with the same letter (e.g. ψ), the map
from R to R and its continuous extension that verifies (AL) for all x ∈ R. In the same way, ν will
be seen both as a measure on R and as a measure on R whose support is contained in R.

2.2. Comparison of Xx
n with the affine recursion. We assume that the maps A = A(ψ) and

B = B(ψ) from F to R∗
+ = (0,∞) are measurable and that F is a monoid closed by composition.

Assumption (AL) implies
lim
x→+∞
x∈R

ψ(x)/x = lim
x→−∞
x∈R

ψ(x)/x = A(ψ),

therefore the map A is a homomorphism from F to R∗
+ i.e. A(ψ1 ◦ ψ2) = A(ψ1)A(ψ2). The choice

of B is not unique and it can be chosen as big as needed.
Let {Ψn}∞n=1 be an i.i.d. sequence of random variables with values in F of law µ. We are interested

in the study of the iterated stochastic function system

Xx
n = Ψn(X

x
n−1) = Ψn...Ψ1(x) and X

x
0 = x.

If hypothesis (AL) is satisfied, the trajectories of the process Xx
n can be dominated from below and

from above by the affine recursions

(2.2) Zxn = AnZ
x
n−1 −Bn and Y xn = AnY

x
n−1 +Bn,

where, to simplify our notation, we note An = A(Ψn) and Bn = B(Ψn). We will also assume,
according to hypotheses of Theorem 1.3, a logarithmic moment of order 2 + ε and that logA1 is
nontrivially centered. Without any loss of generality, we can also choose B(ψ), such that:

Bn ≥ 1 a.s.(2.3)

P(Anx+Bn = x) < 1 for all x.(2.4)

In such a way the two dimensional process (Zxn, Y
x
n ) satisfies all the assumptions required by Babillot,

Bougerol, Elie [2]. Thus it is recurrent, locally contractive and possesses a unique invariant measure.
It will be convenient to use in the proof the language of groups. Namely, let G = Aff(R) =

R o R∗
+ be the group of all affine mappings of R, i.e. the set of pairs (b, a) ∈ R× R∗

+ acting on R:
(b, a) : x 7→ ax+ b. Then the group product is given by the formula

(b, a) · (b′, a′) = (b+ ab′, aa′),

the identity element is (0, 1) and the inverse element is given by

(b, a)−1 = (−b/a, 1/a).
Let µG be the probability distribution of (Bn, An) on the group G. Then the random elements
gn = (Bn, An) are i.i.d. random variables in G with law µG. We define the left and the right
random walk on G:

(2.5) Ln = gn · ... · g1, Rn = g1 · ... · gn.
Then, Y xn = Ln(x).

A very important role in our proofs will be played by the random walk on R generated by − logAi,
i.e.

(2.6) Sn = −(logA1 + · · ·+ logAn),

(we put the sign minus to follow notations of our previous works). Since E logA = 0, the random
walk Sn is recurrent. Moreover since we assume aperiodicity, the support of Sn is just R. We often
use the downward and upward sequence of stopping times

(2.7) ln := inf{k > ln−1 : Sk < Sln−1}, tn := inf{k > tn−1 : Sk ≥ Stn−1}
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and l0 = t0 = 0. Observe that t1 and l1 are almost surely finite, but have infinite mean. On the
other hand, hypothesis E(| logA|2+ε) <∞ guarantees that St1 and Sl1 are integrable (see [9]).

In the sequel we will use, depending on the situation, different convolutions. We define a convo-
lution of a function f on R with a measure η on R as a measure on R given by

(2.8) f ∗ η(K) =

∫
R
1K(f(u))η(du) = η(f−1(K)).

Given z ∈ R∗
+ and a measure η on R we define

(2.9) δz ∗R∗
+
η(K) =

∫
R
1K(zu)η(du) = η(z−1K).

2.3. Existence of an invariant measure. We conclude this section observing that the existence
of the invariant measure on R ⊆ R for a SDS satisfying the hypotheses of Theorem 1.3 follows
immediately from recurrence of the process {Xx

n} and Lin’s theorem [20].
More precisely, consider the positive operator Pf(x) =

∫
f(Ψ(x))µ(dΨ) on Cb(R). Then, since

Zxn ≤ Xx
n ≤ Y xn and (Zxn, Y

x
n ) is recurrent, the process {Xx

n} is recurrent, i.e. there exists a
nonnegative function u ∈ Cc(R) such that

∑∞
n=0 P

nu(x) = ∞ for all x. Therefore, by [20] there
exists a non-null invariant Radon measure ν on R of the process {Xx

n}.
Observe that the support of this measure can be bounded (for instance if the functions Ψ fix the

point 0, then the Dirac measure at 0 is an invariant measure). In this paper we are interested in
measures having unbounded support. A sufficient (but not necessary) condition to ensure that the
invariant measure is not bounded is to assume that the random functions Ψ do not fix a compact
subset C of R ( that is there is no compact C such that P(Ψ(C) ⊆ C) = 1).

3. First bounds of the tail of the invariant measure

We start to study the behavior of ν at infinity. In particular we will prove in this section that
ν(dx) does not grow faster than dx

x , the Haar measure of R∗
+. The behavior of ν at ∞ is related to

the behavior of the family of measures δz−1 ∗ ν. In this section we prove

Proposition 3.1. Under the hypotheses of Theorem 1.3 we have the following:

(1) There exists C0 > 0 such that

ν[−z, z] < C0(1 + log z) for all z > 1

Moreover, if the support of ν is not bounded on the right, i.e. ν(z,+∞) > 0 for all z ∈ R, then
(2) There exist M > 1 and δ > 0 such that ν[z, zM ] > δ for all z ≥ 1.
(3) For all u2 > u1 > 0 there exists C = C(u1, u2,M) > 0 such that

(3.2)
ν[ex+yu1, e

x+yu2]

ν[ex, exM ]
< C(1 + y) for all x > 0, y > 0.

In particular the family of measures 1
ν[z,zM ]δz−1 ∗ ν on (0,+∞) is vaguely compact when z

goes to +∞.

There are two key arguments in the proof of this proposition. One is the following Lemma, that
we will use several times in the sequel.

Lemma 3.3. Let ν be a positive µ-invariant measure on R. Then for any pair of intervals V,U ⊂ R,
ν(V ) ≥ P(TW <∞) · ν(U)

where
W = W(V,U) = {ψ ∈ F | ψ(U) ⊂ V }

and TW is the stopping time defined by TW = inf{n ≥ 0 : Ψ1 · · ·Ψn ∈ W}.
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Proof. Observe that the backward process

Mn = Ψ1 · · ·Ψn ∗ ν(V ) M0 = ν(V )

is a positive martingale with respect to the filtration generated by the Ψn. In fact

E(Mn|Fn−1) = Ψ1 · · ·Ψn−1 ∗ µ ∗ ν(V ) = Ψ1 · · ·Ψn−1 ∗ ν(V ).

Since (Ψ1 · · ·ΨTW
)−1(V ) ⊇ U , for any fixed n ∈ N, by the optional stopping time theorem,

ν(V ) = E(MTW∧n) ≥ E(1{TW≤n}Ψ1 · · ·ΨTW
∗ ν(V )) ≥ P(TW < n)ν(U).

We let n go to infinity to conclude. �

The other crucial observation is that the backward recursion Ψ1 · · ·Ψn(x) is controlled by the
right random walk Rn on the affine group generated by the product of gi = (Bi, Ai) (see (2.5)). More
precisely, given g ∈ Aff(R) we denote by a(g) and b(g) its projections on R∗

+ and R respectively,
then

a(Rn)x− b(Rn) ≤ Ψ1 · · ·Ψn(x) ≤ a(Rn)x+ b(Rn).

We use these bounds to estimate the stopping time that appears in Lemma 3.3. In particular as an
immediate consequence of the lemma above we obtain

Corollary 3.4. Let

W =W (m1,m2, k1, k2) = {(B,A) ∈ Aff(R) | Ak2 +B ≤ m2; Ak1 −B ≥ m1}

and TW = inf{n ≥ 0 : Rn ∈W}. Then we have

ν(m1,m2) ≥ P[TW <∞]ν(k1, k2).

