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Abstract. With Qq,n the distribution of n minus the rank of a matrix
chosen uniformly the collection of all n×(n+m) matrices over the finite
field Fq of size q ≥ 2, and Qq the distributional limit of Qq,n as n→∞,
we apply Stein’s method to prove the total variation bound

1

8qn+m+1
≤ ||Qq,n −Qq||TV ≤

3

qn+m+1
.

In addition, we obtain similar sharp results for the rank distributions of
symmetric, symmetric with zero diagonal, skew symmetric, skew cen-
trosymmetric, and Hermitian matrices.

1. Introduction

We study the distribution of the rank for various ensembles of random
matrices over finite fields. To give a flavor of our results, let Mn be chosen
uniformly from all n× (n+m) matrices over the finite field Fq of size q ≥ 2.
Letting Qq,n = n − rank(Mn), it is known (page 38 of [3]) that for all k in
Un = {0, . . . , n},

(1) P (Qq,n = k) = pk,n, where

pk,n =
1

qk(m+k)

∏n+m
i=1 (1− 1/qi)

∏n
i=k+1(1− 1/qi)∏n−k

i=1 (1− 1/qi)
∏m+k
i=1 (1− 1/qi)

.

Clearly for any fixed k ∈ N0, the collection of non negative integers,

lim
n→∞

pk,n = pk where pk = pk =
1

qk(m+k)

∏∞
i=k+1(1− 1/qi)∏m+k
i=1 (1− 1/qi)

.(2)

For readability and notational agreement with the examples that follow,
we suppress m in the definition of these distributions. Throughout we also
adopt the convention that an empty product takes the value 1. One of our
main results, Theorem 1.1, provides sharp upper and lower bounds on the
total variation distance between Qq,n, the distribution of Qq,n in (1), and its
limit in (2), denoted Qq. Recall that the total variation distance between
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two probability distributions P1, P2 on a finite set S is given by

||P1 − P2||TV :=
1

2

∑
s∈S
|P1(s)− P2(s)| = max

A⊂S
|P1(A)− P2(A)|.(3)

Theorem 1.1. For q ≥ 2, n ≥ 1 and m ≥ 0,

(4)
1

8qn+m+1
≤ ||Qq,n −Qq||TV ≤

3

qn+m+1
.

The upper bound in Theorem 1.1 appears quite difficult to compute di-
rectly by substituting the expressions for the point probabilities given in (1)
and (2) into the defining expressions for the total variation distance in (3). In
particular, even when m = 0, n = 2, the pk,n are not monotonic in k. On the
other hand, use of Stein’s method [28], [11] makes for a quite tractable com-
putation. In Sections 4 through 7 we also apply our methods to ensembles
of random matrices with symmetry constraints, in particular, to symmetric,
symmetric with zero diagonal, skew symmetric, skew centrosymmetric, and
Hermitian matrices.

Next we give five pointers to the large literature on the rank distribution
of random matrices over finite fields, demonstrating that the subject is of
interest. First, one of the earliest systematic studies of ranks of random ma-
trices from the finite classical groups is due to Rudvalis and Shinoda [26],
[27]. They determine the rank distribution of random matrices from finite
classical groups, and relate distributions such as Qq of (2) to identities of
Euler. Second, ranks of random matrices from finite classical groups appear
in works on the “Cohen-Lenstra heuristics” of number theory; see [32] for the
finite general linear groups and [24] for the finite symplectic groups. Third,
the rank distribution of random matrices over finite fields is useful in coding
theory; see [4] and Chapter 15 of [23]. Fourth, the distribution of ranks of
uniformly chosen random matrices over finite fields has been used to test
random number generators [14], and there is interest in the rate of conver-
gence to Qq. Fifth, there is work on ranks of random matrices over finite
fields where the matrix entries are independent and identically distributed,
but not necessarily uniform. For example the paper [10] uses a combination
of Möbius inversion, finite Fourier transforms, and Poisson summation, to
find conditions on the distribution of matrix entries under which the proba-
bility of a matrix being invertible tends to p0 as n→∞. Further results in
this direction, including rank distributions of sparse matrices, can be found
in [5], [12], [13], [20]. It would be valuable (but challenging) to extend our
methods to these settings.

The organization of this paper is as follows. Section 2 provides some
general tools for our application of Stein’s method, and useful bounds on
products such as

∏
i(1− 1/qi). The development followed here is along the

lines of the “comparison of generators” method as in [18] and [19]. Section
3 treats the rank distribution of uniformly chosen n× (n+m) matrices over
a finite field, proving Theorem 1.1. Section 4 treats the rank distribution
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of random symmetric matrices over a finite field. Section 5 provides results
for the rank distribution of a uniformly chosen symmetric matrix with 0 di-
agonal; these are called “symplectic” matrices in Chapter 15 of [23], which
uses their rank distribution in the context of error correcting codes. The
same formulas for the rank distribution of symmetric matrices with zero
diagonal also apply to the rank distribution of random skew-symmetric ma-
trices, when q is odd. Section 6 treats the rank distribution of random skew
centrosymmetric matrices over finite fields, and Section 7 treats the rank
distribution of random Hermitian matrices over finite fields. The appendix
gives an algebraic proof, for the special case m = 0 of square matrices, of
the crucial fact (proved probabilistically in Section 3 in general) that if Qn
has distribution Qq,n of (1), then E(qQn) = 2− 1/qn.

In the interest of notational simplicity, in Sections 4 through 7, the specific
rank distributions of the n×nmatrices of interest, and their limits, will apply
only locally in the section or subsection that contains them, and will there
be consistently denoted by Qq,n and Qq, respectively.

2. Preliminaries

We begin with a general result for obtaining characterizations of discrete
integer distributions. We note that a version of Lemma 2.1 can be obtained
by replacing f(x) by f(x)b(x) in Theorem 2.1 of [21], followed by a reversal
of the interval [a, b], with similar remarks applying to the use of Proposition
2.1 and Corollary 2.1 of [18]. However, the following lemma and its short,
simple proof contain the precise conditions used throughout this work and
keep the paper self contained.

We say a nonempty subset I of the integers Z is an interval if a, b ∈ I with
a ≤ b then [a, b] ∩ Z ⊂ I. Let L(X) denote the distribution of a random
variable X.

Lemma 2.1. Let {rk, k ∈ I} be the distribution of a random variable Y
having support the integer interval I. Then if a(k) and b(k) are any functions
such that

a(k)rk−1 = b(k)rk for all k ∈ Z,(5)

then a random variable X having distribution L(Y ) satisfies

E[a(X + 1)f(X + 1)] = E[b(X)f(X)](6)

for all functions f : Z→ R for which the expectations in (6) exist.
Conversely, if a(k) and b(k) satisfy (5) and a(k) 6= 0 for all k ∈ I then

X has distribution L(Y ) whenever X has support I and satisfies (6) for all
functions f(x) = 1(x = k), k ∈ I.

When Y has support N0 then k ∈ Z in (5) may be replaced by k ∈ N0,
while if Y has support Un = {0, 1, . . . , n} for some n ∈ N0, then (5) may be
replaced by the condition that (5) holds for k ∈ Un and that a(n+ 1) = 0.
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Proof. First suppose that (5) holds and that L(X) = L(Y ). Then for all
k ∈ Z,

E(a(X + 1)1(X + 1 = k)) = a(k)P (X = k − 1)

= a(k)rk−1

= b(k)rk

= b(k)P (X = k)

= E(b(X)1(X = k)).

Hence (6) holds for f(x) = 1(x = k), k ∈ Z. By linearity, (6) holds for
all functions with finite support, and hence for all the claimed functions by
dominated convergence.

Conversely, if (6) holds for X with f(x) = 1(x = k) for k ∈ I then

a(k)P (X = k − 1) = b(k)P (X = k).

Hence, using that a(k) 6= 0, rk 6= 0 for k ∈ I and that X has the same
support as Y yields

P (X = k − 1)

P (X = k)
=
b(k)

a(k)
=
rk−1
rk

.

If I = {s, . . . , t}, then for j ∈ I

P (X = j)

P (X = t)
=

t∏
k=j+1

P (X = k − 1)

P (X = k)
=
rj
rt
.

Summing over j ∈ I yields P (X = t) = rt, and hence P (X = j) = rj ,
showing L(X) = L(Y ). One may argue similarly for the remaining cases
where I is an unbounded integer interval.

Lastly, when the support of Y is a subset of N0 then (5) holds trivially
for k 6∈ N0, and when Y has support Un = {0, 1, . . . , n} then (5) also holds
trivially for k ≥ n+ 2, and at k = n+ 1 when a(n+ 1) = 0. 2

For example, when Y has the Poisson distribution P(λ) with parameter
λ, then rk = e−λλk/k!, and we obtain

rk−1
rk

=
k

λ
for all k ∈ N0.

Setting b(k) = k and a(k) = λ yields the standard characterization of the
Poisson distribution [2],

E[λf(Y + 1)] = E[Y f(Y )].

