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Abstract. Let W be a finite Weyl group and Ŵ be the corresponding affine Weyl group. We show that

a large element in Ŵ , randomly generated by (reduced) multiplication by simple generators, almost surely

has one of |W |-specific shapes. Equivalently, a reduced random walk in the regions of the affine Coxeter
arrangement asymptotically approaches one of |W |-many directions. The coordinates of this direction,

together with the probabilities of each direction can be calculated via a Markov chain on W .

Our results, applied to type Ãn−1, show that a large random n-core obtained from the natural growth
process has a limiting shape which is a piecewise-linear graph. In this case, our random process is a periodic

analogue of TASEP, and our limiting shapes can be compared with Rost’s theorem on the limiting shape of

TASEP.

1. Introduction

Let W denote a finite Weyl group with root system R, and let Ŵ denote the corresponding affine Weyl
group, acting on a real vector space V . They are the most important and classical reflection groups.

1.1. Random walks in the affine Coxeter arrangement. The affine Coxeter arrangement of W gives a
regular tessellation of V . Define a random walk X = (X0, X1, . . .) in the alcoves, called the reduced random
walk. We start at the fundamental alcove and at each step we cross one adjacent hyperplane chosen uniformly
at random, subject to the condition that we never cross a hyperplane twice. See Figure 1.

This process is a transient Markov chain. More algebraically, it is equivalent to a random infinite reduced
word for Ŵ obtained by multiplying by simple generators one at a time, subject to the condition that the
length increases. Non-random infinite reduced words in the affine Weyl group have a beautiful structure
theory, which we recently studied in relation to factorizations in loop groups [LP]. We prove here that:

Theorem 1. Let (X0, X1, . . .) be a reduced random walk in Ŵ . There exists a unit vector ψ ∈ V so that
almost surely we have

(1) lim
N→∞

v(XN ) ∈W · ψ

where v(Xi) denotes the unit vector pointing towards the central point of Xi.

Thus the reduced walk has one of finitely many asymptotic directions. The random walk we study here
is different to the walks on hyperplane arrangements that we have seen in the literature, see for example
[BHR, BD].

1.2. A remarkable Markov chain on W . In Section 3.1, we define a Markov chain on the finite Weyl
group W . Roughly speaking, this Markov chain is obtained by projecting the affine Grassmannian weak order
onto W . Unlike the reduced random walk on Ŵ , this Markov chain is irreducible and aperiodic (Proposition
1) and thus has a unique invariant distribution {ζ(w) | w ∈W}.

The vectors W · ψ lie in different Weyl chambers Cw, and we let X ∈ Cw denote the event that the
reduced random walk X eventually stays in Cw. The probabilities Prob(X ∈ Cw) vary depending on w: in

Ã4, one Weyl chamber is 96 times more likely than another. The root system notation of the next theorem
is reviewed in Section 2.1.

TL was supported by NSF grants DMS-0652641 and DMS-0901111, and by a Sloan Fellowship.

1



01 2

01 2

12 00

21 0 12 0

21 0 12 0

21 0 12 0

21 0 12 0

Figure 1. A reduced random walk in the alcoves of the Ã2 arrangement. The shown walk
has reduced word · · · 1020120210. The random walk will almost surely be asymptotically
parallel to the red dashed line. The thick lines divide V into Weyl chambers.

Theorem 2. The vector ψ of Theorem 1 is given by

ψ =
1

Z

∑
w∈W : rθw>w

ζ(w)w−1(θ∨).

where θ is the highest root of W and Z is a normalization factor. Furthermore,

Prob(X ∈ Cw) = ζ(w−1w0).

Thus the invariant distribution ζ determines two apparently unrelated quantities: the coordinates of the
asymptotic directions, and the probabilities of each direction. This surprising duality is ultimately related
to the associativity of the Demazure, or monoidal, product in a Coxeter group. In Section 4.2, we give
an alternative formula for ζ(w), expressed as a calculation involving a sum over the regions of the Shi
arrangement of W . We also conjecture (Conjecture 2) that in type A the point ψ of Theorem 1 is in the
same direction as ρ∨. In joint work with Williams [LW], we conjecture that a multivariate generalization
of this Markov chain on the symmetric group has remarkable Schubert positivity properties. Some of these
conjectures have been established by Ayyer and Linusson [AL] and Linusson and Martin [LM].

1.3. Random n-core partitions. In the case of W = An−1, Theorem 1 applied to a random reduced walk
conditioned to remain in the fundamental Weyl chamber can be interpreted in terms of n-core partitions.
Recall that a Young diagram is an n-core if no n-ribbon can be removed from it. Grow a random n-core
from the empty partition by randomly adding boxes to the Young diagram, subject to the condition that
the shape is always an n-core. The notation in the following Theorem is explained in Section 5.

Theorem 3. For each n, there exists a piecewise-linear curve Cn, so that for each ε, δ > 0, there exists an
M such that for every N > M , we have

Prob
(
|D(λ(N))− C| > δ

)
< ε

where D(λ(N)) is the diagram of a random n-core of degree N .

Conjecture 2 (verified for n ≤ 6) 1 gives explicit coordinates for the curve Cn.

1Arvind Ayyer and Svante Linusson [AL2] have reported that they have established Conjecture 2.
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Figure 2. A large random 4-core, and the piecewise-linear curve C4.

There is a growth model on partitions naturally obtained from TASEP on the integer lattice [Joh, Ros],
where initially the negative integers are all occupied by balls/particles and the nonnegative integers are all
vacant. The particles jump towards the right into adjacent vacant spaces. Our growth process on n-cores
corresponds to a periodic analogue of TASEP: now particles that are distance n apart are conditioned to
jump together. As explained in Section 5, after appropriate scaling (and assuming Conjecture 2), the limit
curve Cn of Theorem 3 approaches, in the limit n → ∞, the degree 2 curve which is the limit shape of
TASEP with exponential waiting time ([Ros]).