Proof. The Corollary follows from Lemma 3.3, taking U = [k1, k2], V = [m1,m2] and noticing that
TW ≥ TW. �

Since the potential theory of the affine group is well understood, we have enough tools to estimate
P(TW < +∞) in many situations. For a continuous and compactly supported function f on Aff(R)
we define the potential

U ∗ δg(f) := E
[ ∞∑
n=0

f(Lng)

]
= E

[ ∞∑
n=0

f(Rng)

]
.
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A renewal theorem for the potential U , i.e. description of its behavior at infinity, was given in [2],
where the authors proved that for all h ∈ CC(Aff(R)):

(3.5) lim
a→0

U ∗ δ(0,a)(h) = νG ⊗ dx

x
(h),

for νG being a suitable non-trivial multiple of the invariant measure of the process Y xn = Ln(x) .
Now we are ready to prove the following lemma.

Lemma 3.6. Suppose (1.4), (1.5), (2.3) and (2.4). There exist a compact subset

V0 = {(B,A) ∈ Aff(R) | |B| < b0, a
−1
0 < A < a0}

and a constant δ > 0 such that:

(1) if Wz = (0, z) · V0 = {(B,A) | |B| < z b0, z a
−1
0 < A < z a0}, then

P(TWz <∞) > δ

for all z ≥ 1;
(2) if Vz = V0 · (0, z−1) = {(B,A) | |B| < b0, a

−1
0 /z < A < a0/z}, then

P(TVz <∞) >
δ

1 + log z

for all z ≥ 1.

Proof. Step 1. First observe that for every V ⊂ Aff(R)
(3.7) U(V −1V )P(TV <∞) ≥ U(V ).

In fact

U(V ) =
∞∑
n=0

P[Rn ∈ V ] = E
[
1{TV <∞}

∞∑
n=TV

1{RTV R
TV
n ∈V }

]
≤ P(TV <∞)U(V −1V )

where Rln := R−1
l Rn = gl+1 · · · gn.

Step 2: Proof of (1). By (3.7) we write (assuming the denominator is nonzero)

(3.8) P(TWz <∞) ≥ U(Wz)

U(W−1
z Wz)

=
U((0, z) · V0)
U(V −1

0 V0)
.

A simple calculation relates the right random walk on the affine group to the reversed left random
walk L̆n = R−1

n = g−1
n · · · g−1

1 . Observe that for any V ⊂ Aff(R) we have

U((0, z)V ) =
∑
n

P
[
Rn ∈ (0, z)V

]
=
∑
n

P
[
R−1
n ∈ V −1(0, z−1)

]
=

∑
n

P
[
L̆n(0, z) ∈ V −1

]
= Ŭ

(
V −1(0, z−1)

)
,

where Ŭ is the potential of the reversed random walk L̆n. Since the law of g−1
n is also centered and

verifies the hypotheses of [2], there exists a unique Radon measure ν̆G on R invariant under µ̆G, the
law of g−1 = (B,A)−1. Then by (3.5)

lim
z→+∞

U((0, z)V ) = lim
z→+∞

Ŭ
(
V −1(0, z−1)

)
=
(
ν̆G × dx

x

)
(V −1).

We take sufficiently large V0 such that

U(W−1
z Wz) = U(V −1

0 V0) > 0 and
(
ν̆G × dx

x
(V −1

0 )
)
> 0

and, in view of (3.7), we conclude.
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Step 3: Proof of (2). As in the previous step, by (3.7), we write

(3.9) P(TVz <∞) >
U(Vz)

U(V −1
z Vz)

=
U
(
V0(0, z

−1)
)

U
(
(0, z)V −1

0 V0(0, z−1)
)

Now we have to estimate U(Vz) from below and U(V −1
z Vz) from above. The latter is the most

difficult part of the proof.
To deal with this second problem we decompose the centered random walk on the affine group in

a contracting part and a dilating part using ladder stopping times. This key idea has been applied
in several different ways in important works on the subject, for instance [16, 13, 19, 2]. We use here
a potential theoretic version. Let {gi} be another sequence of i.i.d. elements of Aff(R) independent
and of the same law as {gi}. We define Sn, tk, lk as in (2.6) and (2.7). We claim that

(3.10) U(f) = E
[ ∞∑
n=0

f(Ln)

]
= E

[ ∞∑
k,i=0

f(RliLtk)

]
.

In fact, for n > k define Lkn = gn · · · gk+1 and Lkk = e. Observe that

E
[ ∞∑
n=0

f(Ln)

]
= E

[ ∞∑
k=0

tk+1−1∑
i=tk

f(Li)

]
= E

[ ∞∑
k=0

E
[ tk+1−1∑

i=tk

f(Ltki Ltk)

∣∣∣∣Ltk]].
Since for fixed k the sequence {Ltktk+i}i≥0 is independent of Ltk and has the same law as {Li}i≥0,
by the duality lemma (see lemma 5.4 [6]) we have

E
[ tk+1−1∑

i=tk

f(Ltki Ltk)|Ltk = g

]
= E

[ t1−1∑
i=0

f(Lig)

]
= E

[ ∞∑
i=0

f(Rlig)

]
and we obtain (3.10).

Observe that Sli (resp. Stk) is a random walk with finite mean and negative (resp. positive)

steps. Take a, b > 2 , then by (3.10) and the classical renewal theorem [14], we have

U([−b, b]× [1/a, a]) =

∞∑
k,i=0

P
[
b(RliLtk) ≤ b;− log a ≤ Sli + Stk ≤ log a

]
=

∞∑
k,i=0

P
[
e−Sli b(Ltk) + b(Rli) ≤ b;− log a ≤ Sli + Stk ≤ log a

]
≤

∞∑
k,i=0

P
[
b(Rli) ≤ b;− log a ≤ Sli + Stk ≤ log a

]
since b(Ltk) ≥ 0

=
∞∑
i=0

E
[
1[b(Rli

)≤b]E
[ ∞∑
k=0

1{− log a≤Sli+Stk≤log a}

∣∣∣gi, i ≥ 0

]]

≤ C log a
∞∑
i=0

P
[
b(Rli) ≤ b

]
Since we assume B ≥ 1 a.s., we have for i ≥ 1:

b(Rli) = b(Rli−1
R
li−1

li
) = e

−Sli−1 b(R
li−1

li
) + b(Rli−1

) ≥ e
−Sli−1



ON UNBOUNDED INVARIANT MEASURES OF SDS 11

That is

U([−b, b]× [1/a, a]) ≤ C log a

(
1 +

∞∑
i=1

P
[
Sli−1

≥ − log b
])

≤ C log a (1 + C log b)

Therefore, since

V −1
z Vz ⊆ {(B,A) | |B| ≤ 2b0a0 z, a

−2
0 ≤ A ≤ a20},

we obtain

U(V −1
z Vz) ≤ K log a0(1 + log z + log(2b0a0)).

To estimate U(Vz) from below as in the previous case, we just apply the renewal theorem (3.5).
Plugging those estimates into (3.9), we conclude. �

Proof of Proposition 3.1.

Step 1: Proof of (1). We apply Corollary 3.4 with [k1, k2] = [−z, z] and [m1,m2] = [−2b0, 2b0]
and consider, according to the notation there, the subset of Aff(R)

W (−2b0, 2b0,−z, z) =
{
g ∈ Aff(R) | g([−z, z]) ⊆ [−2b0, 2b0]

}
=
{
(B,A) | Az +B < 2b0

}
.

This subset contains the set

Vz =

{
(B,A)

∣∣b−1
0

z
< A <

b0
z
, |B| < b0

}
.

We can apply Corollary 3.4 and, choosing b0 large enough, Lemma 3.6.2 to conclude:

ν(−z, z) ≤ ν[−2b0, 2b0]

P(TVz <∞)
< C0(1 + log z).

Step 2: Proof of (2). Take M > 1 and 0 < k1 < k2. Set [m1,m2] = [z, zM ]. Then by Corollary
3.4

ν[z, zM ] ≥ P(TWz <∞)ν[k1, k2],

where

Wz =W (z, zM, k1, k2) = (0, z)W (1,M, k1, k2) =: (0, z)W1.