Of particular interest here is the characterization (6) of Lemma 2.1 for
limiting distributions Qq with distribution P (Q = k) = pk having support
N0. In this case, when applying Lemma 2.1 we take a(k) > 0 for all k ∈ N0,
whence b(0) = 0 by (5), and let the values of a(k) and b(k) for k 6∈ N0

be arbitrary. For such functions a(k) and b(k) we consider solutions f to
recursive ‘Stein equations’ of the form

a(k + 1)f(k + 1)− b(k)f(k) = h(k)−Qqh for k ∈ N0,(7)
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where Qqh = Eh(Q).
Solving (7) for f(k), k ∈ N0 when the functions a(k), b(k) satisfy only

b(0) = 0 and a(k) > 0 one may take f(0) = 0 arbitrarily, and easily verify
that the remaining values are uniquely determined and given by

f(k + 1) =
k∑
j=0

(∏k
l=j+1 b(l)∏k+1
l=j+1 a(l)

)
[h(j)−Qqh] for k ∈ N0.(8)

In the case where the distribution {pk, k ∈ N0} with support N0 satisfies (5)
with pk replacing rk, the solution (8) simplifies to

f(k + 1) =
1

a(k + 1)pk

k∑
j=0

[h(j)−Qqh]pj(9)

=
E[(h(Q)−Qqh)1(Q ≤ k)]

a(k + 1)pk
for k ∈ N0.(10)

In particular, for hA(k) = 1(k ∈ A) with A ⊂ N0 and Uk = {0, 1, . . . , k},
as in Barbour et al. [2], Lemma 1.1.1, for k ∈ N0, as QqhA = P (Q ∈ A),
the numerator of (9) is given by

P (Q ∈ A ∩ Uk)− P (Q ∈ A)P (Q ∈ Uk).

Now replacing P (Q ∈ A ∩ Uk) and P (Q ∈ A) in the first and second term
respectively by

P (Q ∈ A ∩ Uk) [P (Q ∈ Uk) + P (Q ∈ U ck)] and

P (Q ∈ A ∩ Uk) + P (Q ∈ A ∩ U ck),

canceling the resulting common factor demonstrates that the solution fA
satisfies

fA(k + 1)

=
P (Q ∈ A ∩ Uk)P (Q ∈ U ck)− P (Q ∈ A ∩ U ck)P (Q ∈ Uk)

a(k + 1)pk
(11)

≤
P (Q ∈ A ∩ Uk)P (Q ∈ U ck)

a(k + 1)pk

≤
P (Q ∈ Uk)P (Q ∈ U ck)

a(k + 1)pk
,(12)

with equality when A = Uk.

Lemma 2.2. Let Q have distribution {pk, k ∈ N0} with pk > 0 for all
k ∈ N0, and let a(k), b(k) satisfy (5) with pk replacing rk, and for A ⊂ N0

let fA be the solution to (7) given by (11). Then

|fA(1)| ≤ P (Q ≥ 1)

a(1)
.



6 JASON FULMAN AND LARRY GOLDSTEIN

Proof. From (11) with k = 0 we obtain

fA(1) =
P (Q ∈ A ∩ U0)P (Q ≥ 1)− P (Q ∈ A ∩ U c0)P (Q = 0)

a(1)p0
.

If A 3 0 then

|fA(1)| =

∣∣∣∣P (Q = 0)P (Q ≥ 1)− P (Q ∈ A \ {0})P (Q = 0)

a(1)p0

∣∣∣∣
=

P (Q ≥ 1)− P (Q ∈ A \ {0})
a(1)

≤ P (Q ≥ 1)

a(1)
,

while if A 63 0 then again

|fA(1)| =
P (Q ∈ A)P (Q = 0)

a(1)p0
≤ P (Q ≥ 1)

a(1)
.

2

Lemma 2.3 collects some bounds that will be useful. We first state the
simple inequality

n∏
i=1

(1− ai) ≥ 1−
n∑
i=1

ai(13)

valid for ai ∈ [0, 1], i = 1, . . . , n, and easily shown by induction.

Lemma 2.3. Let q ≥ 2. Then
n∏
i=1

(1− 1/qi) ≥ 1− 1/q − 1/q2,

∏
i≥1

(1− 1/qi) ≥ 1− 1/q − 1/q2 + 1/q5 + 1/q7 − 1/q12 − 1/q15,

∏
i≥1
i odd

(1− 1/qi) ≥ 1− 1/q − 1/q3 and
∏
i≥3
i odd

(1− 1/qi) ≥ 1− 2/q3.

For 0 ≤ m+ 1 ≤ n,
n∏

i=m+1

(1− 1/qi) ≥ 1− 2/qm+1.

Proof. The first claim is Lemma 3.5 of [25], and arguing as there yields the
second claim. Thus∏

i≥1
i odd

(1− 1/qi) ≥
∏
i≥1(1− 1/qi)

1− 1/q2

≥ 1− 1/q − 1/q2 + 1/q5 + 1/q7 − 1/q12 − 1/q15

1− 1/q2

≥ 1− 1/q − 1/q3,
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where the last inequality holds since(
1− 1/q − 1/q2 + 1/q5 + 1/q7 − 1/q12 − 1/q15

)
− (1− 1/q2)(1− 1/q − 1/q3) =

q8 − q3 − 1

q15
,

which is positive for q ≥ 2. The next inequality now follows by applying the
one just shown to obtain∏

i≥3
i odd

(1− 1/qi) ≥ 1− 1

q3(1− 1/q)
,

and using that q ≥ 2.
For the final claim, using (13) yields

n∏
i=m+1

(
1− 1/qi

)
≥ 1−

n∑
i=m+1

1/qi

≥ 1−
∞∑

i=m+1

1/qi

= 1− 1

qm+1(1− 1/q)

≥ 1− 2

qm+1
.

�

Remark: Since
n∏
i=1

(1− 1/qi) ≥
∏
i≥1

(1− 1/qi),

it is easy to see that the second claim of Lemma 2.3 implies the first.

3. Uniform matrices over finite fields

In this section we study the rank distribution of matrices chosen uniformly
from those of dimension n×(n+m) with entries from the finite field Fq, and
take the distributions Qq and Qq,n as in (2) and (1) respectively; throughout
this section we take q ≥ 2. The goal of this section is to prove Theorem 1.1.

The following lemma is our first application of the characterizations pro-
vided by Lemma 2.1.

Lemma 3.1. If Q has the Qq distribution then

E [qf(Q+ 1)] = E
[
(qQ − 1)(qQ+m − 1)f(Q)

]
(14)

for all functions f for which these expectations exist.
If Qn has the Qq,n distribution then

E
[
q(1− q−n+Qn)f(Qn + 1)

]
= E

[
(qQn − 1)(qQn+m − 1)f(Qn)

]
(15)

for all functions f for which these expectations exist.
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Proof. From (2) we obtain

pk−1
pk

=
(qk − 1)(qm+k − 1)

q
for all k ∈ N0.

An application of Lemma 2.1 with a(k) = q and b(k) = (qk − 1)(qk+m − 1)
yields (14). Similarly, from (1) we obtain

pk−1,n
pk,n

=
(qk − 1)(qk+m − 1)

q(1− q−n+k−1)
for all k ∈ Un.(16)

An application of Lemma 2.1 with a(k) = q(1 − q−n+k−1), b(k) = (qk −
1)(qk+m − 1), noting a(n+ 1) = 0, yields (15). 2.

Here we calculate E(qQn) using the characterization (15). An algebraic
proof for the case m = 0 of Lemma 3.2 appears in the appendix. After
reading the first version of this paper, Dennis Stanton has shown us a proof
of this special case using the q-Chu-Vandermonde summation formula.

Lemma 3.2. If Qn has the Qq,n distribution on Un = {0, 1, · · · , n} given
by (1), then

E(qQn) = 1 + q−m − q−(n+m).

Proof. Applying the characterization (15) with the choice f(x) = qkx we
obtain

E[q(1− q−n+Qn)qk(Qn+1)] = E[(qQn − 1)(qQn+m − 1)qkQn ].

Letting ck = EqkQn yields the recursion

(17) qmck+2 = (1 + qm − q−n+k+1)ck+1 + (qk+1 − 1)ck.

Since Qq,n is a probability distribution, c0 = 1, and setting k = −1 in (17)
yields the claim. �

In the remainder of this section we consider the Stein equation (7), with

a(k) = q and b(k) = (qk − 1)(qk+m − 1),(18)

for the target distribution Qq, and for A ⊂ N0 we let fA denote the solution
(9) when h(k) = 1(k ∈ A).

For a function f : N0 → R, let

||f || = sup
k∈N0

|f(k)|.

Lemma 3.3. The solution fA satisfies

sup
A⊂N0

||fA|| ≤
2

qm+2
.

If m = 0, the bound can be improved to

sup
A⊂N0

||fA|| ≤
1

q2
+

1

q3
.
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Proof. As we may set fA(0) = 0 it suffices to consider fA(k+ 1) for k ∈ N0.
By Lemma 2.2, for all A ⊂ N0

|fA(1)| ≤ P (Q ≥ 1)

q

=
1− p0
q

=
1

q

1−
∏

i≥m+1

(1− 1

qi
)


≤ 2

qm+2
.

where we have applied the last part of Lemma 2.3. For m = 0 using the
first inequality of Lemma 2.3 in the last step gives that

|fA(1)| ≤ 1

q2
+

1

q3
.