1.4. (Co)homology of the affine Grassmannian. In this project we were initially motivated by the
study of families of symmetric functions which represent Schubert classes in the (K)-cohomology of the
affine Grassmannian GrSL(n) of SL(n) [Lam08, LSS]. These symmetric functions, called k-Schur functions
and affine Stanley symmetric functions, are “affine” analogues of Schur functions, the latter playing a key
role in the theory of Schur-measure and Plancherel-measure random partitions. In a similar manner, the
symmetric functions mentioned above give rise to Plancherel-like measures on n-cores. These measures are
however distinct from the random growth processes studied in this paper.

Instead, our main result may have an interpretation in terms of large products ξN ∈ K∗(GrSL(n)) of an
element ξ in the K-homology of the affine Grassmannian – it describes the asymptotics of the “spreading
out” over the affine Grassmannian of products of this class under the Pontryagin multiplication of a loop
group (see Section 5.5).

This connection to the infinite-dimensional geometry of GrSL(n) has concrete probabilistic consequences:
in a separate article we plan to apply this geometry to the calculation of the boundary of the affine Grass-
mannian weak order.

Acknowledgements. We benefited from John Stembridge’s coxeter/weyl Maple package. We thank
Jinho Baik and Alexei Borodin for helpful conversations related to the totally assymetric exclusion process.
We also thank an anonymous referee for helpful suggestions.

2. Walks in the affine Coxeter arrangement and reduced words

2.1. Affine Weyl groups. For affine Weyl groups we use the references [Hum, Kac].
We denote the simple generators of W by {si | i ∈ I} and by w0 the longest element of W . Let s0 be the

additional simple generator of Ŵ . The Weyl group acts as linear reflections in a real vector space V , and
the affine Weyl group act as affine reflections in V . We let ` : W → Z and ` : Ŵ → Z denote the length
functions.

We let R ⊂ V ∗ denote the set of roots of W , and let R = R+tR− denote the decomposition into positive
and negative roots. The set Raf of affine roots consists of the elements {α + nδ | α ∈ R and n ∈ Z} ∪ {nδ |
n ∈ Z− {0}}. The roots α̂ = α+ nδ are the real affine roots, and α̂ is positive (resp. negative) if and only
if either (a) α ∈ R+ and n ≥ 0 (resp. α ∈ R+ and n < 0), or (b) α ∈ R− and n > 0 (resp. α ∈ R− and
n ≤ 0). We denote the positive affine roots by R+

af and the negative affine roots by R−af . The simple roots
are denoted {αi | i ∈ I ∪ {0}}, and we have α0 = δ − θ, where θ is the highest root. We let rθ denote the
reflection in the hyperplane perpendicular to θ.
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To each real affine root α̂ = α+kδ, we associate the (affine) hyperplane Hα̂ = Hk
α = {v ∈ V | 〈v, α〉 = −k}.

The affine Coxeter arrangement is the hyperplane arrangement consisting of all such Hα̂. We also associate
to each real affine root α̂ a coroot α̂∨. The connected components of the complement of affine Coxeter
arrangement are known as alcoves. The fundamental alcove A◦ is bounded by the hyperplanes corresponding
to the simple roots. There is a bijection x 7→ Ax between the alcoves and Ŵ , and we shall pick conventions so
that Asix and Ax are adjacent, separated by the hyperplane corresponding to x−1 ·αi. The Weyl chambers are
the connected components of the complement to the finite Coxeter arrangement, where only the Hα’s are used
for α ∈ R. The fundamental chamber is the Weyl chamber containing the fundamental alcove. Affine Weyl
group elements corresponding to alcoves inside the fundamental chamber are called affine Grassmannian.
We shall also need the right action w : Ax 7→ Axw−1 of W on the set of alcoves. The right action of w−1

takes the fundamental chamber to the Weyl chamber Cw labeled by w (the one containing the alcove Aw).
The elements in Cw are of the form xw, where x is an affine Grassmannian element.

There is an isomorphism Ŵ = W ×Q∨, where Q∨ denotes the coroot lattice of W . If λ ∈ Q∨, we denote
by tλ ∈ Ŵ the corresponding element in Ŵ , called a translation element. For x = wtλ ∈ Ŵ , we have

(2) wtλ · (α+ nδ) = wα+ (n− 〈λ, α〉)δ.

The inversions Inv(x) ⊂ R+
af of x are exactly the real affine roots which are sent to negative roots. Equiv-

alently, Inv(x) consists of the roots corresponding to hyperplanes separating Ax from A◦. Note that with

these conventions, Atλ is obtained from A◦ by translation by the vector −λ. The left weak order on Ŵ is
given by x � x′ if and only if Inv(x) ⊆ Inv(x′). We shall also write A � A′ for the weak order applied to
alcoves, and write AlA′ for the cover relations. We say that an alcove A is of type w if A = Awtλ .

Let ρ = 1
2

∑
α∈R+ α be the half-sum of positive roots. Recall that λ ∈ Q∨ is anti-dominant if 〈λ, α〉 ≤ 0

for α ∈ R+. The following result is standard [LLMS, Lam08].

Lemma 1. Suppose x = wtλ. Then x is affine Grassmannian if and only if λ is anti-dominant and for
every α ∈ R+ such that wα ∈ R− we have 〈λ, α〉 < 0. We then have `(x) = −〈λ, 2ρ〉 − `(w).

2.2. The reduced random walk on alcoves. We define a random walk on alcoves. The walk begins at
X0 = A◦. Given (X0, X1, . . . , X`), we pick X`+1 uniformly at random amongst the alcoves adjacent to (that
is, sharing a facet with) X`, with the constraint that the hyperplane separating X` and X`+1 has not been
crossed previously. It follows easily from Coxeter group theory that such walks can never “get stuck”.

Based on the definition, somewhat surprisingly,

Lemma 2. The process (X0, X1, . . .) is a Markov chain.