Observe that if k1, M and M/k2 tend to infinity, then

W1 = {(B,A) | Ak1 −B > 1, Ak2 +B < M}
grows to Aff(R). Thus, there exists C > 0 such that if k1 ≥ C,M > C and M/k2 ≥ C, the set W1

contains the compact set V0 defined in Lemma 3.6. Therefore P(TWz < ∞) is uniformly bounded
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from below for large values of z. Moreover, since we require the support of ν to be unbounded on
the right, one can choose k2 such that ν[k1, k2] > 0 and we conclude.

Step 3: Proof of (3). Let a0, b0 be sufficiently large numbers such that Lemma 3.6 holds. Take
M > max{2, 4a20}.

First suppose that u2

u1
< M

4a20
. Take [m1,m2] = [ex, exM ] and [k1, k2] = [ex+yu1, e

x+yu2]. For

x > log(b0), the set

W (ex, exM, ex+yu1, e
x+yu2) =

{
(B,A) ∈ Aff(R) | Aex+yu2 +B ≤ exM ; Aex+yu1 −B ≥ ex

}
contains the set

V (y) =
{
(B,A) ∈ Aff(R) | B < b0,

2

eyu1
≤ A ≤ M

ey2u2

}
.

Since ( M
ey2u2

)/( 2
eyu1

) = Mu1

4u2
> a20, we can apply Lemma 3.6 and prove that there exists C > such

that
ν[ex+yu1, e

x+yu2]

ν[ex, exM ]
≤ 1

P(TV (y) <∞)
< C(1 + y) for all x > log b0, y > 0

By the previous steps, the last inequality is satisfied for 0 < x ≤ log b0 and all y > 0.
For general U = [u1, u2] with

u2

u1
≥ M

4a20
we can deduce (3.2) covering U with a finite number of

small intervals.
�

Since the law of logA is aperiodic, proceeding as in [2] and [6], one can prove that the family
of quotient measures is asymptotically invariant under the action of R∗

+ and converges to the Haar
measure of R∗

+.

Corollary 3.11. Under the hypotheses of Theorem 1.3

lim inf
z→∞

δz−1 ∗ ν(ϕ) > 0,

where ϕ is an arbitrary nonzero and nonnegative element of Cc(0,+∞).
Furthermore for ϕ1, ϕ2 ∈ Cc(0,+∞) and ϕ2 not identically zero:

(3.12) lim
z→∞

δz−1 ∗ ν(ϕ1)
δz−1 ∗ ν(ϕ2)

=

∫
R∗

+
ϕ1(a)

da
a∫

R∗
+
ϕ2(a)

da
a

.

Therefore

(3.13) lim
x→+∞

δe−(x+y) ∗ ν(ϕ)
δe−x ∗ ν(ϕ)

= 1

and
δe−(x+y) ∗ ν(ϕ)
δe−x ∗ ν(ϕ)

≤ Kϕ(1 + y) for all x, y > 0.

In particular the function L(z) = δz−1 ∗ ν(ϕ) is slowly varying.

Proof. For the reader’s convenience we present a sketchy proof (see Proposition 2.2 [6] for more
details). First take a Lipschitz function Φ whose compact support contains (1,M) and let L(z) =
δz−1 ∗ ν(Φ). Since the family of measures ν̃z =

1
L(z)δz−1 ∗ ν is vaguely compact, for every sequence

we can extract its subsequence ν̃zn convergent to a limit measure η.
For every Lipschitz compactly supported function ϕ and Ψ ∈ F there exists a compact set

U = U(ϕ,Ψ) such that ∣∣∣∣ϕ(Ψ(u)

z

)
− ϕ

(Au
z

)∣∣∣∣ ≤ B

z
· 1U

(Au
z

)
,
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and

lim
n→∞

∣∣∣∣ ∫ ϕ(Ψ(u)
zn

)
ν(du)−

∫
ϕ
(
Au
zn

)
ν(du)

∣∣∣∣
L(zn)

≤ lim
n→∞

C|z−1
n b|ν(a−1znU)

L(zn)

≤ Cη(a−1U) · lim
n→∞

|z−1
n b| = 0,

Thus the function

h(y) = δy ∗ η(ϕ) = lim
n→∞

δ(0,z−1
n y) ∗G ν(ϕ)
L(zn)

on R∗
+ is superharmonic with respect to the action of µA, the law A1. Since h is positive and

continuous, by the Choquet-Deny theorem it must be a constant function, that is δa ∗ η(ϕ) = η(ϕ)
for every a ∈ R∗

+. Because η(Φ) = 1, then η is a fixed multiple of the Haar measure of R∗
+ and

lim
z→+∞

δz−1 ∗ ν(ϕ)
δz−1 ∗ ν(Φ)

=

∫
ϕ(a)daa∫
Φ(a)daa

.

This proves (3.12) and (3.13). In particular, if ϕ is nonzero, by Proposition 3.1, we have

lim inf
z→∞

δz−1 ∗ ν(ϕ) ≥
∫
ϕ(a)

da

a
· lim inf
z→∞

δz−1 ∗ ν(Φ) > 0.

Take k such that the support of ϕ is contained in [1/k, k]. Then

e−(x+y) ∗ ν(ϕ)
e−x ∗ ν(ϕ)

≤ ν[ex/M, exM ]

e−x ∗ ν(ϕ)
ν[ex+y/k, ex+yk]

ν[ex/M, exM ]
≤ K(1 + y),

because the first quotient is bounded. �

4. Homogeneity at infinity

In this section we finish the proof of Theorem 1.3. The main idea of the proof is similar to our
previous papers [6, 8, 7]. Given a nice function ϕ on R∗

+ we define the function

f(x) =

∫
R∗

+

ϕ(e−xu)ν(du).

Behavior at infinity of the measure ν is coded in the asymptotic behavior of f . To describe f we
consider it as a solution of the Poisson equation

µ ∗R f(x) = f(x) + g(x)

where µ is the law of − logA and the function g is defined by the equation above. We cannot use
the classical renewal theorem, since the measure µ is centered. In our previous papers we expressed
f as a special potential of g. However this approach was technically involved and it was not possible
to establish the optimal hypotheses. Here we apply ideas due to Durrett and Liggett [12], who
studying similar equation and applying the duality lemma, were able to reduce the problem to the
classical renewal theorem. In Proposition 4.1, we determine weak assumptions in the terms of the
Poisson equation that enable to control the asymptotic behavior of the solution.

In the second part of the section, we apply this result to our problem. We show that there exist
slight perturbations of the functions f and g defined above which satisfy all the required conditions.
Finally we deduce our main result proving that the tail of the measure ν converges at infinity.
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Proposition 4.1. Let µ be a centered probability measure on R with finite moment of order 2 + ϵ
for some ϵ > 0 and let f be a continuous function on R such that

(4.2) 0 ≤ f(x) ≤ C(1 + x+) and

∫ y

−∞
f(x)dx ≤ C(1 + y+)

where x+ := max{0, x}. Let g be the continuous function on R defined by the Poisson equation:

(4.3) µ ∗ f(x) = f(x) + g(x).

Suppose also that g is directly Riemann integrable, then

(4.4) lim
x→+∞

E[f(x+ St)]− f(x) =
−1

E[Sl]

∫
R
g(x)dx,

where Sn is the random walk of law µ and t and l are the stopping times

t = inf{n > 0 : Sn ≥ 0} and l = inf{n > 0 : Sn < 0}.
Moreover, if

∫
R g(x)dx = 0 and

∫
R |xg(x)|dx <∞,

(4.5) lim
x→+∞

E
[ ∫ x+St

x

f(z)dz

]
=

1

E[Sl]

∫
R
x g(x)dx.

The notion of directly Riemann integrable functions is fundamental in renewa theory and allows
to apply the classical renewal theorem to the function g (see for e.g. Feller [14]). The proof of this
proposition will be given in Appendix A.

Let ν be a µ-invariant Radon measure on R. We would like to apply the previous proposition
to the function f(x) = δe−x ∗ ν(ϕ) for some fixed positive function ϕ ∈ C1

C(R∗
+). Unfortunately we

are not able to justify that f satisfies all the required hypotheses. The main reason is that we are
not able to control local properties of a general measure ν, namely its behavior near 0. Thus the
function f may not be sufficiently integrable at −∞. However it turns out that one can slightly
translate the measure ν to overcome the problem.