Now consider the case k ≥ 1. By (12) and (18) we have

|fA(k + 1)| ≤
P (Q ∈ Uk)P (Q ∈ U ck)

qpk
,(19)

and by neglecting the term P (Q ∈ Uk) in (19) and applying (2) we obtain

|fA(k + 1)| ≤
P (Q ∈ U ck)

qpk

= qk(m+k)−1
∏m+k
i=1 (1− 1/qi)∏∞
i=k+1(1− 1/qi)

∞∑
l=k+1

1

ql(m+l)

∏∞
i=l+1(1− 1/qi)∏m+l
i=1 (1− 1/qi)

=
qk(m+k)−1∏∞

i=k+1(1− 1/qi)

∞∑
l=k+1

1

ql(m+l)

∏∞
i=l+1(1− 1/qi)∏m+l

i=m+k+1(1− 1/qi)

≤ qk(m+k)−1∏∞
i=k+1(1− 1/qi)

∏∞
i=m+k+1(1− 1/qi)

∞∑
l=k+1

1

ql(m+l)

≤ qk(m+k)−1

(1−
∑∞

j=k+1
1
qj

)(1−
∑∞

j=m+k+1
1
qj

)

∞∑
l=k+1

1

ql(m+l)

=
qk(m+k)−1

(1− q−(k+1)

1−q−1 )(1− q−(m+k+1)

1−q−1 )

∞∑
l=k+1

1

ql(m+l)

=
1

q(1− 1
qk(q−1))(1−

1
qm+k(q−1))

∞∑
l=1

1

q2lk+l2+lm

≤ 1

q(qk − 1
q−1)(qm+k − 1

q−1)

∞∑
l=1

1

ql2
,



10 JASON FULMAN AND LARRY GOLDSTEIN

where for the third inequality we have applied (13).
We claim that

4

(
qk − 1

q − 1

)(
qm+k − 1

q − 1

)
≥ qm+2.

As the left hand side is increasing in k ≥ 1, it suffices to prove the claim for
k = 1. In this case, the claim may be rewritten as

3qm+2 +
4

(q − 1)2
≥ 4

q − 1

(
q + qm+1

)
.

As q ≥ 2, the result is a consequence of the two easily verified inequalities

2qm+2 ≥ 4qm+1

q − 1
and qm+2 +

4

(q − 1)2
≥ 4q

q − 1
.

Hence, for k ≥ 1, using q ≥ 2, we obtain

|fA(k + 1)| ≤ 4

qm+3

∞∑
l=1

1

ql2
≤ 4

qm+3

(
1

2
+

∞∑
l=2

1

22+l

)
≤ 1

qm+2
+

1

qm+3
,

where the final inequality used that 2/qm+3 ≤ 1/qm+2, and that
∑∞

l=2
1

22+l
≤

1/4, thus completing the proof of the lemma. 2

We now present the proof of Theorem 1.1.

Proof. We first compute the lower bound on the total variation distance by
estimating the difference of the two distributions at k = 0. In particular, by
(3), (1) and (2),

||Qq,n −Qq||TV

≥ 1

2
[p0,n − p0]

=
1

2

 ∏
m+1≤i≤m+n

(1− 1/qi)−
∏

i≥m+1

(1− 1/qi)


≥ 1

2

[
(1− 1/qm+1) · · · (1− 1/qn+m)− (1− 1/qm+1) · · · (1− 1/qn+m+1)

]
=

1

2qn+m+1
(1− 1/qm+1) · · · (1− 1/qn+m)

≥ 1

2qn+m+1
(1− 1/q) · · · (1− 1/qn)

≥ 1

2qn+m+1
(1− 1/q − 1/q2)

≥ 1

8qn+m+1
.

The fourth inequality used Lemma 2.3, and the last that q ≥ 2.
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For the upper bound, with hA(k) = 1(k ∈ A) we obtain

|P (Qn ∈ A)− P (Q ∈ A)| = |E[hA(Qn)]−QqhA|
= |E[qfA(Qn + 1)− (qQn − 1)(qQn+m − 1)fA(Qn)]|

= |E[q−n+Qn+1fA(Qn + 1)]| ≤ ||fA||Eq−n+Qn+1,

where we have applied (15) in the third equality. Applying Lemmas 3.3 and
3.2 gives that for m ≥ 1,

||fA||Eq−n+Qn+1 ≤ 2

qm+2
q−n+1

(
1 + q−m − 1

qn+m

)

≤
2
(

1 + 1
q

)
qn+m+1

≤ 3

qn+m+1
.

For m = 0, applying Lemmas 3.3 and 3.2 gives that

||fA||Eq−n+Qn+1 ≤
(

1

q2
+

1

q3

)
q−n+1

(
2− 1

qn

)

≤
2
(

1 + 1
q

)
qn+1

≤ 3

qn+1
.

Now taking the supremum over all A ⊂ N0 and applying definition (3)
completes the proof. 2

Remark: When m = 0, the limit distribution Qq also arises in the study
of the dimension of the fixed space of a random element of GL(n, q). More
precisely, Rudvalis and Shinoda [26] prove that for k fixed, as n → ∞ the
probability that a random element of GL(n, q) has a k dimensional fixed
space tends to pk. See [17] for another proof.

4. Symmetric matrices over finite fields

Let S be the set of symmetric matrices with entries in the finite field Fq
(where q is a prime power). Clearly |S| = q(

n+1
2 ). The paper [7] determines

the rank distribution of a matrix chosen uniformly from S when q is odd,
and the paper [22] determines this distribution for q both odd and even,
given by (21).

Throughout this section q ≥ 2, and we let Qq be the distribution on N0

with mass function

pk =

∏
i≥1
i odd

(1− 1/qi)∏k
i=1(q

i − 1)
,(20)
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and for n ∈ N0 we let Qq,n be the distribution on Un = {0, . . . , n} with mass
function

(21) pk,n =
N(n, n− k)

q(
n+1
2 )

where

N(n, 2h) =
h∏
i=1

q2i

(q2i − 1)

2h−1∏
i=0

(qn−i − 1) for 2h ≤ n, and

N(n, 2h+ 1) =
h∏
i=1

q2i

(q2i − 1)

2h∏
i=0

(qn−i − 1) for 2h+ 1 ≤ n.

Theorem 4.1. If n is even, we have

.18

qn+1
≤ ||Qq,n −Qq||TV ≤

2.25

qn+1
.

If n is odd, we have

.18

qn+2
≤ ||Qq,n −Qq||TV ≤

2

qn+2
.

We again begin by using Lemma 2.1 to develop characterizations for the
two distributions of interest. For n ∈ N0 we let 1n = 1(n is even), the
indicator function that n is even.

Lemma 4.2. If Q has the Qq distribution then

E[f(Q+ 1)] = E[(qQ − 1)f(Q)]

for all functions f for which these expectations exist.
If Qn has the Qq,n distribution then

(22) E[(1− 1n−Qnq
−(n−Qn))f(Qn + 1)] = E[(qQn − 1)f(Qn)]

for all functions f for which these expectations exist.

Proof. By taking ratios in (20) we obtain

pk−1
pk

= qk − 1.

Setting a(k) = 1 and b(k) = qk − 1 applying Lemma 2.1 yields the first
result.

If n and k are of the same parity then n − k = 2h for some h, and we
have

pk−1,n
pk,n

=
N(n, n− k + 1)

N(n, n− k)
=
N(n, 2h+ 1)

N(n, 2h)
= qn−2h − 1 = qk − 1, k ∈ Un.

In this case we set a(k) = 1 and b(k) = qk − 1.
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If k and n are of opposite parity, then n− k = 2h+ 1 for some h and we
obtain

pk−1,n
pk,n

=
N(n, n− k + 1)

N(n, n− k)
=
N(n, 2(h+ 1))

N(n, 2h+ 1)
=

q2(h+1)

q2(h+1) − 1
(qn−2h−1 − 1)

=
qn−k+1

qn−k+1 − 1
(qk − 1) =

qk − 1

1− q−n+k−1
for k ∈ Un.

In this case we set a(k) = 1− q−n+k−1 and b(k) = qk − 1.
Writing a(k) = 1−1n−k+1q

−n+k−1 and b(k) = qk−1 combines both cases.
Noting that a(n+ 1) = 0 an application of Lemma 2.1 completes the proof.
2

Lemma 4.3. If Qn has distribution Qq,n then

E1n−Qnq
Qn = 1.

Proof. Setting f(x) = 1n−x in (22) yields

E[(1− 1n−Qnq
−(n−Qn))1n−Qn−1] = E[(qQn − 1)1n−Qn ].

Since 1n−Qn1n−Qn−1 = 0, we obtain

E[1n−Qn−1] = E[(qQn − 1)1n−Qn ],

and rearranging yields

E[1n−Qnq
Qn ] = E[1n−Qn−1] + E[1n−Qn ] = 1,

as claimed. 2

In the remainder of this section we consider the Stein equation (7) for the
target distribution Qq with

a(k) = 1 and b(k) = qk − 1,

and for A ⊂ N0 we let fA denote the solution (9) when h(k) = 1(k ∈ A).

Lemma 4.4. The solution fA satisfies

sup
A⊂N0

|fA(1)| ≤ 1

q
+

1

q3
and sup

A⊂N0,k≥2
|fA(k)| ≤ 2

q2
.

Proof. By Lemma 2.2, for all A ⊂ N0,

|fA(1)| ≤ P (Q ≥ 1)

= 1− p0

= 1−
∏

i≥1,i odd

(1− 1

qi
)

≤ 1

q
+

1

q3
,

where we applied the third inequality in Lemma 2.3.
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For k ≥ 1, using (12) and (20),

|fA(k + 1)| ≤
P (Q ∈ U ck)

pk

=
k∏
i=1

(qi − 1)
∞∑

l=k+1

1∏l
i=1(q

i − 1)

=
∞∑

l=k+1

1∏l
i=k+1(q

i − 1)

=
∞∑

l=k+1

1

q(l(l+1)−k(k+1))/2
∏l
i=k+1(1− q−i)

≤ 1∏∞
i=k+1(1− q−i)

∞∑
l=k+1

1

q(l(l+1)−k(k+1))/2

=
1∏∞

i=k+1(1− q−i)

(
1

qk+1
+

∞∑
l=2

1

qlk+l2/2+l/2

)

≤ 1∏∞
i=k+1(1− q−i)

(
1

qk+1
+

1

q2k

∞∑
l=2

1

ql(l+1)/2

)
.