Proof. The hyperplanes that have been crossed during the first ` steps of the walk (X0, X1, . . . , X`) are
exactly the hyperplanes separating X` from X0 = A◦. �

We call this process the random walk in Ŵ , (or sometimes the reduced random walk in Ŵ ), starting at the
fundamental alcove. We shall also consider the process (Y0, Y1, . . .) where the random walk is constrained to
stay within the fundamental Weyl chamber. We call this the reduced affine Grassmannian random walk in
Ŵ .

2.3. Reformulation in terms of infinite reduced words. An infinite reduced word i = · · · i3i2i1 is an
infinite word such that irir−1 · · · i1 is a reduced word for Ŵ , for any r. The Coxeter-equivalence of reduced
words can be extended to braid limits of infinite reduced words. It is known that any infinite reduced word
i of Ŵ is braid equivalent to an infinite reduced word of the form · · · τττ u, where τ is the reduced word of
a translation element, and u is a finite reduced word for Ŵ (see [Ito, LP]).

Sequences (X0, X1, . . .) of alcoves as considered in Section 2.2 are tautologically in bijection with infinite
reduced words. Thus Theorem 1 says that a random infinite reduced word i is not only almost surely braid
equivalent to τ∞ for one of |W |-many τ ’s, but indeed that almost surely i and τ∞ asymptotically converge
to the same point of the boundary of the Tits cone (cf. [LP, Remark 4.5]).

3. Projection to the finite Weyl group
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Figure 3. The graph ΘS3 (with the transitions from a vertex to itself removed) and the
stationary distribution ζS3

.

3.1. A Markov chain on W . We define a Markov chain with finite state space W , which appears to be of
independent combinatorial interest. Let r = |I|+ 1 be the rank of Ŵ . The transition probability from w to
v is given by

pw,v =


1/r if v = siw and `(v) < `(w)

1/r if v = rθw and `(v) > `(w)

k/r if v = w

0 otherwise

where k is chosen so that
∑
v∈W pw,v = 1. Let P = (pw,v) denote the transition matrix. Let ΘW denote the

directed graph on W with edges given by the non-zero transitions. Let Z0, Z1, . . . be the Markov chain on
ΘW with transition matrix P .

Proposition 1. The Markov chain (Z0, Z1, . . .) is irreducible and aperiodic.

Proof. Aperiodicity is clear from the definition. Strong connectedness follows from [HST, Theorem 4.2]. �

It follows that (Z0, Z1, . . .) has a unique limit stationary distribution.

Problem 1. Explicitly describe the stationary distribution ζ = ζW of (Z0, Z1, . . .) for each W .

This distribution appears to have remarkable enumerative properties, especially for the symmetric group
[LW].

Conjecture 1. Let W = Sn. Then ζ(w)/ζ(w0) is an integer for all w ∈W , and ζ(1)/ζ(w0) =
∏n−1
k=0

(
n
k

)
=

maxw∈W (ζ(w)/ζ(w0)).2

Remark 1. The integrality part of Conjecture 1 fails for other types. For example, it is false for W of type
B3. However, the weighted version of ΘW , as described in Remark 5 and Section 5.5, still appears to retain
these properties.

Remark 2. Let µN be the probability measure on length N elements of Ŵ , where µN (x) is proportional
to the number of reduced words of x. Define P ′ by setting the diagonal entries of P to 0. The matrix P ′

is a sub-stochastic matrix, which nevertheless calculates the projected measures π(µN ) after scaling. (The
matrix P ′ weights each path equally regardless of the valency of the vertices that it passes through.)

2After this paper was written, Svante Linusson pointed out to us that the integrality part of Conjecture 1 follows from the
work of Ferrari and Martin [FM] on multi-type TASEP. Erik Aas [Aas] has announced a proof of the product expression for

ζ(1)/ζ(w0).
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After scaling, and conjugation by a suitable diagonal matrix D, one does obtain a Markov chain with
transition matrix given by Q = rD−1P ′D. The methods in this section will still prove Corollary 1 for the
measures µN (but with a different limit ψ).

3.2. Projection. Let (Y0, Y1, . . .) denote the affine Grassmannian random walk of 2.2. We let (Ỹ0, Ỹ1, . . .)

denote the delayed random walk, where Ỹi+1 has probability k/r of being equal to Ỹ , where r = |I| + 1 is

the rank of the affine Weyl group, and k is the number of facets of Ỹi which separate Ỹi from A◦. Each of
the transitions in the original random walk now have probability 1/r. Similarly define X̃.

Let π : Ŵ → W be the projection given by wtλ 7→ w. The following proposition is a key observation of
the paper.

Proposition 2. The projection π(Ỹ0, Ỹ1, . . .) of the delayed affine Grassmannian random walk is the Markov
chain (Z0, Z1, . . .), with initial condition Z0 = id.

The result follows from Lemma 1 and Lemma 4 below.

Lemma 3. Let α ∈ R+ − {θ}. Then 〈θ∨, α〉 ∈ {0, 1}.

Proof. The sum α− kθ can be a root only if k ∈ {0, 1}. �

Lemma 4. Suppose x = wtλ ∈ Waf is affine Grassmannian. Then `(rθw) > `(w) in W if and only if s0x
is affine Grassmannian and s0x � x.

Proof. Suppose that `(rθw) > `(w). Let α = w−1θ ∈ R+. To show that s0x � x, we compute

x−1α0 = t−λw
−1(δ − θ) = δ − t−λα = (1− 〈λ, α〉)δ − α ∈ R+

af

since λ is anti-dominant by Lemma 1. To show that s0x is affine Grassmannian we calculate for β ∈ R+

rθt−θ∨x (β) = rθt−θ∨(wβ − 〈λ, β〉δ)
= (rθw)(β) + (〈θ∨, wβ〉 − 〈λ, β〉)δ.