For this purpose, given ϕ ∈ C1
C(R∗

+) and w0 > 0 define

fϕ(x) :=

∫
R
ϕ(e−x(u− w0))ν(du),

gϕ(x) := µ ∗R fϕ(x)− fϕ(x).

Observe that fϕ(x) = δe−x ∗ ν0(ϕ) where ν0 is the measure ν translated by w0:

ν0(ϕ) =

∫
R
ϕ(u− w0)ν(du),

i.e. the invariant measure of the SDS obtained by conjugating the original one with the translation
by w0:

ψ0(x) = ψ(x+ w0)− w0.

Denote by µ0 its law. Observe that A(ψ0) = A(ψ) and we can choose B(ψ0) = Aw0+w0+B, hence
µ0 satisfies our main hypotheses if µ does. Since the translation doesn’t change the asymptotic
behavior, the measures ν0 and ν behave in the same way at +∞, namely :

(4.6) lim
x→+∞

fϕ(x)− δe−x ∗ ν(ϕ) = 0.

In fact ∫ +∞

−∞
|ϕ(e−x(u− w0))− ϕ(e−xu)|ν(du) ≤ C

∫ ∞

0

|e−xw0|1[exm,ex(M+w0)]ν(du)

≤ C|e−xw0| log(ex(M + w0))
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when supp(ϕ) ⊂ [m,M ]. Summarizing, translation of the invariant measure does not change the
problem we study, nor our assumptions. Existence of a corresponding w0 is provided by the following
lemma, whose proof will be given in Appendix A.

Lemma 4.7. There exists w0 > 0 such that for all ϕ ∈ C1
C(R∗

+) the functions fϕ and gϕ satisfy the
hypotheses of Proposition 4.1.

Now we are ready to prove our main result.

Proof of Theorem 1.3. We claim that
∫
gϕ(y)dy = 0. In fact for all y we can apply Corollary 3.11

lim
x→+∞

fϕ(x+ y)

fϕ(x)
= lim
x→+∞

δe−(x+y) ∗ ν0(ϕ)
e−x ∗ ν0(ϕ)

= 1;

thus, since E(St) is finite, by dominated convergence E(fϕ(x+ St)/fϕ(x)) also converges to 1. Fix
ε > 0, then there exists xε such that for all x ≥ xε∣∣∣∣E[fϕ(x+ St)

]
− fϕ(x) +

1

ESt

∫
gϕ(y)dy

∣∣∣∣ < ε and

∣∣∣∣E[fϕ(x+ St)]

fϕ(x)
− 1

∣∣∣∣ < ε.

Therefore fϕ(x) ≥ |
∫
gϕ(y)dy|/(εESt) − 1. Since by Lemma 4.7,

∫ x
−∞ fϕ(y)dy < C(1 + x), for all

x > xε > 0

C(1 + x) ≥
∫ x

xε

fϕ(y)dy ≥

(∣∣∫ gϕ(y)dy∣∣
εESt

− 1

)
(x− xε).

That is ∣∣∣∣ ∫
R
gϕ(y)dy

∣∣∣∣ ≤ εESt
(
lim inf
x→+∞

C(1 + x)

x− xε
+ 1

)
= εESt(C + 1).

Letting ε↘ 0, we conclude.
In view of Corollary 3.11, the quotient fϕ(x + y)/fϕ(x) is uniformly dominated by 1 + St for

x > 0 and 0 < y < St, thus

lim
x→∞

∫ St

0

fϕ(x+ y)

fϕ(x)
dy =

∫ St

0

1 dy = St. P a.s.

By Fatou’s lemma

(4.8) lim inf
x→∞

E

[∫ St

0

fϕ(x+ y)

fϕ(x)
dy

]
≥ E

[
lim inf
x→∞

∫ St

0

fϕ(x+ y)

fϕ(x)
dy

]
= E[St]

Therefore by Proposition 4.1

lim sup
x→∞

fϕ(x) = lim sup
x→∞

E
[∫ St

0
fϕ(x+ y)dy

]
E
[∫ St

0
fϕ(x+y)
fϕ(x)

dy
] ≤ 1

E[Sl]E[St]

∫
R
gϕ(x)xdx

In particular this proves that fϕ(x) is bounded above. Since by Corollary 3.11, we already know

that fϕ(x) is bounded below,
∫ St
0

fϕi (x+y)

fϕ(x)
dy < CSt. This allow to use the dominated convergence

theorem instead of Fatou’s Lemma in (4.8) and to replace the inferior limit with the real limit and
the inequality with the equality. Thus we have

lim
x→∞

fϕ(x) = lim
x→∞

E
[∫ St

0
fϕ(x+ y)dy

]
E
[∫ St

0
fϕ(x+y)
fϕ(x)

dy
] =

1

E[Sl]E[St]

∫
R
gϕ(x)xdx =

1

σ2

∫
R
gϕ(x)xdx,

where σ2 =
∫
x2µ(dx) (see [14] for the proof that E[Sl]E[St] = σ2).
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To conclude take a nonzero nonnegative function Φ ∈ C1
c (0,+∞). We have proved that the

following limit exists

lim
z→+∞

δz−1 ∗ ν(Φ) = lim
x→+∞

fΦ(x) = C

and by Corollary 3.11 the constant C is strictly positive. The same corollary also implies that for
all ϕ ∈ Cc(0,+∞)

lim
z→+∞

δz−1 ∗ ν(ϕ) = lim
z→+∞

δz−1 ∗ ν(ϕ)
δz−1 ∗ ν(Φ)

lim
z→+∞

δz−1 ∗ ν(Φ) = C∫
R Φ(a)daa

∫
R
ϕ(a)

da

a
.

�

5. Uniqueness of the invariant measure

Proof of Theorem 1.9. Notice first that for any compact set K

lim
n→∞

1K(Xy
n)|Xy

n −Xy′

n | ≤ |y − y′| lim sup
n→∞

A1 . . . An1K(Xy
n)

= |y − y′| lim sup
n→∞

Xy
n1K(Xy

n)
Xyn

A1···An

≤ lim sup
n→∞

C(K)
Xyn

A1···An

.

Thus it is sufficient to prove that

lim
n→∞

Xy
n

A1 · · ·An
= +∞.

Notice that the sequence
Xyn

A1···An in nondecreasing. Indeed, since Ψn(X
y
n−1) ≥ AnX

y
n−1,

Xy
n

A1 · · ·An
=

Ψn(X
y
n−1)

A1 · · ·An
≥

Xy
n−1

A1 · · ·An−1
.

Therefore it is enough to justify that for arbitrary large fixed M > 0 the sequence is a.s. at least
once greater than M . Let

Uβ,γ := {Ψ ∈ F|Ψ[0,+∞) ⊆ [β,+∞) and A(Ψ) < γ}

and

Vα := {Ψ ∈ F|A(Ψ) < α} .
In view of our hypotheses there exist α < 1, β > 0, and γ such that these two sets have positive
probability. For a fixed x0, take N > 0 such that αN−1Mγx0 < β and let ψ0 = ψ1ψ2 with ψ1 ∈ Uβ,γ
and ψ2 ∈ V N−1

α . We claim that

(5.1)
ψ0(x)

A(ψ0)x
> M for all 0 ≤ x ≤ x0.

In fact

ψ0(x) = ψ1(ψ2(x)) ≥ β > M(γαN−1x0) > MA(ψ1)A(ψ2)x > MA(ψ0)x.

Observe that since Xy
n is recurrent, there exists x0 > 1 such that P[0 ≤ Xy

n < x0 i.o.] = 1 for
every y ≥ 0. Let us fix y, x0 and define a sequence Tk of hitting times of [0, x0]

T0 = 0,

Tk = inf
{
n > Tk−1 +N : Xy

n < x0
}
.
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By recurrence, all Tk are almost surely finite. Let Ψji := Ψj ◦ · · · ◦Ψi+1, then {ΨTk+NTk
} is a sequence

of i.i.d. random transformations distributed as µN . Since µN (Uβ,γV
N−1
α ) > 0 there exists almost

surely k0 such that Ψ
Tk0+N

Tk0
∈ Uβ,γV

N−1
α . Then, by (5.1), we have:

Xy
Tk0+N

A1 · · ·ATk0+N
=

Ψ
Tk0+N

Tk0
(Xy

Tk0
)

A1 · · ·ATk0+N
≥

Ψ
Tk0+N

Tk0
(Xy

Tk0
)x0

ATk0+1 · · ·ATk0+NX
y
Tk0

> M.