In particular, for all k ≥ 1 we obtain

|fA(k + 1)| ≤ 1

q2
∏∞
i=2(1− q−i)

(
1 +

∞∑
l=2

1

ql(l+1)/2

)
,

and the proof is now completed by using the fact that for all q ≥ 2

1∏∞
i=2(1− q−i)

(
1 +

∞∑
l=2

1

ql(l+1)/2

)
≤ (1.732)(1.142) ≤ 2.

The upper bound on the first factor used the second assertion of Lemma
2.3. Indeed,∏

i≥2
(1− q−i) ≥ 1− 1/q − 1/q2 + 1/q5 + 1/q7 − 1/q12 − 1/q15

1− 1/q
.

The upper bound on the second factor used that

1 +
∞∑
l=2

1

ql(l+1)/2
≤ 1 + 1/23 + 1/26 + 1/210 +

∞∑
l=5

1

210+l

= 1 + 1/23 + 1/26 + 1/210 + 2/215 ≤ 1.142.

2

We now present the proof of Theorem 4.1.



STEIN’S METHOD AND THE RANK DISTRIBUTION 15

Proof. For the lower bound one computes from the formula for p0,n in (21),
in the case n = 2m is even, that

p0,n =
N(n, n)

q(
n+1
2 )

= (1− 1/q)(1− 1/q2) · · · (1− 1/qn)
m∏
i=1

1

1− q−2i

= (1− 1/q)(1− 1/q3) · · · (1− 1/qn−1).

Thus the total variation distance between Qq,n and Qq is at least

1

2
[p0,n − p0]

≥ 1

2

[
(1− 1

q
)(1− 1

q3
) · · · (1− 1

qn−1
)− (1− 1

q
)(1− 1

q3
) · · · (1− 1

qn+1
)

]
=

1

2qn+1
(1− 1/q)(1− 1/q3) · · · (1− 1/qn−1)

≥ 1

2qn+1
(1− 1/q − 1/q3)

≥ .18

qn+1
.

The second inequality used Lemma 2.3, and the final inequality that q ≥ 2.
When n = 2m+ 1 is odd, we obtain similarly that

1

2
[p0,n − p0]

≥ 1

2

[
(1− 1

q
)(1− 1

q3
) · · · (1− 1

qn
)− (1− 1

q
)(1− 1

q3
) · · · (1− 1

qn+2
)

]
=

1

2qn+2
(1− 1/q)(1− 1/q3) · · · (1− 1/qn)

≥ 1

2qn+2
(1− 1/q − 1/q3)

≥ .18

qn+2
.
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To prove the upper bound, for any A ⊂ N0 we have

|P (Qn ∈ A)− P (Q ∈ A)|
= |E[hA(Qn)]−QqhA|
= |E[fA(Qn + 1)− (qQn − 1)fA(Qn)]|
= |E[1n−Qnq

−(n−Qn)fA(Qn + 1)]|
≤ 1nq

−n|fA(1)|P (Qn = 0)

+|E[1n−Qnq
−(n−Qn)fA(Qn + 1)1(Qn ≥ 1)]|

≤ 1nq
−n|fA(1)|+ E[1n−Qnq

−(n−Qn)1(Qn ≥ 1)] sup
k≥2
|fA(k)|

≤ 1nq
−n|fA(1)|+ E[1n−Qnq

−(n−Qn)] sup
k≥2
|fA(k)|

= 1nq
−n|fA(1)|+ q−n sup

k≥2
|fA(k)|

≤ 1nq
−n
(

1

q
+

1

q3

)
+ q−n

(
2

q2

)
,

and the result easily follows. The last two steps used Lemmas 4.3 and 4.4,
respectively.

�

5. Symmetric matrices over finite fields with zero diagonal

This section treats the rank distribution (24), (27) of a random symmetric
matrix with zero diagonal over a finite field Fq, when q is a power of 2.
Such matrices were termed “symplectic” in [23], which studied their rank
distribution in the context of coding theory. We remark that by [8] and
elementary manipulations, the quantity N(n, 2h) defined in (24) below is
also equal to the number of n × n skew-symmetric matrices of rank 2h
(where now q is odd), so our results also apply in that context. We also
mention that the two limiting distributions studied in this section arise in
the work of the number theorist Swinnerton-Dyer on 2-Selmer groups [30].
We consider the cases where n is even and odd separately.

5.1. Case of n even. Throughout this subsection, let n = 2m, an even,
non-negative integer, and with q ≥ 2, let Qq be the distribution on N0 with
mass function

pk =
∏

i≥1,odd
(1− 1/qi)

q2k∏2k
i=1(q

i − 1)
.(23)

For n ∈ N0 let Qq,n be the distribution on Um = {0, . . . ,m} with mass
function

(24) pk,n =
N(n, n− 2k)

q(
n
2)

where N(n, 2h) =
h∏
i=1

q2i−2

q2i − 1

2h−1∏
i=0

(qn−i − 1).
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Theorem 5.1. We have that
.18

qn+1
≤ ||Qq,n −Qq||TV ≤

1.5

qn+1
.

We begin the proof of Theorem 5.1 by developing characterizations of the
two distributions of interest.

Lemma 5.2. If Q has the Qq distribution then

E[q2f(Q+ 1)] = E[(q2Q−1 − 1)(q2Q − 1)f(Q)]

for all functions f for which these expectations exist.
If Qn has the Qq,n distribution then

(25) E[(q2 − q−2(m−Qn−1))f(Qn + 1)] = E[(q2Qn−1 − 1)(q2Qn − 1)f(Qn)]

for all functions f for which these expectations exist.

Proof. By taking ratios in (23) we obtain that for k ∈ N0

pk−1
pk

=
(q2k−1 − 1)(q2k − 1)

q2
.

Setting a(k) = q2 and b(k) = (q2k−1−1)(q2k−1), applying Lemma 2.1 yields
the first result.

Similarly, the second claim can be shown using Lemma 2.1 and (24) to
yield

pk−1,n
pk,n

=
N(2m, 2(m− k + 1))

N(2m, 2(m− k))
=

(q2k−1 − 1)(q2k − 1)

q2 − q−2(m−k)
,

upon setting a(k) = q2 − q−2(m−k) and b(k) = (q2k−1 − 1)(q2k − 1), noting
that a(m+ 1) = 0. 2

Lemma 5.3. If Qn has distribution Qq,n then

Eq2Qn = q + 1− q−n+1.

Proof. For k any integer, letting f(x) = qkx in (25) yields

E[(q2 − q−2(m−Qn−1))qk(Qn+1)] = E[(q2Qn−1 − 1)(q2Qn − 1)qkQn ].

Setting ck = EqkQn , this identity yields

q−1ck+4 − (1 + q−1 − q−2m+2+k)ck+2 + (1− qk+2)ck = 0.

Substituting k = −2 and using that c0 = 1 we obtain

q−1c2 − (1 + q−1 − q−2m) = 0,

so that
c2 = q(1 + q−1 − q−2m) = q + 1− q−2m+1.

2

In the remainder of this subsection we consider the Stein equation (7) for
the target distribution Qq with

a(k) = q2 and b(k) = (q2k−1 − 1)(q2k − 1),
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and for A ⊂ N0 we let fA denote the solution (9) when h(k) = 1(k ∈ A).

Lemma 5.4. The function fA satisfies

sup
A⊂N0

|fA(1)| ≤ 1

q3
+

1

q5
and sup

A⊂N0,k≥2
|fA(k)| ≤ 1.31

q7
.

Proof. By Lemma 2.2, for all A ⊂ N0,

|fA(1)| ≤ P (Q ≥ 1)

q2

=
1− p0
q2

=
1

q2

1−
∏

i≥1,i odd

(1− 1

qi
)


≤ 1

q2

(
1

q
+

1

q3

)
=

1

q3
+

1

q5
,

where the second inequality used Lemma 2.3.
For k ≥ 1, by (12) and (23),

|fA(k + 1)| ≤
P (Q ∈ U ck)

q2pk

=

∏2k
i=1(q

i − 1)

q2k+2

∞∑
l=k+1

q2l∏2l
i=1(q

i − 1)

=
1

q2

∞∑
l=k+1

q2(l−k)∏2l
i=2k+1(q

i − 1)

=
1

q2

∞∑
l=k+1

ql−k

q2(l2−k2)
∏2l
i=2k+1(1− q−i)

≤ 1

q2
∏∞
i=2k+1(1− q−i)

∞∑
l=k+1

ql−k

q2(l2−k2)

=
1

q2
∏∞
i=2k+1(1− q−i)

(
1

q4k+1
+

∞∑
l=2

1

q2l2+4lk−l

)

≤ 1

q2
∏∞
i=2k+1(1− q−i)

(
1

q4k+1
+

1

q8k

∞∑
l=2

1

q2l2−l

)
Hence for all k ≥ 1 we obtain

|fA(k + 1)| ≤ 1

q7
∏∞
i=3(1− q−i)

(
1 +

1

q3

∞∑
l=2

1

q2l2−l

)
,
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and the proof is now completed using the fact that for all q ≥ 2

1∏∞
i=3(1− q−i)

(
1 +

1

q3

∞∑
l=2

1

q2l2−l

)
≤ (1.29854)(1.002) ≤ 1.31.