We need to show that the root (rθw)(β) + (〈θ∨, wβ〉 − 〈λ, β〉)δ is positive.
First suppose that 〈λ, β〉 = 0. Then by Lemma 1, we have wβ ∈ R+, so since θ is the highest root we

must have 〈θ∨, wβ〉 ≥ 0 by Lemma 3. If 〈θ∨, wβ〉 > 0 we are done. If 〈θ∨, wβ〉 = 0, we must show that
(rθw)β ∈ R+. We calculate that (rθw)β = wrαβ. But 〈α∨, β〉 = 〈θ∨, wβ〉 = 0, so that wrαβ = wβ ∈ R+.

Now suppose 〈λ, β〉 < 0. If wβ ∈ R+ then by Lemma 3 we have 〈θ∨, wβ〉 ≥ 0, so we would be done. If
wβ ∈ R− we note that wβ 6= −θ so by Lemma 3 it suffices to assume that 〈θ∨, wβ〉 = −1 and show that
rθwβ ∈ R+. But rθwβ = wrαβ = w(β + α) = wβ + θ ∈ R+.

For the converse, let us suppose that `(rθw) < `(w). Let α = −w−1θ ∈ R+. We have

x−1α0 = t−λw
−1(δ − θ) = α+ (1 + 〈λ, α〉)δ.

But wα = −θ ∈ R−, so by Lemma 1, we have 〈λ, α〉 < 0. If 〈λ, α〉 < −1, then x−1α0 is a negative root, so
that s0x ≺ x. Otherwise, we have 〈λ, α〉 = −1. In this case, we calculate that

(s0x)α = (rθt−θ∨wtλ)α = (rθwtλ+α∨)α = rθwα− 〈λ+ α∨, α〉δ.

But 〈α∨, α〉 = 2, so (s0x)α ∈ R−af , and thus s0x is not affine Grassmannian. �

3.3. Proof of Theorem 1. Let Z = (Z0, Z1, . . .) be a random walk on ΘW with transition matrix P , and
e = (w → u) an edge in ΘW . Write κe,N (Z) for the number of times the edge e is used in (Z0, Z1, . . . , ZN ).

Lemma 5. We have

lim
N→∞

1

N
κe,N (Z) = ζ(w)/r.

almost surely.

Proof. This follows from the ergodic theorem for Markov chains, see for example [Bre, Corollary 4.1]. �
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Proof of Theorem 1 and first statement of Theorem 2. We first establish the statement for the delayed affine
Grassmannian random walk (Ỹ0, Ỹ1, . . .). Outside a set of measure 0 (those Ỹ that eventually stop), Ỹ
naturally maps (by removing repeats) to the random walk Y defined in Section 2.2.

Let the projection of Ỹ to W be π(Ỹ ) = Z, which is a Markov chain on ΘW by Proposition 2. Write

Ỹi = Axi , where xi = witλ(i) . The translation element λ(i) only changes from i to i + 1 if xi+1 = s0xi.
By Lemma 4, this corresponds to transitions (wi → rθwi) in Z, which changes λ(i) by w−1i (−θ∨) (using
s0 = rθt−θ∨).

For two edges e, e′, by Lemma 5, the ratio
κe,N (Z)
κe′,N (Z) converges almost surely to ζ(w)/ζ(w′). It follows that

(3) lim
N→∞

span(λ(N))→ span

 ∑
w∈W : `(rθw)>`(w)

ζ(w)w−1(−θ∨)


almost surely. The alcove Awitλ(i) shares a vertex with the alcove At

λ(i)
, and so −λ(i) points in almost the

same direction as v(Ỹi). We thus obtain Theorem 1 and the first statement of Theorem 2 for the reduced
affine Grassmannian random walk Y .

Now, the random walk X = (X0, X1, . . .) will eventually stay in some Weyl chamber, since each Weyl
chamber is separated from the fundamental alcove by some hyperplanes which can be crossed at most once,
and there are finitely many Weyl chambers.

The asymptotic direction of Y does not depend on initial point of the random walk, but only the constraint
that the walk remains inside the fundamental chamber and heads away from A◦. Thus if we know that
X ∈ Cw, we can apply the right action of W to the part of X lying inside Cw to get a random walk in the
fundamental chamber which almost surely has asymptotic direction ψ, completing the proof. �

The almost sure convergence of Theorem 1 implies convergence in probability. Pick a norm on V .

Corollary 1. For each ε > 0 and δ > 0, there is a M = M(ε, δ) so that

Prob(|v(YN )− ψ| ≥ ε) < δ

for N > M .

Remark 3. It follows from the proof of Theorem 1 that the point ψ has rational coordinates, when written
in terms of simple coroots. This implies that there is a translation element of Ŵ which points in the same
direction as ψ.

Remark 4. In Theorem 1 and Corollary 1 only the limiting direction is discussed. The formula in Lemma 1
for the length `(tλ) of a translation element allows us to calculate the speed that the random walk is traveling
from the fundamental alcove.

We give an explicit conjecture for ψ when W = Sn. In the next result we treat ρ as a point in V by
identifying V and V ∗ in the usual way.

Conjecture 2. For W = Sn, we have ψ = γρ for some γ > 0.

Remark 5. Conjecture 2 does not hold as stated for other types. Define {ai | i ∈ I} by θ =
∑
i aiαi, and

set a0 = 1. Now, weight the transitions corresponding to left multiplication by si by a factor of ai. Then
our computations suggest that Conjecture 2 still holds for type Bn, and that it is close to holding in other
types. The coefficients ai here are connected via affine Dynkin diagram duality to the coefficients a∨i that we
expected to see for reasons related to the topology of the affine Grassmannian; see Section 5.5. The duality
may be an artifact of our choice of Q∨ instead of Q for the definition of an affine Weyl group.