�

6. Examples

In this section we present some of the more significant classes of stochastic dynamical system to
which the results of the previous sections apply.

6.1. The random difference equation. The first example is naturally the SDS induced by ran-
dom affinities, that is Ψn(x) = Anx+Bn, for a random pair (Bn, An) ∈ R×R∗

+. Then X
x
n is given by

formula (1.7). This process is called the random difference equation or the affine recursion. It is well
known that under the assumptions of Theorem 1.3 this process is recurrent and locally contractive,
thus it possesses a unique invariant Radon measure ν, see [2]. Behavior of this measure at infinity
was studied previously in [8, 6, 7] under a number of additional strong hypotheses. Theorem 1.3
provides an optimal result, in the sense that the hypotheses implying existence and uniqueness of
the invariant measure, are sufficient also to deduce that this measure must behave at infinity like
Cdx
x .

6.2. Stochastic recursions with unique invariant measure. Our results can also be applied
to a more general class of stochastic recursions that behave at infinity as Ax (i.e. Φ(x) ∼ Ax for
large x). In the contracting case (E[logA] < 0) those recursions were studied by Goldie [15] (see
also Mirek [21], who described this class of recursions in general settings, including more examples).
Just to give some concrete examples let us mention that our results are valid (under rather obvious
and easy to formulate assumptions) for the following examples

• Ψ1,n(x) = max{Anx,Bn}+ Cn, for An, Bn, Cn > 0.

• Ψ2,n(x) =
√
A2
nx

2 +Bnx+ Cn, for An, Bn, Cn > 0 and ∆ = B2 − 4A2C ≤ 0

In both cases above the mappings Ψi,n are Lipschitz with the Lipschitz coefficient equal to A. This

is obvious for the first example. For the second one, denote x0 = − B
2A2 , D = − ∆

4A2 . Observe that

since Ψ2,n(x) =
√
A2(x− x0)2 +D, its derivative

Ψ′
2,n(x) =

A2(x− x0)√
A2(x− x0)2 +D

= A
1√

1 + D
A2(x−x0)2

↗ A

is an increasing function that tends to A. Hence, under appropriate moment assumptions, the SDS
on R+ generated by the random functions defined above satisfies assumptions of both Theorem
1.3 and Theorem 1.9. Therefore the corresponding random process possesses a unique invariant
measure, which behaves at infinity like Cdx

x .

If we do not suppose ∆ = B2 − 4A2C ≤ 0, then Ψ2,n are still asymptotically linear functions to
which Theorem 1.3 applies, but we cannot prove uniqueness of an invariant measure.
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6.3. Random automorphisms of the interval [0, 1]. SDS’s acting on the real line after con-
jugating by an appropriate function can be seen as random automorphisms of the interval [0, 1]
fixing the end points. Our key property (AL) is translated in this setting into requiring that the
automorphisms ”reflect” at the same way in 0 and in 1, in the sense that the derivative in these two
points has to be the same. The B term is then related to the term of order two at these end points
(or order 2− α, if we conjugate a SDS that satisfy (ALα)). More precisely

Corollary 6.1. Consider a SDS on [0, 1] defined by random functions ϕ ∈ C([0, 1]) fixing 0 and 1,
differentiable at the extremities of the interval and such that

ϕ′(0) = ϕ′(1) =: aϕ.

Let

β0
1 = inf

u∈[0,1/2]
(1− ϕ(u)) > 0, β0

2 = inf
u∈[0,1/2]

ϕ(u)

u
> 0, β0

3 = sup
u∈[0,1/2]

∣∣∣∣ϕ(u)− aϕu

u2

∣∣∣∣ <∞.

β1
1 = inf

u∈[1/2,1]
ϕ(u) > 0, β1

2 = inf
u∈[1/2,1]

1− ϕ(u)

1− u
> 0, β1

3 = sup
u∈[1/2,1]

∣∣∣∣ϕ(u)− 1− aϕ(u− 1)

(u− 1)2

∣∣∣∣ <∞.

Suppose that E
[
| log aϕ|2+ε

]
<∞, E

[
| log βik|2+ε

]
<∞, for some ε > 0, all i, k, and that E[log aϕ] =

0. Then the SDS on [0, 1] is conjugated to an asymptotically linear SDS on R that satisfy the
hypotheses of Theorem 1.3. Therefore there exists at least one invariant Radon measure ν̃ on (0, 1)
and for every such a measure ν̃, which charges a neighborhood of 0, there exists a strictly positive
constant C such that for all 0 < a < b < 1

lim
z→+∞

ν̃(a/z, b/z) = C log b/a

Proof. Let

r(u) = − 1

u
+

1

1− u
.

be a diffeomorphism of (0, 1) onto R. In the technical Lemma A.4, whose proof is postponed to the
Appendix A, we prove that the conjugated function Ψϕ = r ◦ϕ ◦ r−1 satisfy (AL) for A(Ψϕ) = 1/aϕ
and

B(Ψϕ) < Cr

(
(1 + aϕ + β0

3)

aϕβ0
2

+
1

β0
1

+
(1 + aϕ + β1

3)

aϕβ1
2

+
1

β1
1

)
,

where Cr depends only on the function r. Thus, under the hypotheses of the corollary, the conjugated
SDS satisfies the assumptions of our main theorem.

Let µ̃ be the law of ϕ and µ = r ∗ µ̃ ∗ r−1 be the law of the conjugated SDS on R. Then ν is a
µ-invariant Radon measure on R if and only if ν̃ = r−1 ∗ ν is a µ̃-invariant Radon measure on (0, 1).
Then by Theorem 1.3 and since |r(u) + 1/u| < 2 for 0 < u < 1/2,∣∣∣∣ν̃(az , bz)− ν

(
− z

a
,−z

b

)∣∣∣∣ =

∣∣∣∣ν(r(az), r( bz))− ν
(
− z

a
,−z

b

)∣∣∣∣
≤ ν

(
− z

a
− 2,−z

a
+ 2
)
+ ν
(
− z

b
− 2,−z

b
+ 2
)
→ 0

for z → +∞. Thus

lim
z→+∞

ν̃
(
a/z, b/z

)
= lim
z→+∞

ν
(
− z

a
,−z

b

)
= C log b/a.

�
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6.4. Additive Markov processes and power functions. When an asymptotically linear SDS
is conjugated by a homeomorphism of the real line which behaves as the exponential at infinity, it
is transformed into a SDS that is asymptotically a translation or, by the reversed conjugation, a
power function.

More precisely consider a SDS generated by functions ϕ such that

(6.2) |ϕ(x)− x+ sign(x)uϕ| ≤ vϕe
−|x|

for some constants uϕ and vϕ. This class contains mappings of [0,∞) that are equal to translations
outside a bounded set, that is a Markov additive process as defined in Aldous [1, sections C11, C33].
Let s be a continuous bijection of R such that

s(x) = ex for x > 1 and s(x) = −e−x for x < −1.

Then the SDS generated by ψϕ(x) = s◦ϕ◦s−1 satisfies hypothesis (AL) with A(ψϕ) = e−uϕ . Hence,
under moment conditions that can be obtained with standard calculations, if E(uϕ) = 0 there exists
an invariant measure which behaves at infinity as the Lebesgue measure dx, i.e.

lim
z→+∞

ν̃(α+ z, β + z) = C(β − α),

for every measure of unbounded support, some constant C > 0 and all β > α.
In a similar way a SDS generated by function ϕ such that

|x|a · sign(x)e−b1 log(|x|+2)α ≤ ϕ(x) ≤ |x|a · sign(x)e+b1 log(|x|+2)α ,

for some α is associated to an α-asymptotically linear system by the reverse conjugation ψϕ(x) =
s−1 ◦ ϕ ◦ s and A(ψϕ) = a. Thus, if E(log a) = 0 and some moments are finite, for any invariant
measure ν̃, whose support in unbounded on the positive half-line, there exists a strictly positive
constant C such that for all 1 < α < β

lim
z→+∞

ν̃(αz, βz) = C log
log β

logα
.