The upper bound on the first factor used part 2 of Lemma 2.3. The upper
bound on the second factor used that

1+
1

q3

∞∑
l=2

1

q2l2−l
≤ 1+

1

23

(
1

26
+

∞∑
l=3

1

212+l

)
= 1+

1

8

(
1

26
+

2

215

)
≤ 1.002.

2

We now present the proof of Theorem 5.1.

Proof. From the formula for p0,n, one has that

p0,n =
N(n, n)

q(
n
2)

= (1− 1/q)(1− 1/q3) · · · (1− 1/qn−1).

The argument in the proof of Theorem 4.1 now shows that total variation
distance between Qq,n and Qq is at least .18/qn+1.

For the upper bound, arguing as in the proof of Theorem 4.1 we obtain

|P (Qn ∈ A)− P (Q ∈ A)|
= |E[hA(Qn)]−QqhA|
= |E[q2fA(Qn + 1)− (q2Qn−1 − 1)(q2Qn − 1)fA(Qn)]|
= |E[q−2(m−Qn−1)fA(Qn + 1)]|
≤ |q−2(m−1)fA(1)|P (Qn = 0)

+|E[q−2(m−Qn−1)fA(Qn + 1)1(Qn ≥ 1)]|
≤ q−2(m−1)|fA(1)|+ E[q−2(m−Qn−1)1(Qn ≥ 1)] sup

k≥2
|fA(k)|

≤ q−2(m−1)|fA(1)|+ E[q−2(m−Qn−1)] sup
k≥2
|fA(k)|

= q−2(m−1)|fA(1)|+ q−2(m−1)(q + 1− q−2m+1) sup
k≥2
|fA(k)|

≤ q−2(m−1)|fA(1)|+ q−2(m−1)(q + 1) sup
k≥2
|fA(k)|

≤ q−n+2

(
1

q3
+

1

q5

)
+ 1.31(q−n+3 + q−n+2)

1

q7

= q−(n+1) + q−(n+3) + 1.31q−(n+4) + 1.31q−(n+5)

≤ 1.5q−(n+1)

as claimed. Note that Lemma 5.3 was used in the fourth equality, and
Lemma 5.4 in the second to last inequality.

�
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5.2. Case of n odd. Throughout this subsection let n = 2m+1, a positive,
odd integer, and with q ≥ 2, let Qq be the distribution on N0 with mass
function

pk =
∏

i≥1,odd
(1− 1/qi)

q2k+1∏2k+1
i=1 (qi − 1)

.(26)

For n ∈ N0 let Qq,n be the distribution on {0, . . . ,m} with mass function

pk,n =
N(n, n− 1− 2k)

q(
n
2)

,(27)

where N(n, 2h) is given in (24).
Our main result is the following theorem.

Theorem 5.5. We have that

.37

qn+2
≤ ||Qq,n −Qq||TV ≤

2.2

qn+2
.

We again begin by developing characterizing equations for the distribu-
tions under study.

Lemma 5.6. If Q has the Qq distribution then

E[q2f(Q+ 1)] = E[(q2Q+1 − 1)(q2Q − 1)f(Q)]

for all functions f for which these expectations exist.
If Qn has the Qq,n distribution then

(28) E[(q2 − q−2(m−Qn−1))f(Qn + 1)] = E[(q2Qn+1 − 1)(q2Qn − 1)f(Qn)]

for all functions f for which these expectations exist.

Proof. By taking ratios in (26) we obtain

pk−1
pk

=
(q2k+1 − 1)(q2k − 1)

q2
.

Setting a(k) = q2 and b(k) = (q2k+1−1)(q2k−1), Lemma 2.1 yields the first
claim. Similarly, the second can be shown by applying (27) to yield

pk−1,n
pk,n

=
N(n, 2(m− k + 1))

N(n, 2(m− k))
=

(q2k+1 − 1)(q2k − 1)

q2 − q−2(m−k)
,

and then invoking Lemma 2.1 with a(k) = q2−q−2(m−k) and b(k) = (q2k+1−
1)(q2k − 1), noting a(m+ 1) = 0. 2

Lemma 5.7. If Qn has distribution Qq,n then

Eq2Qn = 1 + q−1 − q−n.
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Proof. For k any integer, letting f(x) = qkx in (28) yields

E[(q2 − q−2(m−Qn−1))qk(Qn+1)] = E[(q2Qn+1 − 1)(q2Qn − 1)qkQn ].

Setting ck = E[qkQn ], this identity yields

qck+4 − (1 + q − q−2m+2+k)ck+2 + (1− qk+2)ck = 0.

Substituting k = −2 and using that c0 = 1 we obtain

qc2 − (1 + q − q−2m) = 0,

so that

c2 = q−1(1 + q − q−2m) = 1 + q−1 − q−2m−1.

2

In the remainder of this subsection we consider the Stein equation (7) for
the target distribution Qq with

a(k) = q2 and b(k) = (q2k+1 − 1)(q2k − 1),

and for A ⊂ N0 we let fA denote the solution (9) when h(k) = 1(k ∈ A).

Lemma 5.8. The function fA satisfies

sup
A⊂N0

|fA(1)| ≤ 2

q5
and sup

A⊂N0,k≥2
|fA(k)| ≤ 1.14

q9
.

Proof. By Lemma 2.2, for all A ⊂ N0,

|fA(1)| ≤ P (Q ≥ 1)

q2

=
1− p0
q2

=
1

q2

1− q

q − 1

∏
i≥1,i odd

(1− 1

qi
)


=

1

q2

1−
∏

i≥3,i odd

(1− 1

qi
)


≤ 1

q2

(
2

q3

)
=

2

q5
,

where the second inequality used Lemma 2.3.
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For k ≥ 1, by (12) and (26),

|fA(k + 1)| ≤
P (Q ∈ U ck)

q2pk

=

∏2k+1
i=1 (qi − 1)

q2k+3

∞∑
l=k+1

q2l+1∏2l+1
i=1 (qi − 1)

=
1

q2

∞∑
l=k+1

q2(l−k)∏2l+1
i=2k+2(q

i − 1)

=
1

q2

∞∑
l=k+1

1

q2(l2−k2)+(l−k)∏2l+1
i=2k+2(1− q−i)

≤ 1

q2
∏∞
i=2k+2(1− q−i)

∞∑
l=k+1

1

q2(l2−k2)+(l−k)

=
1

q2
∏∞
i=2k+2(1− q−i)

(
1

q4k+3
+

∞∑
l=2

1

q2l2+4lk+l

)

≤ 1

q2
∏∞
i=2k+2(1− q−i)

(
1

q4k+3
+

1

q8k

∞∑
l=2

1

q2l2+l

)
.

Hence for all k ≥ 1 we obtain

|fA(k + 1)| ≤ 1

q9
∏∞
i=4(1− q−i)

(
1 +

1

q

∞∑
l=2

1

q2l2+l

)

and the proof is now completed by using the fact that for all q ≥ 2,

1∏∞
i=4(1− q−i)

(
1 +

1

q

∞∑
l=2

1

q2l2+l

)
≤ (1.137)(1.0005) ≤ 1.14.

The inequality
∏∞
i=4(1 − q−i)−1 ≤ 1.137 is obtained by applying part 2 of

Lemma 2.3. We also used that

1 +
1

q

∞∑
l=2

1

q2l2+l
≤ 1 +

1

2

(
1

210
+

∞∑
l=3

1

218+l

)
= 1 +

1

2

(
1

210
+

2

221

)
≤ 1.0005.

2

We now present the proof of Theorem 5.5

Proof. From the formula (27) for p0,n we obtain

p0,n =
N(n, n− 1)

q(
n
2)

= (1− 1/q)(1− 1/q3) · · · (1− 1/qn)
q

q − 1
.
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Thus, now applying (26), the total variation distance between Qq,n and Qq
is at least

1

2
[p0,n − p0]

≥ q

2(q − 1)
·[

(1− 1

q
)(1− 1

q3
) · · · (1− 1

qn
)− (1− 1

q
)(1− 1

q3
) · · · (1− 1

qn+2
)

]
=

q

2(q − 1)qn+2
(1− 1/q)(1− 1/q3) · · · (1− 1/qn)

=
1

2qn+2
(1− 1/q3) · · · (1− 1/qn)

≥ 1

2qn+2
(1− 2/q3)

≥ .37

qn+2
.

The second inequality used the fourth claim of Lemma 2.3.
Arguing as for the proof of Theorem 4.1, for any A ⊂ N0 we have

|P (Qn ∈ A)− P (Q ∈ A)|
= |E[hA(Qn)]−QqhA|
= |E[q2fA(Qn + 1)− (q2Qn+1 − 1)(q2Qn − 1)fA(Qn)]|
= |E[q−2(m−Qn−1)fA(Qn + 1)]|
≤ q−2(m−1)|fA(1)|P (Qn = 0)

+|E[q−2(m−Qn−1)fA(Qn + 1)1(Qn ≥ 1)]|
≤ q−2(m−1)|fA(1)|+ E[q−2(m−Qn−1)1(Qn ≥ 1)] sup

k≥2
|fA(k)|

≤ q−2(m−1)|fA(1)|+ E[q−2(m−Qn−1)] sup
k≥2
|fA(k)|

= q−2(m−1)|fA(1)|+ q−2(m−1)(1 + q−1 − q−n) sup
k≥2
|fA(k)|

≤ q−2(m−1)|fA(1)|+ q−2(m−1)(1 + q−1) sup
k≥2
|fA(k)|

≤ q−n+3 2

q5
+ 1.14(q−n+3 + q−n+2)

1

q9

= 2q−(n+2) + 1.14q−(n+6) + 1.14q−(n+7)

≤ 2.2q−(n+2)

as claimed, where we have applied Lemmas 5.7 and 5.8 in the second to last
equality, and inequality, respectively. �
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6. Skew centrosymmetric matrices over finite fields

An n × n matrix A is called skew centrosymmetric if Aij = −Aji and
Aij = An+1−j,n+1−i. This section studies the rank distributions (29) and
(30) of a randomly chosen skew centrosymmetric matrix with entries in Fq
for q odd.