4. The probability of eventually staying in a Weyl chamber

4.1. Global reversal of the random walk on Ŵ . Let X = (X0, X1, . . .) be the reduced random walk

in Ŵ . Write X ∈ Cw for the event that X eventually stays in the Weyl chamber Cw. Write XN ∈ Cvw if

XN ∈ Cw and the type of XN is v. We use the same notation for the delayed random walk X̃.
The reverse of the random walks X or X̃ is a very different process to the original process. For example,

X can go in many directions, at least at the beginning of the walk, but reversing X gives a walk which heads
7



towards the fundamental chamber. Thus the next result is very surprising. It relies on a very special feature
of Coxeter groups, namely the associativity of the Demazure product.

Let K denote the affine 0-Hecke algebra of Ŵ (see [LSS]), with generators {Ti | i ∈ I ∪ {0}}, a Z-basis

{Tx | x ∈ Ŵ} where Tid = 1, satisfying the multiplication formulae

TiTx =

{
Tsix if `(six) > `(x),

Tx otherwise

and also

TxTi =

{
Txsi if `(xsi) > `(x),

Tx otherwise.

In the following we will freely identify alcoves with elements of Ŵ .

Lemma 6. For each x ∈ Ŵ , we have Prob(X̃N = x) = Prob(X̃N = x−1), and Prob(XN = x) = Prob(XN =
x−1).

Proof. Let ξ = 1
|I|+1 (

∑
i∈I∪{0} Ti) ∈ K. Then Prob(X̃N = x) = [Tx](ξ)N where [Tx] denotes the coefficient

of Tx when an element of K is written in the basis {Ty | y ∈ Ŵ}. But the element ξ of K is invariant under
the algebra anti-morphism Tx 7→ Tx−1 of K. It follows that the coefficient of Tx and Tx−1 in the product ξN

coincides. Restricting to elements with length N gives the second statement. �

We call x = wtλ ∈ Ŵ regular if λ ∈ Q∨ is regular, that is, the stabilizer subgroup of W acting on λ is
trivial.

Lemma 7. Suppose x ∈ Cvw is regular. Then x−1 ∈ Cv−1

w0wv−1 .

Proof. If x ∈ Cvw is regular then x = vtw−1µ, where µ is a regular and anti-dominant. Then x−1 =
w−1t−µwv

−1 = w−1w0tw0(−µ)w0wv
−1, and w0(−µ) is anti-dominant. �

Proof of second statement of Theorem 2. It is clear that Prob(X ∈ Cw) = Prob(X̃ ∈ Cw), so we shall focus

on the delayed walk. Let η(w) = Prob(X̃ ∈ Cw). In the Proof of Theorem 1, we considered the delayed

affine Grassmannian walk Ỹ , or equivalently, a walk conditioned to lie in Cid. It follows from Proposition 2
that for such a walk Prob(Ỹ ∈ Cvid) = ζ(v). This same argument can be applied to a walk conditioned to lie
in any of the cones Cw, and we obtain

lim
N→∞

Prob(X̃N ∈ Cvw) = η(w)ζ(vw−1).

It follows from Theorem 1 that Prob(X̃N is regular)→ 1 as N →∞. Thus using Lemma 6 and 7, for each
ε we can find N sufficiently large so that

|Prob(X̃N ∈ Cvw)− Prob(X̃N ∈ Cv
−1

w0wv−1)| < ε.

It follows that η(w)ζ(vw−1) = η(w0wv
−1)ζ(w−1w0) for every v, w ∈ W . We note that setting η(w) =

ζ(w−1w0) solves this equation, and since η is a probability measure on W this must be the solution. �

4.2. The Shi arrangement. The ideas here are related to the language of reduced words in affine Coxeter
groups, see for example [BB, Hea]. The Shi arrangement is the hyperplane arrangement consisting of the
hyperplanes {H0

α, H
1
α | α ∈ R+}. One of the regions (connected components of the complement) of the Shi

arrangement is exactly the fundamental alcove A◦.
Let B and B′ be two regions of the Shi arrangement. We say that B is less than or equal to B′, and

write B E B′ if the set of hyperplanes of the Shi arrangement separating B′ from the fundamental alcove,
contains the same set for B.

Let Γ denote the set of pairs (B,w), where B is a region of the Shi arrangement, and w ∈ W is such
that B contains an alcove of type w. We make Γ into a directed graph by defining edges (B,w)→ (B′, w′)
whenever B E B′, and an alcove A of type w in B is adjacent (shares a facet) with an alcove A′ of type w′

in B′, satisfying AlA′.
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Lemma 8. If (B,w)→ (B′, w′) then every alcove A of type w in B shares a facet with an alcove A′ of type
w′ in B′, and we have AlA′.

Proof. Suppose A and Ã are both of type w inside B. Set Ã = A+λ. Let H be a hyperplane (not necessarily
belonging to the Shi arrangement) cutting out a facet of (the closure of) A, and suppose A′ is on the other

side of H, adjacent to A and satisfying A l A′. Similarly define Ã′ adjacent to Ã, on the other side of
H̃ := H + λ. Clearly, Ã′ = A′ + λ.

Since A and Ã belong to the same region of the Shi arrangement, the line segment joining the center of
A to the center of Ã does not intersect the Shi arrangement. But one can go from A′ to Ã′ by crossing
H, traveling from A to Ã and crossing H̃. Thus the only hyperplanes of the Shi arrangement that could
separate A′ from Ã′ are the parallel hyperplanes H and H̃.

Suppose first that H belongs to the Shi arrangement. If at least one of H or H̃ separates A′ from Ã′, then
since A and Ã are on the same side of H, it follows that H separates A′ from Ã′. We have that λ cannot be
parallel to H (otherwise H = H̃). Let H be orthogonal to the root α, so that we must have 〈λ, α〉 6= 0. But

from (2) it is easy to see that one of the hyperplanes Hk
α was crossed going from A to Ã. It follows that the

region B is not bounded in the α direction. The hyperplane H must thus be H0
α or H1

α. In either case, it
separates A from A◦, contradicting the assumption AlA′.