6.5. Population of Galton-Watson tree with random reproduction law. Consider the fol-
lowing model of reproduction of a population. Let {ρω|ω ∈ Ω} be the set of probability measures
on the set of natural numbers N and λ(dω) be a probability law on Ω. At each generation a law
of reproduction ρω is chosen according to λ(dω) and each individual j is replaced by rj offsprings,
rj chosen according to the law ρω and independently from the other individuals. To prevent the
extinction of the population a random immigration iω it added to the population. More formally,
if the population consists of x ∈ N individuals, the population of the following generation is

ψω,r(x) = iω +
x∑
j=1

rj ,

where the reproduction law ω ∈ Ω is chosen according to λ(dω), r = {rj}j are i.i.d of law ρω and iω
is a random variable. If every generation is independent from the previous one then the evolution of
the population is a SDS on R = N of law µ(dψ) = ⊗ρω(dr)λ(dω). If Er21 < ∞, the law of iterated
logarithm proves that the ψω,r are µ-almost surely α-asymptotically linear with an error of order
xα for all α > 1/2 and

A(ψ) = Aω =

∫
N
rρω(dr) = average number of offspring per individual for ρω .

Unlike the classical Galton-Watson process, in our context Aω is not constant, but varies from
one generation to another. The key parameter, that decides whether the system is recurrent, is
E(logAω) =

∫
logAωλ(dω). To apply Theorem 1.3, we need to control moments of B(ψ). The
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details are stated in the following lemma. Our estimates are fairly rough and the hypotheses could
be probably improved, but this go beyond the purpose of our paper.

Lemma 6.3. Suppose E(r41) =
∫
Ω

∫
N r

4
1ρω(dr)λ(dω) <∞. Let α > 3/4 and

B(ψ) = Bω,r = sup
x∈N

|ψω,r(x)−Aωx|
xα + 1

,

then there exists a finite constant Cα that only depends on α such that

E((log+B(ψ))2+ϵ) ≤ Cα
(
1 + E((log+ iω)2+ϵ) + E(r41)

)
Proof. Observe first

|ψω,r(x)−Aωx|
xα + 1

≤ iω +

∣∣∑x
j=1(rj −Aω)

∣∣
xα + 1

.

Thus

(log+B(ψ))2+ϵ ≤ C

(
(C + log+ iω)

2+ϵ + sup
x∈N

(
log+

∣∣∑x
j=1(rj −Aω)

∣∣
xα + 1

)2+ϵ)
Let yj := rj − Aω be centered random variables. For a fixed reproduction law ω denote by Pω the
quenched probability. Since under Pω the variables yj are independent, Eω(yj1yj2yj3yj4) = 0 if there
exists an index jk that is different from all the others. Then standard calculus shows that

Eω
[ x∑
j=1

yj

]4
=

x∑
j1,j2,j3,j4=1

Eω(yj1yj2yj3yj4)

= xEω(y41) + 3x(x− 1)
(
Eω[y21 ]

)2 ≤ 4x2Eω(y41)

Finally, since α > 3/4, we have

E
(
sup
x∈N

(
log+

∣∣∑x
j=1(rj −Aω)

∣∣
xα + 1

)2+ϵ)
≤ CE

(∑
x∈N

(∣∣∑x
j=1 yj

∣∣
xα + 1

)4)

= CE
(∑
x∈N

Eω
[∣∣∑x

j=1 yj
∣∣4]

(xα + 1)4

)
≤ CE

(∑
x∈N

4x2Eω(y41)
(xα + 1)4

)
= C

∑
x∈N

4x2E(y41)
(xα + 1)4

<∞.

�

6.6. Reflected random walk in critical case. The reflected random walk

Y xn =
∣∣Y xn−1 − un

∣∣,
is an example of an asymptotic translation for which (6.2) holds. Thus we can apply our main
Theorem 1.3. However, in this case the same results hold under weaker hypotheses and a much
more direct proof. We give here the proof of Theorem 1.11, stated in the introduction.

Proof of Theorem 1.11. Define the upward ladder times of Sn =
∑n
i=1 ui:

t0 = 0,

tk+1 = inf{n > tk : Sn ≥ Stk},
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and put uk = Stk − Stk−1
. Then {uk} is a sequence of i.i.d. random variables and every uk is equal

in distribution to St1 . We define reflected random walk for {uk}:

Y
x

0 = x,

Y
x

k+1 =
∣∣Y xk − uk+1

∣∣,
then Y

x

k = Y xtk . In view of the result of Chow and Lai [9], E(uk)
1
2 < ∞ and this is sufficient for

existence of a unique invariant probability measure νt of the process {Y
x

k} (see [22] for more details).
Let us define the measure

ν0(f) =

∫
R+

E
[ t−1∑
n=0

f(Y xn )

]
νt(dx).

Notice first that this is a Radon measure. Indeed, define li = inf{n > li−1 : Sn < Sli−1
}. Since

E(u−1 )2 <∞, −∞ < ESl < 0 (see [9]). Take any f ∈ CC(R+), then by the duality Lemma [14]

(6.4) ν0(f) =

∫
R+

E
[ t−1∑
n=0

f(x− Sn)

]
νt(dx) =

∫
R+

E
[ ∞∑
n=0

f(x− Sln)

]
νt(dx).

By the renewal theorem

E
[ ∞∑
n=0

f(x− Sln)

]
≤ CE

[
#n : α < x− Sln < β

]
≤ C|β − α|,

therefore ν0(f) is finite and thus ν0 is a Radon measure
Next, since µt ∗ νt = νt, we have

µ ∗ ν0(f) =

∫
R+

∫
R
E
[ t−1∑
n=0

f(Y |x−y|
n )

]
µ(dy)νt(dx)

=

∫
R+

E
[ t∑
n=1

f(Y xn )

]
νt(dx) = ν0(f).

Therefore ν0 is a µ invariant Radon measure, so ν0 = Cν and without any loss of generality we may
assume ν = ν0.

Finally, by (6.4), the Lebesgue theorem and the renewal theorem

lim
z→∞

∫
R+

f(u− z)ν(du) = lim
z→∞

∫
R+

E
[ ∞∑
n=0

f(x− Sln − z)

]
νt(dx) =

1

−ESl

∫
R+

f(x)dx

and the Theorem is proved. �

Appendix A. Proofs of technical results

In this Appendix we give the postponed proofs of the technical results stated in Lemma 2.1,
Proposition 4.1, Lemma 4.7. At the end we formulate and prove Lemma A.4, which is used in
Section 6.3.

Proof of Lemma 2.1. We will prove the result only for positive x, since for negative values of x the
same argument is valid just by conjugating with the map x 7→ −x.
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Suppose first x ≥ 1. We have

r
(
Aαr

−1(x)−Bα(1 + |r−1(x)|α)
)

≤ ψr(x) ≤ r
(
Aαr

−1(x) +Bα(1 + |r−1(x)|α)
)

r
(
Aαx

1
1−α −Bα(1 + x

α
1−α )

)
≤ ψr(x) ≤ r

(
Aαx

1
1−α +Bα(1 + x

α
1−α )

)
r
(
Aαx

1
1−α −Bαcαx

α
1−α

)
≤ ψr(x) ≤ r

(
Aαx

1
1−α +Bαcαx

α
1−α

)
where cα only depends on α. Suppose further x > cαBα/Aα, then Aαx

1
1−α −Bαcαx

α
1−α > 0 and(

Aαx
1

1−α −Bαcαx
α

1−α

)1−α
≤ ψr(x) ≤

(
Aαx

1
1−α +Bαcαx

α
1−α

)1−α
A1−α
α x

1−α
1−α −A−α

α x
−α
1−αBαcαx

α
1−α ≤ ψr(x) ≤ A1−α

α x
1−α
1−α + (1− α)A−α

α x
−α
1−αBαcαx

α
1−α

A1−α
α x−A−α

α Bαcα ≤ ψr(x) ≤ A1−α
α x+ (1− α)A−α

α Bαcα

since for x0 > 0 and h > 0, by concavity (x0 + h)1−α ≤ x1−α0 + (1 − α)x−α0 h and (x0 − h)1−α ≥
x1−α0 − x−α0 h. Hence we proved the lemma for x > max{1, cαBα/Aα} Now, for x < 1

r
(
Aαx

1
1−α −Bα(1 + x

α
1−α )

)
≤ ψr(x) ≤ r

(
Aαx

1
1−α +Bα(1 + x

α
1−α )

)
− (2Bα)

1−α ≤ ψr(x) ≤ (Aα + 2Bα)
1−α

and for x ≤ cαBα/Aα.