Suppose that n is even. Waterhouse [33] shows that the total number of

skew centrosymmetric matrices is q(n/2)
2
, that all such matrices have even

rank, and that the proportion of n × n skew centrosymmetric matrices of
rank n− 2k is equal to

(29) pk,n =
N(n, n− 2k)

q(n/2)2
,

where N(n, 2h) =

n/2−h−1∏
j=0

qn/2 − qj

qn/2−h − qj
h−1∏
i=0

(qn/2 − qi).

We claim that pk,n in (29) is exactly equal to the probability that a uniformly
chosen n/2 × n/2 random matrix with entries from Fq has rank n/2 − k.
Indeed, pulling out factors of q, one can write (29) as

1

qk2

k−1∏
j=0

(
1− qj−n/2

1− qj−k

)
n/2∏

j=k+1

(1− q−j).

Comparing this expression with (1) for the case m = 0 with n replaced by
n/2 shows that it is sufficient to prove that

k−1∏
j=0

(
1− qj−n/2

1− qj−k

)
=

∏n/2
j=k+1(1− q

−j)∏n/2−k
j=1 (1− q−j)

.

This identity holds since both

k−1∏
j=0

(1− qj−n/2)
n/2−k∏
j=1

(1− q−j) and
k−1∏
j=0

(1− qj−k)
n/2∏

j=k+1

(1− q−j)

are equal to
∏n/2
i=1(1 − 1/qi). Hence the following Corollary is immediate

from Theorem 1.1.

Corollary 6.1. For q ≥ 2, let Qq be the distribution (2) on N0, specialized
to m = 0. For n even in N0 let Qq,n be the distribution on {0, . . . , n/2} with
mass function (29). Then

1

8qn/2+1
≤ ||Qq,n −Qq||TV ≤

3

qn/2+1
.

Now suppose that n is odd. Waterhouse [33] shows that the total number

of skew centrosymmetric matrices is q(n−1)
2/4+(n−1)/2, that all such matrices
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have even rank, and that the number of n×n skew centrosymmetric matrices
of rank 2h is equal to

N(n, 2h) =

(n−1)/2−h∏
j=0

q(n−1)/2+1 − qj

q(n−1)/2+1−h − qj
h−1∏
i=0

(q(n−1)/2 − qi).

Hence,

pk,n =
N(n, n− 2k − 1)

q(n−1)2/4+(n−1)/2 , k ∈ U(n−1)/2 = {0, 1, . . . , (n− 1)/2}(30)

is the proportion of skew centrosymmetric matrices of rank n− 2k− 1. The
main result in this section is Theorem 6.2, which provides bounds on the
total variation distance between Qq,n, the distribution given in (30), and
Qq, given by

(31) pk =

∏
i≥1(1− 1/qi)

qk2+k(1− 1/qk+1)
∏k
i=1(1− 1/qi)2

, k ∈ N0.

Theorem 6.2. For n ≥ 1 odd, and q ≥ 2, we have that

1

4q(n+3)/2
≤ ||Qq,n −Qq||TV ≤

3

q(n+3)/2
.

We begin with the following characterization lemma.

Lemma 6.3. If Q has the Qq distribution, then

E [qf(Q+ 1)] = E
[
(qQ − 1)(qQ+1 − 1)f(Q)

]
for all functions f for which these expectations exist.

If Qn has the Qq,n distribution then
(32)

E
[(
q − qQn+1−(n−1)/2

)
f(Qn + 1)

]
= E

[
(qQn − 1)(qQn+1 − 1)f(Qn)

]
for all functions f for which these expectations exist.

Proof. For the first assertion, one calculates that

pk−1
pk

=
(qk − 1)(qk+1 − 1)

q
, k ∈ N0.

Taking a(k) = q and b(k) = (qk − 1)(qk+1 − 1) in Lemma 2.1 the first
assertion follows.

For the second assertion, one calculates that

pk−1,n
pk,n

=
N(n, n− 2k + 1)

N(n, n− 2k − 1)
=

(qk − 1)(qk+1 − 1)

q − qk−(n−1)/2
, k ∈ U(n−1)/2.

Taking a(k) = q − qk−(n−1)/2 and b(k) = (qk − 1)(qk+1 − 1), noting that
a((n− 1)/2 + 1) = 0, the second assertion follows by Lemma 2.1. �

Lemma 6.4 calculates the expected value of qQn .
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Lemma 6.4. If Qn has distribution Qq,n then

E[qQn ] = 1 +
1

q
− 1

q(n+1)/2
.

Proof. Let ck = E[qkQn ], and set f(x) = qkx in (32). Elementary manipula-
tions yield the recurrence

qck+2 = (q + 1− qk+1−(n−1)/2)ck+1 + (qk+1 − 1)ck.

The result now follows by setting k = −1 and using that c0 = 1. �

In the remainder of this section we consider the Stein equation (7) for the
target distribution Qq with

a(k) = q and b(k) = (qk − 1)(qk+1 − 1),

and for A ⊂ N0 we let fA denote the solution (9) when h(k) = 1(k ∈ A).

Lemma 6.5. The function fA satisfies

sup
A⊂N0

|fA(k)| ≤ 2

q3
.

Proof. By Lemma 2.2 and (31),

|fA(1)| ≤ P (Q ≥ 1)

q

=
1− p0
q

=
1−

∏
i≥2(1− 1/qi)

q

≤
1− (1−

∑
i≥2 1/qi)

q

=
1

q3(1− 1/q)

≤ 2/q3,

where we have applied (13) in the second inequality, and used that q ≥ 2.
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For k ≥ 1, by (12),

|fA(k + 1)|

≤
P (Q ∈ U ck)

qpk

= qk
2+k−1(1− 1/qk+1)

k∏
i=1

(1− 1/qi)2

·
∞∑

l=k+1

1

ql2+l(1− 1/ql+1)
∏l
i=1(1− 1/qi)2

= qk
2+k−1

∞∑
l=k+1

1

ql2+l(1− 1/qk+1)(1− 1/ql+1)
∏l
j=k+2(1− 1/qj)2

≤ qk
2+k−1

∞∑
l=k+1

1

ql2+l
∏l
j=k+1(1− 1/qj)2

≤ qk
2+k−1∏∞

j=k+1(1− 1/qj)2

∞∑
l=k+1

1

ql2+l

≤ qk
2+k−1

(1−
∑∞

j=k+1 1/qj)2

∞∑
l=k+1

1

ql2+l

=
qk

2+k−1

(1− 1
qk(q−1))

2

∞∑
l=1

1

q(k+l)2+k+l

≤ 4

q

∞∑
l=1

1

ql2+l+2kl

≤ 4

q3

∞∑
l=1

1

ql2+l

≤ 4

q3

∞∑
l=1

1

2l+1

=
2

q3
,

where (13) was applied in the fourth inequality. �

We now present the proof of Theorem 6.2.

Proof. From the formula (30) for p0,n one computes that

p0,n =
N(n, n− 1)

q(n−1)2/4+(n−1)/2 = (1− 1/q2)(1− 1/q3) · · · (1− 1/q(n+1)/2).
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Thus, using (31), the total variation distance between Qq,n and Qq is at
least

1

2
[p0,n − p0]

≥ 1

2
[(1− 1/q2)(1− 1/q3) · · · (1− 1/q(n+1)/2)]

−1

2
[(1− 1/q2)(1− 1/q3) · · · (1− 1/q(n+3)/2)]

=
1

2q(n+3)/2
(1− 1/q2)(1− 1/q3) · · · (1− 1/q(n+1)/2).

By part 1 of Lemma 2.3,

(1− 1/q2)(1− 1/q3) · · · (1− 1/q(n+1)/2)

=
(1− 1/q)(1− 1/q2) · · · (1− 1/q(n+1)/2)

(1− 1/q)

≥ 1− 1/q − 1/q2

1− 1/q

≥ 1/2.

It follows that the total variation distance between Qq,n and Qq is at least

1/(4q(n+3)/2).
For the upper bound, arguing as in Theorem 1.1,

|P (Qn ∈ A)− P (Q ∈ A)|
= |E[hA(Qn)]−QqhA|
= |E[qfA(Qn + 1)− (qQn − 1)(qQn+1 − 1)fA(Qn)]|
= |E[qQn+1−(n−1)/2fA(Qn + 1)]|
≤ ||fA||E[qQn+1−(n−1)/2].

By Lemmas 6.4 and 6.5, this quantity is at most

2

q3
q1−(n−1)/2(1 + 1/q) ≤ 3

q(n+3)/2
.

�

7. Hermitian matrices over finite fields

Let q be odd. Suppose that θ ∈ Fq2 , θ2 ∈ Fq, but θ /∈ Fq. Then any
α ∈ Fq2 can be written α = a + bθ with a, b ∈ Fq. By the conjugate of
α we mean α = a − bθ. If A = (αij) is a square matrix, αij ∈ Fq2 , let

A∗ = A′ = (αij)
′, where the prime denotes transpose. Then A is said to be

Hermitian if and only if A∗ = A.
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By [9], for q odd the total number of n× n Hermitian matrices over Fq is

qn
2
, and the total number of such matrices with rank r is

N(n, r) = q(
r
2)

r∏
i=1

q2n−2(r−i) − 1

qi − (−1)i
.