So if H belongs to the Shi arrangement, we conclude that H = H̃, and that Ã′ and A′ belong to the same
region B′ of the Shi arrangement. Since H separates A′ from A◦, and we also have Ãl Ã′.

Finally, suppose that H does not belong to the Shi arrangment. Then A,A′, Ã, Ã′ all belong to the same
region B, and are all separated from A◦ by some H0

α or H1
α parallel to H. In this case, the claim is clear. �

Denote by Bw the unique region of the Shi arrangement that is a translation of the Weyl chamber Cw.
Let Γ′ be the graph obtained from Γ by removing {(Bv, u) | v, u ∈ W}. Let M be the transition matrix of
Γ and let M ′ be its restriction to Γ′. Let pw be the vector with components labeled by vertices of Γ′, given
by pw(B,v) =

∑
u∈W Prob((B, v)→ (Bw, u)). Note that for each (B, v), there is at most one u ∈W for which

the probability Prob((B, v)→ (Bw, u)) is non-zero.
Let ε(B,w) denote the unit vector corresponding to a vertex of Γ, and 〈., .〉 denote the natural inner product

on the vertex space spanned by vertices of Γ.

Theorem 4. For each w ∈W ,

ζ(w−1w0) = Prob(X ∈ Cw) = 〈(I −M ′)−1 · ε(A◦,1),pw〉.

Proof. Lemma 8 guarantees that the Markov chain X = (X0, X1, . . .) projects to a Markov chain on Γ via
x = vtλ 7→ (B, v) where the alcove Ax lies in the region B. Thus the probability Prob(X ∈ Cw) we desire is
equal to the probability that a random walk in Γ starting from (A◦, 1), with transition matrix M , eventually
ends up at one of the vertices (Bw, v). This immediately gives the stated formula, assuming that (I−M ′)−1
is invertible, and is equal to I +M ′ + (M ′)2 + · · · .

Let B be a region of the Shi arrangement which lies between two parallel hyperplanes H0
α and H1

α. Then
for each A ∈ B, there is some A′ � A outside of B. It follows that the random walk (X0, X1, . . .) has
probability 0 of staying in a region of the Shi arrangement other than one of the Bw’s. Thus I −M ′ must
be invertible, M ′ must be strictly sub-stochastic, and I +M ′ + (M ′)2 + · · · = I −M ′. �

5. n-cores, periodic TASEP, and the connection to symmetric functions

5.1. n-cores and affine Grassmannian permutations. In this section we suppose W = Sn is the sym-
metric group. We assume basic familiarity with Young diagrams. Recall that a skew Young diagram λ/µ
is a ribbon if it is edge-connected and does not contain any 2 × 2 square. A Young diagram λ is called an
n-core if no ribbons of size n can be removed from it (and still leaving a Young diagram).

The set of n-cores can be built from the empty partition by the following procedure. Take an n-core λ,
and suppose b is an addable-corner of λ on diagonal d. Then the Young diagram obtained from λ by adding
all addable-corners on diagonals d′ satisfying d′ ≡ d mod n, is also an n-core, and recursively one obtains
every n-core in this way. Figure 5 shows the start of the 3-core graph, where the edges denote the above box
adding operation. The 3-core graph is the one-skeleton of a hexagonal planar tiling. The following result is
well-known, see [LLMS].
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Figure 4. Probabilities that X passes through each region of the Shi arrangement of Ã2.
The probabilities of the (translated) Weyl chambers should be compared with Figure 3,
illustrating Theorems 2 and 4.
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Figure 5. The graph of 3-cores, with edges labeled by the corresponding simple generator.
Note that 3-cores on the same level do not have the same number of boxes.

Proposition 3. There is a natural bijection between n-cores and the affine Grassmannian elements of S̃n.
The edges of the n-core graph correspond to left-multiplication by simple generators.

In the following we use the standard coordinates for Q∨, so that α∨i = ei − ei+1.
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Lemma 9. Let µ = (µ1, µ2, . . . , µn) ∈ Q∨ be an antidominant element of the coroot lattice. Then the n-core
of the translation element t(µ1,µ2,...,µn) has slope (n− i)/i between diagonals nµi + i− 2 and nµi+1 + i− 2,

for i = 1, 2, . . . , n− 1. 3

Proof. Follows from [LLMS, Proposition 8.10]. �

The 4-core in Figure 2 corresponds to (−7,−2, 3, 6) ∈ Q∨.

5.2. The shape of a random n-core. By a random n-core we will mean an n-core generated by applying
the bijection in Proposition 3 to the Markov chain Y described in Section 2.2. If λ is a n-core, then we
let D(λ) denote the curve drawing out the lower-right boundary of λ, scaled by the degree deg(λ) in both
directions. Here the degree is the length of the corresponding affine Grassmannian element from Proposition
3, or equivalently, the distance from the empty partition in the n-core graph. By convention, D(λ) includes
a vertical ray going to −∞ along the y-axis, and a horizontal ray going to +∞ along the x-axis. Given
two curves D,D′ of this form, we write |D − D′| to denote the supremum of the distance between D and
D′, measured along the diagonals y = −x + k. With this notation, Corollary 1 combined with Lemma 9
translates to Theorem 3.

Let us use Conjecture 2 to predict the piecewise-linear curve Cn of Theorem 3. Let µ be an anti-dominant
element of Q∨ satisfying µ2−µ1 = µ3−µ2 = · · · = µn−µn−1 = A (that is, µ is in the same direction as ρ).
To calculate the correct scaling we use Lemma 1 which says that `(tµ) =

∑
1≤i<j≤n µj − µi = A/α, where

α = 6
(n−1)n(n+1) .