−

(
Bα

(
1 +

(
cαBα
Aα

) α
1−α
))1−α

≤ ψr(x) ≤

(
Aα

(
cαBα
Aα

) 1
1−α

+Bα

(
1 +

(
cαBα
Aα

) α
1−α
)) α

1−α

Hence the lemma follows. �

Proof of Proposition 4.1. Step 1. Let tk and lk be the stopping times defined in (2.7). Let Ul be
the potential of the random walk Slk and let

R(x) :=
∞∑
k=0

E
[
g(x+ Slk)

]
= Ul(δx ∗R g).

Since the function g is directly Riemann integrable and −∞ < ESl < 0, the function R is well
defined and finite for every x. Notice also that by the duality lemma [14]

(A.1) R(x) =
∞∑
k=0

E
[
g(x+ Slk)

]
= E

[ t−1∑
k=0

g(x+ Sk)
]
.

Step 2. We claim that

(A.2) E
[
f(x+ St)

]
− f(x) = E

[ t−1∑
k=0

g(x+ Sk)

]
= R(x).

Indeed, the process f(x+ Sn)−
∑n−1
k=0 g(x+ Sk) forms a martingale (for this purpose one just has

to iterate the Poisson equation (4.3)). Then for any fixed n, T ∧ n is a bounded stopping time,
therefore by the optional stopping time theorem we have

f(x) = E
[
f(x+ St∧n)

]
− E

[ (t∧n)−1∑
k=0

g(x+ Sk)

]
.
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To justify that we can let n tend to infinity and change the order of the limit and the expected value
to obtain (A.2) observe that

E
[
f(x+ St∧n

)
] ≤ CE

[
1 + (x+ St∧n)

+
]
≤ CE

[
1 + (x+ St)

+
]
<∞.

The second term is uniformly dominated in n by

E
[ t−1∑
k=0

|g|(x+ Sk)
]
=

∞∑
k=0

E
[
|g|(x+ Slk)

]
<∞,

therefore converges to R(x) when n goes to infinity.
This proves that

E
[
f(x+ St)

]
− f(x) = R(x) = Ul(δx ∗R g)

and by the renewal theorem we obtain (4.4).
Step 3. Let

G(x) :=

∫ x

−∞
g(z)dz.

If we suppose
∫
g(x)dx = 0 then

G(x) =

∫ +∞

−∞
g(z)dz −

∫ ∞

x

g(z)dz = −
∫ +∞

x

g(z)dz.

Thus

|G(x)| ≤
∫ x

−∞
|g(z)|dz 1(−∞,0](x) +

∫ ∞

x

|g(z)|dz 1[0,+∞)(x) =: G1(x) +G2(x),

and G is directly Riemann integrable since functions Gi are monotone and integrable on their
support: ∫ 0

−∞
G1(x)dx =

∫ +∞

−∞

∫ +∞

−∞
1[z<x<0]|g(z)|dx dz =

∫ 0

−∞
|zg(z)| dz <∞∫ +∞

0

G2(x)dx =

∫ +∞

−∞

∫ +∞

−∞
1[z>x>0]|g(z)|dx dz =

∫ +∞

0

|zg(z)| dz <∞.

Furthermore∫ ∞

−∞
G(x)dx =

∫ +∞

−∞

∫ +∞

−∞
1[z<x<0]g(z)dx dz −

∫ +∞

−∞

∫ +∞

−∞
1[z>x>0]g(z)dx dz

= −
∫ +∞

−∞
zg(z)dz.

Step 4. By the renewal theory, Ul(δx ∗R G) is well defined and by Fubini’s theorem∫ x

−∞
R(z)dz =

∫ 0

−∞

∫ x

−∞
g(z + u)dzUl(du) =

∫ 0

−∞

∫ x+u

−∞
g(z)dzUl(du) = Ul(δx ∗R G).

On the other hand∫ x

−∞
R(z)dz = E

[ ∫ x

−∞
f(z + St)dz −

∫ x

−∞
f(z)dz

]
= E

[ ∫ x+St

x

f(z)dz

]
.

In fact the two integrals above are finite because by our hypotheses∫ x

−∞
E[f(y + St)]dy = E

[ ∫ x+St

−∞
f(y)dy

]
≤ CE[1 + (x+ St)

+]
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and ESt <∞ since µ has moment of order 2 + ϵ, see [9]. Thus we proved

E
[ ∫ x+St

x

f(z)dz

]
= δx ∗R Ul(G)

and we can conclude using again the renewal theorem. �

Proof of Lemma 4.7. Step 1. Let 0 < γ < 1, then the set of v > 0 such that the function
u 7→ (u − v)−γ is ν-integrable on (v,+∞) is of full Lebesgue measure. In fact for any interval
[a, b] ⊂ (0,∞):∫ b

a

(∫ ∞

v

(u− v)−γν(du)

)
dv =

∫ 2b

a

(∫ u∧b

a

(u− v)−γdv

)
ν(du) +

∫ ∞

2b

(∫ u∧b

a

(u− v)−γdv

)
ν(du)

≤
∫ 2b

a

(∫ 2b−a

0

w−γdw

)
ν(du) +

∫ ∞

2b

(∫ u−a

u−b
w−γdw

)
ν(du)

= C +

∫ ∞

2b

(u− b)−γ(b− a)ν(du) <∞

Take w0 such that
∫∞
w0

(u− w0)
−γν(du) <∞ then

fϕ(x) =

∫ ∞

w0

ϕ(e−x(u− w0))ν(du) ≤ C

∫ ∞

w0

eγx(u− w0)
−γν(du) ≤ Ceγx,

this gives good estimates of fϕ for negative x’s.
Step 2. Let supp(ϕ) ⊂ [m,M ]. By Proposition 3.1 the tail of ν is at most logarithmic, therefore

for x ≥ 0,

fϕ(x) ≤ ν([exm+ w0, e
xM + w0]) ≤ ν([exm, ex(M + w0)]) ≤ C(1 + x).

and ∫ x

−∞
fϕ(y)dy ≤ C

∫
R

∫ ∞

−∞
1[y<x]1[m,M ](e

−y(u− w0))dyν(du)

≤ C

∫
R
1[w0<u≤ex(M+w0)] log

M

m
ν(du) ≤ C(1 + x+)

This proves (4.2).
Step 3. We need to justify that gϕ = µ ∗ fϕ − fϕ is directly Riemann integrable and moreover∫

R |xg(x)|dx < ∞. We recall first that, since g is continuous, to prove that it is directly Riemann
integrable is sufficient to show that |g| is dominated on (−∞, 0] (resp. on [0,+∞) ) by an integrable
nondecreasing (resp. nonincreasing) function. For x < 0 :

µ ∗ fϕ(x) =

∫ +∞

−∞
fϕ(x+ y)µ(dy)

=

∫ −x/2

−∞
Ceγ(x+y)µ(dy) +

∫ +∞

−x/2
K(1 + (x+ y)+)µ(dy)

≤ Ceγ(x/2) +

∫ ∞

−x/2
K(1 + |y|)µ(dy) = Ceγ(x/2) +

1

|x|2+ε

∫ ∞

−x/2
K(1 + |y|)|y|1+εµ(dy)

≤ C

1 + |x|1+ε
,
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since µ has a moment of order 2 + ε. Thus gϕ1(−∞,0] is directly Riemann integrable. Furthermore∫ 0

−∞
|x|µ ∗ fϕ(x)dx =

∫ +∞

−∞

∫ 0

−∞
|x|fϕ(x+ y)dxµ(dy)

=

∫ +∞

−∞

∫ y

−∞
|x− y|fϕ(x)dxµ(dy)

=

∫ +∞

−∞

(∫ 0

−∞
|x− y|fϕ(x)dx+

∫ y+

0

|x− y|fϕ(x)dx

)
µ(dy)

≤
∫ +∞

−∞

(
C

∫ 0

−∞
|x− y|eγxdx+ 2|y|

∫ y+

0

fϕ(x)dx

)
µ(dy)

≤ C

∫ +∞

−∞
(1 + |y|+ |y|2)µ(dy) <∞

Step 4. To check that gϕ is directly Riemann integrable and |xgϕ(x)| is integrable for positive x
we show that:

∞∑
n=0

sup
n≤x<n+1

|xgϕ(x)| <∞.