Hence, the proportion of such matrices with rank n− k is given by

pk,n =
N(n, n− k)

qn2 , k ∈ Un = {0, . . . , n}.(33)

In this section we compute total variation bounds between the distribution
(33), denoted Qq,n, and the distribution

pk =
∏
i odd

1

1 + 1/qi
· 1

qk2
∏k
i=1(1− 1/q2i)

,(34)

which we denote here by Qq.
Remark: The distribution (34) also arises as a limiting law in the study

of the dimension of the fixed space of a random element of the finite unitary
group U(n, q). More precisely, the paper [26] proves that for k fixed, the
chance that a uniformly chosen random element of U(n, q) has a k dimen-
sional fixed space tends to pk as n→∞. See [17] for another proof.

The main theorem of this section is the following result.

Theorem 7.1. For all n ≥ 1 and q ≥ 2 we have

.07

qn+1
≤ ||Qq,n −Qq||TV ≤

2.3

qn+1
.

The following lemma characterizes the two distributions of interest in this
section.

Lemma 7.2. If Q has the Qq distribution then

E [qf(Q+ 1)] = E
[
(q2Q − 1)f(Q)

]
for all functions f for which these expectations exist.

If Qn has the Qq,n distribution then

(35) E
[(
q − (−1)n−QnqQn−n+1

)
f(Qn + 1)

]
= E

[
(q2Qn − 1)f(Qn)

]
for all functions f for which these expectations exist.

Proof. For the first assertion, one calculates from (34) that

pk−1
pk

=
q2k − 1

q
, for all k ∈ N0.

Taking a(k) = q and b(k) = q2k−1 in Lemma 2.1, the first assertion follows.
For the second assertion, one calculates that

pk−1,n
pk,n

=
N(n, n− k + 1)

N(n, n− k)
=

q2k − 1

q − (−1)n−k+1qk−n
.
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Taking a(k) = q − (−1)n−k+1qk−n and b(k) = q2k − 1 in Lemma 2.1, and
noting a(n+ 1) = 0, the second assertion follows. �

Next we handle the moment E[qQn ]. Unlike all our other moment com-
putations where we obtain equality, here we derive an upper bound.

Lemma 7.3. If Qn has the Qq,n distribution, then

E(qQn) ≤ 2 + q−n.

Proof. Setting f(x) = q−x in (35) implies that

E
[
q−Qn − (−1)n−Qnq−n

]
= E[qQn − q−Qn ].

Thus

E[qQn ] = E
[
2q−Qn − (−1)n−Qnq−n

]
≤ 2 + q−n.

�

In the remainder of this section we consider the Stein equation (7) for the
target distribution Qq with

a(k) = q and b(k) = q2k − 1,

and for A ⊂ N0 we let fA denote the solution (9) when h(k) = 1(k ∈ A).
Our next task is to provide a bound on fA. In the following we will apply
the identity

(36)
∏
i odd

(1− 1/qi)
∏
i even

(1 + 1/qi) =
∏
i odd

1

(1 + 1/qi)
,

which holds since∏
i odd

(1− 1/qi) =

∏
i(1− 1/qi)∏
i(1− 1/q2i)

=
∏
i

1

(1 + 1/qi)
.

Lemma 7.4. The function fA satisfies

sup
A⊂N0

|fA(1)| ≤ 1.1

q2
and sup

A⊂N0,k≥2
|fA(k)| ≤ 1.8

q4
for all q ≥ 2.

Proof. By Lemma 2.2,

|fA(1)| ≤ P (Q ≥ 1)

q
=

1− p0
q

.

By (34), (36) and the third claim of Lemma 2.3,

p0 =
∏
i odd

(1− 1/qi)
∏
i even

(1 + 1/qi)

≥ (1− 1/q − 1/q3)(1 + 1/q2)

≥ 1− 1/q − 1/q5.

Thus 1− p0 ≤ 1/q+ 1/q5 ≤ 1.1/q, and hence |fA(1)| ≤ 1.1/q2, for all q ≥ 2.
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For k ≥ 1, by (12),

|fA(k + 1)| ≤ P (Q ≥ k + 1)

qpk

= qk
2−1

k∏
i=1

(1− 1/q2i)
∞∑

l=k+1

1

ql2
∏l
j=1(1− 1/q2j)

= qk
2−1

∞∑
l=k+1

1

ql2
∏l
j=k+1(1− 1/q2j)

≤ qk
2−1∏∞

j=k+1(1− 1/q2j)

∞∑
l=k+1

1

ql2
.(37)

Since k ≥ 1, using (13) we have that

(38)
1∏∞

j=k+1(1− 1/q2j)
≤ 1∏∞

j=2(1− 1/q2j)

≤ 1

1−
∑∞

j=2 q
−2j = dq where dq =

1

1− 1
q4−q2

.

Thus, from (37),

|fA(k + 1)| ≤ dq · qk
2−1

∞∑
l=k+1

1

ql2

= dq · qk
2−1

∞∑
l=0

1

q(k+1+l)2

≤ dq
qk

2−1

q(k+1)2

∞∑
l=0

1

ql2

=
dq

q2k+2

∞∑
l=0

1

ql2

≤ dqsq
q4

where sq =

∞∑
l=0

1

ql2
,(39)

using k ≥ 1 in the final inequality. Now using that dq and sq are decreasing
for q ≥ 2, and that

∞∑
l=0

1

ql2
≤ 1 +

1

2
+
∞∑
l=2

1

2l+2
= 1.625

we obtain the second claim of the lemma. �

Now we present the proof of the main result of this section, Theorem 7.1.
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Proof. We first compute a lower bound for the case where n is odd. From
(33) we have

p0,n = (1− 1/q)(1− 1/q3) · · · (1− 1/qn)(1 + 1/q2)(1 + 1/q4) · · · (1 + 1/qn−1).

By (34) and (36),

p0 ≥ (1− 1/q)(1− 1/q3) · · · (1− 1/qn+2)

× (1 + 1/q2)(1 + 1/q4) · · · (1 + 1/qn+1)

= (1 + 1/qn+1)(1− 1/qn+2)p0,n.

Thus

p0 − p0,n ≥ (1− 1/q)(1− 1/q3) · · · (1− 1/qn)

×(1 + 1/q2)(1 + 1/q4) · · · (1 + 1/qn−1)

×[(1 + 1/qn+1)(1− 1/qn+2)− 1]

≥ (1− 1/q)(1− 1/q3) · · · (1− 1/qn)

×[(1 + 1/qn+1)(1− 1/qn+2)− 1]

≥ (1− 1/q)(1− 1/q3) · · · (1− 1/qn)

[
(1− 1/q − 1/q3)

qn+1

]
≥ (1− 1/q − 1/q3)2/qn+1(40)

≥ .14/qn+1,

where the fourth inequality used the third claim of Lemma 2.3. Thus the to-
tal variation distance betweenQq,n andQq is at least 1

2 [p0−p0,n] ≥ .07/qn+1.
Now we compute a lower bound for n even. From (33),

p0,n = (1− 1/q)(1− 1/q3) · · · (1− 1/qn−1)(1 + 1/q2)(1 + 1/q4) · · · (1 + 1/qn),

and by (34) and (36),

p0 ≤ (1− 1/q)(1− 1/q3) · · · (1− 1/qn+1)

× (1 + 1/q2)(1 + 1/q4) · · · (1 + 1/qn+2)

= p0,n(1− 1/qn+1)(1 + 1/qn+2).
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Thus

p0,n − p0 ≥ (1− 1/q)(1− 1/q3) · · · (1− 1/qn−1)

×(1 + 1/q2)(1 + 1/q4) · · · (1 + 1/qn)

×[1− (1− 1/qn+1)(1 + 1/qn+2)]

≥ (1− 1/q)(1− 1/q3) · · · (1− 1/qn−1)

×[1− (1− 1/qn+1)(1 + 1/qn+2)]

≥ (1− 1/q)

qn+1

∏
i odd

(1− 1/qi)

≥ (1− 1/q)(1− 1/q − 1/q3)

qn+1
(41)

≥ .18/qn+1,

where the fourth inequality used the third claim of Lemma 2.3. Thus the to-
tal variation distance betweenQq,n andQq is at least 1

2 [p0,n−p0] ≥ .09/qn+1.
For the upper bound, arguing as in the proof of Theorem 4.1,

|P (Qn ∈ A)− P (Q ∈ A)|
= |E[hA(Qn)]−QqhA|
= |E[qfA(Qn + 1)− (q2Qn − 1)fA(Qn)]|
= |E[(−1)n−Qnq−n+Qn+1fA(Qn + 1)]|
≤ q−n+1|fA(1)|P (Qn = 0) + E[q−n+Qn+1|fA(Qn + 1)|1(Qn ≥ 1)]

≤ q−n+1|fA(1)|+ q−n+1E[qQn ] sup
k≥2
|fA(k)|

≤ q−n+1 1.1

q2
+ q−n+1

(
2 + q−n

) 1.8

q4

≤ q−(n+1)
(
1.1 + 3.6q−2 + 1.8q−3

)
(42)

≤ 2.3/qn+1,

for n ≥ 1. The third inequality used Lemmas 7.3 and 7.4. �

Remark 7.5. The distribution pk,n of (33) holds for q ≥ 3. Over this range
the bounds of Theorem 7.1 may be slightly improved by applying (38) and
(39) to replace 1.8 in Lemma 7.4 by 1.4, and then using this value in (42).
One may similarly improve the lower bound by replacing .14 by .38 in (40),
and .18 by .41 in (41), resulting in

.19

qn+1
≤ ||Qq,n −Qq||TV ≤

1.5

qn+1
for all q ≥ 3.