Now consider the piecewise-linear curve Cρ which successively connects the points

(0,−∞), (0,−n(n− 1)

2
α), (α,−(1 + 2 + · · ·+ n− 2)α), ((1 + 2)α,−(1 + 2 + · · ·+ n− 3)α), . . .

((1 + 2 + · · ·+ n− 2)α,−α), (
n(n− 1)

2
α, 0), (∞, 0)

Using Lemma 9, one calculates that the core λ corresponding to tµ has diagram D(λ) extremely close to Cn:
namely, it passes through the specified points but may not be linear in between those points. It follows that

Proposition 4. Assuming Conjecture 2, the curve Cn of Theorem 3 is Cρ.

This proposition allows us to make some predictions, for example of the length of the first row of a random
n-core. This might be compared to corresponding results for random partitions (see for example [LoSh, VK]).

Corollary 2. Assuming Conjecture 2, the expected length of the first row of a random n-core of degree d is
asymptotic to 3d

n+1 .

The area between Cρ and the axes is equal to

area(Cρ) = α2
(
(n− 1)2 + 2(n− 2)2 + · · ·+ (n− 1)12

)
=
n2(n2 − 1)α2

12
.

If we scale the limit shape so that this area is normalized to 1, then the x-intercept of Cρ would become√
3(n−1)√
n2−1 .

Corollary 3. Assuming Conjecture 2, the first row of a large random n-core is asymptotic to
√
3(n−1)√
n2−1

√
N ,

where N is the number of boxes in the n-core.

5.3. Periodic TASEP. There is a well known correspondence between growth models on Young diagrams,
and the totally asymmetric exclusion process (TASEP). The random growth model on n-cores we have
described gives rise to a periodic analogue of TASEP that we now describe.

Let σ = (σi ∈ {0, 1} | i ∈ Z) be a doubly infinite sequence of 0-s and 1-s, labeled by the integers. The
sequence σ is to be thought of as a sequence of balls and empty spaces: σi = 0 mean that position i is empty,
and σi = 1 means that position i is occupied. There is a natural map λ 7→ σ(λ), illustrated in Figure 6. The
indexing is normalized so that σ(∅) is the step-function satisfying σi = 1 for i < 0 and σi = 0 for i ≥ 0. It is
clear that adding a box to λ corresponds to moving a ball to an empty space immediately to its right.

3The slope should be calculated between the points of intersection of the boundary of the core, and the diagonals, but for
our asymptotic purposes this is not important.
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1 1 1 0 1 0 0 1 1 0 0

Figure 6. The calculation of σ((3, 2, 2)) is illustrated here: we first rotate the Young
diagram 135 degrees counter-clockwise, then we draw the outline curve (illustrated in solid
lines). Downward steps in the outline curve corresponds to 1-s, and upward steps correspond
to 0-s.

Suppose λ is an n-core. Then σ(λ) satisfies:

(1) σi = 1 for i� 0,
(2) if σi = 1 then σi−n = 1, and
(3) if d1, d2, . . . , dn ∈ Z are such that σdj = 1 and σdj+n = 0, then we have

∑n
j=1 dj = −

(
n+1
2

)
,

and these conditions characterize the sequences that arise from n-cores. Periodic TASEP is a random process
on these sequences, given by the rules:

(1) At time t = 0 we have σ(0) is the step-function.
(2) At each time t, an element ī ∈ Z/nZ is chosen uniformly at random, subject to the condition that

there exists i0 ≡ ī mod n satisfying σi0 = 1 and σi0+1 = 0. We then define σ(t + 1) by moving all
balls at positions i ≡ ī mod n one step to the right, if possible.

The conditioning implies that at each time step finitely many, but non-zero number of balls are moved.

Proposition 5. The random n-core process is transformed under λ 7→ σ(λ) to the periodic TASEP process.

When n =∞, periodic TASEP becomes one of the standard discrete time versions of the TASEP process.
Namely, at each time t, one of the balls that can be moved is chosen uniformly at random, and moved one
step to the right. The asymptotic behavior of TASEP is a very well-studied problem. In particular, Rost
[Ros] (see also Johansson [Joh]) has described the asymptotic shape of the result.

We describe their result in terms of Young diagrams, and also rotated so that Young diagrams are upper-
left justified. As t → ∞, the Young diagram of this growth process, after suitable scaling, approaches the
limiting curve (see Figure 7)

C = {(x, 0) | x ∈ [1,∞)}
⋃
{(x, y) ∈ [0, 1]× [−1, 0] |

√
x+
√
−y = 1}

⋃
{(y, 0) | y ∈ [−1,−∞)}.

It is not hard to see that after a suitable scaling, the piecewise-linear curves Cρ of Section 5.2 approaches
C pointwise, as n→∞.

5.4. Plancherel measure for n-cores. This work was motivated by the connections to a family F̃x(X)

of symmetric functions labeled by x ∈ S̃n, known as affine Stanley symmetric functions [Lam06] (and also

a closely related family G̃x(X) called the affine stable Grothendieck polynomials [LSS]). The coefficient

[m1`(x) ]F̃x(X) of the square-free monomial in F̃x is equal to the number of reduced words of x. Whereas
Stanley’s seminal work [Sta] studies exact formulae for the number of reduced words, our approach looks for

12



Figure 7. The limiting curve C for TASEP.

asymptotic formulae. The symmetric functions F̃x plays the same role for affine permutations, namely, a gen-
erating function for “semi-standard” objects, as the Schur functions sλ play for Grassmannian permutations.
Schur functions play a crucial role in the study of random partitions; see for example [Oko].

The measure we obtain on the set {x ∈ S̃n | `(x) = N} of affine permutations of length N from our
random walk is not the same measure as the one obtained by letting Prob(x) be proportional to the number
of reduced words of x. Nevertheless, Corollary 1 and Theorem 3 still apply (see Remark 2).