Applying µ0 invariance of ν0 and since A(ψ0) = A(ψ), we obtain

|g(x)| =
∣∣∣ ∫ ∫ ϕ

(
e−x(A(ψ)u)

)
− ϕ

(
e−x(ψ(u))

)
ν0(du)µ0(dψ)

∣∣∣
The function ϕ̃(x) = ϕ(ex) is a Lipschitz on R, hence:∣∣∣ϕ(e−x(A(ψ)u))− ϕ

(
e−xψ(u)

)∣∣∣ ≤ min
{
C
∣∣ log ψ(u)

A(ψ)u

∣∣, 2∥ϕ∥∞}
≤ min

{
C
∣∣ ψ(u)
A(ψ)u

− 1
∣∣, 2∥ϕ∥∞}

≤ min
{
C
∣∣ B(ψ)

A(ψ)u

∣∣, 2∥ϕ∥∞} =: ρ(
Au

B
)

where we use the convention that log z = −∞ for z ≤ 0 and ρ(y) := min{C
∣∣ 1
y

∣∣, 2∥ϕ∥∞}. Take now
0 ≤ n ≤ x < n+ 1

|x|
∣∣∣ϕ(e−x(Au))− ϕ

(
e−xψ(u)

)∣∣∣
≤ log+

Au+B

m
· ρ(Au

B
)
(
1
[log

ψ(u)
Me ≤n≤log

ψ(u)
m ]

+ 1[log Au
Me≤n≤log Aum ]

)
.

Thus

∞∑
n=0

sup
n≤x<n+1

|xgϕ(x)| ≤
∫ ∫ ∞∑

n=0

sup
n≤x<n+1

|x|
∣∣∣ϕ(e−x(Au))− ϕ

(
e−xψ(u)

)∣∣∣ν0(du)µ0(dψ)

≤
∫ ∫

log+
Au+B

m
· ρ(Au

B
)2 log

eM

m
ν0(du)µ0(dψ)

≤ 2 log
eM

m

∫ (∫ (
log+

1

m
+ log+B + log+(

Au

B
+ 1)

)
ρ(
Au

B
)ν0(du)

)
µ0(dψ)
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To estimate the last expression we use the fact that there exists a constant C such that for all
non-increasing functions h : [0,+∞) → [0,+∞) and all M > 0

(A.3)

∫
R
h
(
|u|/M

)
ν0(du) ≤ C(1 + log+M)

(
∥h∥∞ +

∫ +∞

1

h(z)(1 + log(z))
dz

z

)
.

Before we prove the last inequality, let us check how it implies the lemma. Since log+(z + 1)ρ(z) ≤
C/(1 + z)1/2 for z > 0, by (A.3), we have∫ (

log+
1

m
+ log+B + log+(

Au

B
+ 1)

)
ρ(
Au

B
)ν0(du)

≤ C(1 + log+(B/A))

(
(1 + log+B) +

∫ +∞

1

(
(1 + log+B)ρ(z) +

1

(1 + z)1/2

)
(1 + log+(z))

dz

z

)
≤ C

(
1 + (log+B)2 + log+B log+A

)
.

The last expression is µ0-integrable and we conclude.
Finally to prove (A.3) we write∫

R
h
(
|u|/M

)
ν0(du) ≤ ∥h∥∞ν0([−Me,Me]) +

∫
1[|u|>eM ]h

(
|u|/M

)
ν0(du)

≤ C(1 + log+M)∥h∥∞ +
∞∑
n=1

∫
1[en+1M≥|u|>enM ]ν0(du)h(e

n)

≤ C(1 + log+M)∥h∥∞ +

∞∑
n=1

(
log+(en+1M) + 1

)
h(en)

≤ C(1 + log+M)∥h∥∞ +

∞∑
n=1

∫ en

en−1

(
log+(ze2M) + 1

)
h(z)

dz

z

≤ C(1 + log+M)∥h∥∞ +

∫ ∞

1

(
log+(z) + log+M + 3

)
h(z)

dz

z
.

�

Lemma A.4. Let ϕ ∈ C([0, 1]) be a function fixing 0 and 1, derivable at 0 and 1 and such that
ϕ′(0) = ϕ′(1) =: aϕ. Suppose:

β0
1 = inf

u∈[0,1/2]
(1− ϕ(u)) > 0, β0

2 = inf
u∈[0,1/2]

ϕ(u)

u
> 0, β0

3 = sup
u∈[0,1/2]

∣∣∣∣ϕ(u)− aϕu

u2

∣∣∣∣ <∞.

β1
1 = inf

u∈[1/2,1]
ϕ(u) > 0, β1

2 = inf
u∈[1/2,1]

1− ϕ(u)

1− u
> 0, β1

3 = sup
u∈[1/2,1]

∣∣∣∣ϕ(u)− 1− aϕ(u− 1)

(u− 1)2

∣∣∣∣ <∞.

Consider the diffeomorphism of (0, 1) on R

r(u) = − 1

u
+

1

1− u
.

Then Ψϕ = r ◦ ϕ ◦ r−1 satisfy (AL) for A(Ψϕ) = 1/aϕ and

B(Ψϕ) < Cr

(
(1 + aϕ + β0

3)

aϕβ0
2

+
1

β0
1

+
(1 + aϕ + β1

3)

aϕβ1
2

+
1

β1
1

)
,

where Cr depends only on the function r.
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Proof. Since the function r satisfies r(u) = −r(1 − u) and our assumptions on ϕ near 0 and 1 are
symmetric, it is sufficient to prove the condition (AL) only for negative x. Since β0

3 < ∞, by the
Taylor expansion we have

(A.5) ϕ(u) = au+ ϵϕ(u) with |ϵϕ(u)| ≤ β0
3u

2 for u ≤ 1/2.

Moreover simple calculus shows that

(A.6) r−1(x) = − 1

x
+ ϵr−1(x) with ϵr−1(x) = O

(
1

x2

)
for x→ −∞

For x < 0 we write∣∣∣∣ xaϕ −Ψϕ(x)

∣∣∣∣ = ∣∣∣∣ xaϕ − r
(
ϕ
(
r−1(x)

))∣∣∣∣ ≤ ∣∣∣∣ xaϕ +
1

ϕ
(
r−1(x)

) ∣∣∣∣+ 1

1− ϕ
(
r−1(x)

)
Notice that for x < 0, r−1(x) ∈ (0, 1/2), therefore the second factor can be bounded by 1

β0
1
. So, we

need just to estimate the first term. We write

I(x) =

∣∣∣∣ xaϕ − 1

ϕ
(
r−1(x)

) ∣∣∣∣ = |ϕ(r−1(x))x− aϕ|
|aϕ · ϕ(r−1(x))|

Take M = −r(1/10), then for x ∈ [−M, 0] we have ϕ(r−1(x)) ≥ β0
2r

−1(x) ≥ β0
2/10 and hence

I(x) ≤ 10
M + aϕ
aϕβ0

2

.

Now we consider x < −M . Since there exists η such that xr−1(x) > η, by (A.5) and (A.6), we have

I(x) =

∣∣ϕ(r−1(x))x+ aϕ
∣∣ · |x|

aϕ · ϕ(r
−1(x))

r−1(x) · |xr−1(x)|
≤ 1

aϕβ0
2η

·
∣∣ϕ(r−1(x))x+ aϕ

∣∣|x|
=

1

aϕβ0
2η

∣∣aϕr−1(x)x+ εϕ(r
−1(x)) x+ aϕ

∣∣|x| = 1

aϕβ0
2η

∣∣aϕεr−1(x)x+ εϕ
(
r−1(x)

)
x
∣∣

≤
∣∣aϕεr−1(x)x

∣∣+ β0
3

∣∣ (r−1(x)
)2
x
∣∣

aϕβ0
2η

≤ Cr(aϕ + β0
3)

aϕβ0
2

.

�
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