8. Appendix

The main purpose of this appendix is to give an algebraic proof of Lemma
3.2 in the special case that m = 0. The proof assumes familiarity with
rational canonical forms of matrices (that is the theory of Jordan forms over
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finite fields), and with cycle index generating functions. Background on
these topics can be found in [15] or [29], or in the survey [16].

Proof. (Of Lemma 3.2 when m = 0).
The sought equation is

(43)

n∑
k=0

qkpk,n = 2− 1/qn.

From the expression for pk,n in (1) specialized to the case m = 0, it is clear
that if one multiplies (43) by qt(1− 1/q) · · · (1− 1/qn) where t is sufficiently
large as a function of n, then both sides become polynomials in q. Since
polynomials in q agreeing for infinitely many values of q are equal, it is
enough to prove the result for infinitely many values of q, so we demonstrate
it for q a prime power.

Let Mat(n, q) be the collection of all n × n matrices with entries in Fq
and M ∈Mat(n, q). Then n minus the rank of M is equal to l(λz(M)), the
number of parts in the partition corresponding to the degree one polynomial
z in the rational canonical form of M .

(44) E(qQn) =
1

qn2

∑
M∈Mat(n,q)

ql(λz(M)),

where Mat(n, q) denotes the set of n× n matrices over the finite field Fq.
From the cycle index for Mat(n, q) (Lemma 1 of [29]), it follows that

(45)

1 +
∑
n≥1

un

|GL(n, q)|
∑

M∈Mat(n,q)

ql(λz(M)) =

[∑
λ

ql(λ)u|λ|

cGL,z(λ)

]∏
φ 6=z

∑
λ

u|λ|deg(φ)

cGL,φ(λ)
.

Here λ ranges over all partitions of all natural numbers, and l(λ) is the
number of parts of λ. The quantity cGL,φ(λ) is a certain function of λ, φ
which depends on the polynomial φ only through its degree. The product
is over all monic, irreducible polynomials φ over Fq other than φ = z.

From the cycle index for GL(n, q) (Lemma 1 of [29]), it follows that

(46)
1

1− u
= 1 +

∑
n≥1

un

|GL(n, q)|
∑

α∈GL(n,q)

1 =
∏
φ 6=z

∑
λ

u|λ|deg(φ)

cGL,φ(λ)
.

Summarizing, it follows from (45) and (46) that

(47) 1 +
∑
n≥1

un

|GL(n, q)|
∑

M∈Mat(n,q)

ql(λz(M)) =
1

1− u
∑
λ

ql(λ)u|λ|

cGL,z(λ)
.

The next step is to compute∑
λ

ql(λ)u|λ|

cGL,z(λ)
=
∑
λ

ql(λ)u|λ|

cGL,z−1(λ)
.
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This equality holds because cGL,φ(λ) depends on the polynomial φ only
through its degree. From the cycle index of GL(n, q), it follows that

1 +
∑
n≥1

un

|GL(n, q)|
∑

α∈GL(n,q)

ql(λz−1(α))

=
∑
λ

ql(λ)u|λ|

cGL,z−1(λ)

∏
φ 6=z,z−1

∑
λ

u|λ|deg(φ)

cGL,φ(λ)

=

∑
λ

ql(λ)u|λ|

cGL,z−1(λ)∑
λ

u|λ|

cGL,z−1(λ)

∏
φ 6=z

∑
λ

u|λ|deg(φ)

cGL,φ(λ)

=
1

1− u

∑
λ

ql(λ)u|λ|

cGL,z−1(λ)∑
λ

u|λ|

cGL,z−1(λ)

=

∏
i≥1(1− u/qi)

1− u
∑
λ

ql(λ)u|λ|

cGL,z−1(λ)
.

The third equality used (46) and the final equality is from Lemma 6 of [29]
and page 19 of [1].

Next we can use group theory to find an alternate expression for

1 +
∑
n≥1

un

|GL(n, q)|
∑

α∈GL(n,q)

ql(λz−1(α))

Indeed, by the theory of rational canonical forms, ql(λz−1(α)) is the number
of fixed points of α in its action on the underlying n dimensional vector
space V . By Burnside’s lemma (page 95 of [31]) , the average number of
fixed points of a finite group acting on a finite set is the number of orbits of
the action on the set. For GL(n, q) acting on V , there are two such orbits,
consisting of the zero vector and the set of non-zero vectors. Thus

1 +
∑
n≥1

un

|GL(n, q)|
∑

α∈GL(n,q)

ql(λz−1(α)) = 1 +
∑
n≥1

2un =
1 + u

1− u
.

Comparing the final equations of the previous two paragraphs gives that

(48)
∑
λ

ql(λ)u|λ|

cGL,z(λ)
=

1 + u∏
i≥1(1− u/qi)

It follows from (47) and (48) that

1 +
∑
n≥1

un

|GL(n, q)|
∑

M∈Mat(n,q)

ql(λz(M)) =
1 + u

1− u
∏
i≥1

1

1− u/qi
.
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Thus by (44), E(qQn) is |GL(n,q)|
qn2

multiplied by the coefficient of un in

1 + u

1− u
∏
i≥1

1

1− u/qi
.

From page 19 of [1], the coefficient of un in

1

1− u
∏
i≥1

1

1− u/qi

is equal to [(1− 1/q)(1− 1/q2) · · · (1− 1/qn)]−1. Thus,

E(qQn)

=
|GL(n, q)|

qn2

[
1

(1− 1/q) · · · (1− 1/qn)
+

1

(1− 1/q) · · · (1− 1/qn−1)

]
= 2− 1

qn
,

where the last equality used that |GL(n, q)| = qn
2
(1−1/q) · · · (1−1/qn). �

We close this section with two remarks about the distribution Qq,n in (1)
(for general m) from the introduction.

• From [3], there is a natural Markov chain on {0, 1, · · · , n} which
has Qq,n as its stationary distribution. This chain has transition
probabilities

M(i, i+ 1) =
qn−i−1(qn−i − 1)

(qn − 1)(qn+m − 1)
,M(i, i− 1) =

(qn − qn−i)(qn+m − qn−i)
(qn − 1)(qn+m − 1)

M(i, i) = 1−M(i, i− 1)−M(i, i+ 1)

This Markov chain describes how the rank of a matrix evolves by
adding a uniformly chosen rank one matrix at each step.
• The following known lemma gives a formula for the chance that

a random k × n matrix with entries from Fq has rank r. For its
statement, we let[ n

m

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q − 1)

be the q-binomial coefficient.

Lemma 8.1. ([31], page 338) The chance that a random k×n matrix
with entries from Fq has rank r is equal to

(49)
1

qkn

[n
r

]
q

r∑
l=0

(−1)r−l
[r
l

]
q
qkl+(r−l2 ).
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Following a suggestion of Dennis Stanton, we indicate how Lemma
8.1 can be used to derive the product formula for pk,n in the intro-
duction. By replacing k by n, n by n + m, and r by n − k in (49),
we get that the probability that a random n × (n + m) matrix has
rank n− k is equal to

1

qn(n+m)

[
n+m

n− k

]
q

n−k∑
l=0

(−1)n−k−l
[
n− k
l

]
q

qnl+(n−k−l2 )

=
1

qn(n+m)

[
n+m

n− k

]
q

n−k∑
l=0

(−1)l
[
n− k
l

]
q

qn(n−k−l)+(l2)

=
1

qn(m+k)

[
n+m

n− k

]
q

n−k∑
l=0

[
−1

qn+1

]l [n− k
l

]
q

q(
l+1
2 ).

Plugging into the q-binomial theorem (page 78 of [6])

(1 + xq)(1 + xq2) · · · (1 + xqr) =
r∑
l=0

[r
l

]
q
ql(l+1)/2xl

with r = n − k and x = −1/qn+1 gives that the probability that a
random n× (n+m) matrix over Fq has rank n− k is equal to

1

qn(m+k)

[
n+m

n− k

]
q

(1− 1/qn) · · · (1− 1/qk+1).

It follows from elementary manipulations that this is equal to

1

qk(m+k)

∏n+m
i=1 (1− 1/qi)

∏n
i=k+1(1− 1/qi)∏n−k

i=1 (1− 1/qi)
∏m+k
i=1 (1− 1/qi)

.

9. Acknowledgements

Fulman was supported by a Simons Foundation Fellowship and NSA grant
H98230-13-1-0219. Goldstein was supported by NSA grant H98230-11-1-
0162. The authors thank Dennis Stanton and the referees for helpful com-
ments.

References

[1] Andrews, G., The theory of partitions. Cambridge University Press, Cambridge, 1984.
[2] Barbour, A., Holst, L. and Janson, S., Poisson Approximation. Oxford Science Pub-

lications, New York, 1992.
[3] Belsley, E., Rates of convergence of Markov chains related to association schemes,

Harvard University Ph.D. thesis, 1993.
[4] Blake, I. and Studholme, C., Properties of random matrices and applications. Preprint,

2006, available at http://www.cs.toronto.edu/∼cvs/coding/random report.pdf
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