In [LLMS], we proved an enumerative identity

(4) m! =
∑
λ

#{weak tableaux of shape λ} ·#{strong tableaux of shape λ}

where the sum is over n-cores of degree m. Weak tableaux count paths in the n-core graph. Strong tableaux
are defined in terms of the strong (Bruhat) order. The terms on the right hand side of (4) would give the
natural analogue of the Plancherel measure for partitions. In [LLMS], a symmetric function generalization
of (4) is also given, and involves affine Stanley symmetric functions and k-Schur functions. The identity (4)
is generalized to the Kac-Moody case in [LaSh].

5.5. K-homology of the affine Grassmannian. Recall from the proof of Lemma 6 in Section 4.1, that the
probabilities Prob(XN = x) were given by the coefficients [Tx]ξN for an element ξ ∈ K. In the case W = Sn,
by [LSS, Corollary 7.5], the element ξ can be interpreted (up to a factor) as the divisor Schubert class in
the K-homology K∗(GrSL(n)) of the affine Grassmannian of SL(n). The affine Grassmannian GrSL(n) is an
infinite-dimensional space of central importance in representation theory. In the case of a complex simple
algebraic group with Weyl group W , the natural element to consider from the point of view of the geometry
of GrG is

ξ′ =
∑

i=I∪{0}

a∨i Ti

where the definition of the weights a∨i can be found in [Kac]; see [LaSh, Proposition 2.17] for an explanation
of these weights (the argument in [LaSh] is for the homology case, but easily extends to K-homology).
Probabilistically, this amounts to considering random walks where the allowable transitions are not taken
uniformly at random, but left multiplication by si is weighted by the a∨i . Note that Theorem 1 and its proof
still remain valid in this situation. See also Remark 5.
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[Bre] P. Brémaud, Markov chains. Gibbs fields, Monte Carlo simulation, and queues. Texts in Applied Mathematics, 31.

Springer-Verlag, New York, 1999. xviii+444 pp.

[BD] K.S. Brown and P. Diaconis, Random walks and hyperplane arrangements. Ann. Probab. 26 (1998), no. 4, 1813–1854.

13



[FM] P.A. Ferrari and J.B. Martin, Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab.
35 (2007), no. 3, 807–832.

[Hea] P. Headley, Reduced expressions in infinite Coxeter groups. PhD thesis, University of Michigan, Ann Arbor, 1994.

[HST] F. Hivert, A. Schilling, and N. Thiery, Hecke group algebras as quotients of affine Hecke algebras at level 0, J. Combin.
Theory Ser. A 116 (2009) 844–863.

[Hum] J. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29. Cambridge

University Press, Cambridge, 1990. xii+204 pp.
[Ito] K. Ito, Parameterizations of infinite biconvex sets in affine root systems. Hiroshima Math. J. 35 (2005), no. 3, 425–451.

[Joh] K. Johansson, Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000), no. 2, 437–476.
[Kac] V.G. Kac, Infinite-dimensional Lie algebras. Third edition. Cambridge University Press, Cambridge, 1990. xxii+400 pp.

[Lam06] Affine Stanley symmetric functions. Amer. J. Math. 128 (2006), no. 6, 1553–1586.

[Lam08] Schubert polynomials for the affine Grassmannian. J. Amer. Math. Soc. 21 (2008), no. 1, 259–281.
[LLMS] T. Lam, L. Lapointe, J. Morse, and M. Shimozono, Affine insertion and Pieri rules for the affine Grassmannian. Mem.

Amer. Math. Soc. 208 (2010), no. 977, xii+82 pp.

[LP] T. Lam and P. Pylyavskyy, Total positivity for loop groups II: Chevalley generators, Transformation Groups, 18 (2013),
179–231.

[LSS] T. Lam, A. Schilling, and M. Shimozono, K-theory Schubert calculus of the affine Grassmannian. Compos. Math. 146

(2010), no. 4, 811–852.
[LaSh] T. Lam and M. Shimozono, Dual graded graphs for Kac-Moody algebras. Algebra Number Theory 1 (2007), no. 4,

451–488.

[LW] T. Lam and L. Williams, A Schubert positive Markov chain on the symmetric group? Experiment. Math. 21 (2012),
189–192.

[LM] S. Linusson and J.B. Martin, unpublished.
[LoSh] B.F. Logan and L.A. Shepp, A variational problem for random Young tableaux. Advances in Math. 26 (1977), no. 2,

206–222.

[Oko] A. Okounkov, Infinite wedge and random partitions. Selecta Math. (N.S.) 7 (2001), no. 1, 57–81.
[Ros] H. Rost, Nonequilibrium behaviour of a many particle process: density profile and local equilibria. Z. Wahrsch. Verw.

Gebiete 58 (1981), no. 1, 41–53.

[Sta] R. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combinatorics 5 (1984),
359–372.

[VK] A. Vershik and S.V. Kerov, Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form

of Young tableaux. Dokl. Akad. Nauk SSSR 233 (1977), no. 6, 1024–1027.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 USA
E-mail address: tfylam@umich.edu

14


	1. Introduction
	1.1. Random walks in the affine Coxeter arrangement
	1.2. A remarkable Markov chain on W
	1.3. Random n-core partitions
	1.4. (Co)homology of the affine Grassmannian

	2. Walks in the affine Coxeter arrangement and reduced words
	2.1. Affine Weyl groups
	2.2. The reduced random walk on alcoves
	2.3. Reformulation in terms of infinite reduced words

	3. Projection to the finite Weyl group
	3.1. A Markov chain on W.
	3.2. Projection
	3.3. Proof of Theorem 1

	4. The probability of eventually staying in a Weyl chamber
	4.1. Global reversal of the random walk on 
	4.2. The Shi arrangement

	5. n-cores, periodic TASEP, and the connection to symmetric functions
	5.1. n-cores and affine Grassmannian permutations
	5.2. The shape of a random n-core
	5.3. Periodic TASEP
	5.4. Plancherel measure for n-cores
	5.5. K-homology of the affine Grassmannian

	References

