
UNIVERSALITY OF TRAP MODELS IN THE ERGODIC TIME SCALE

M. JARA, C. LANDIM, A. TEIXEIRA

Abstract. Consider a sequence of possibly random graphs GN = (VN , EN ), N ≥ 1, whose vertices’s
have i.i.d. weights {WN

x : x ∈ VN} with a distribution belonging to the basin of attraction of an α-

stable law, 0 < α < 1. Let XN
t , t ≥ 0, be a continuous time simple random walk on GN which waits a

mean WN
x exponential time at each vertex x. Under considerably general hypotheses, we prove that in

the ergodic time scale this trap model converges in an appropriate topology to a K-process. We apply
this result to a class of graphs which includes the hypercube, the d-dimensional torus, d ≥ 2, random

d-regular graphs and the largest component of super-critical Erdös-Rényi random graphs.

1. Introduction

Trap models were introduced to investigate aging, a nonequilibrium phenomenon of considerable
physical interest [29, 9, 13, 3, 7]. These trap models are defined as follows: consider an unoriented graph
G = (V,E) with finite degrees and a sequence of i.i.d. strictly positive random variables {Wz : z ∈ V }
indexed by the vertices. Let {Xt : t ≥ 0} be a continuous-time random walk on V which waits a mean Wz

exponential time at site z, at the end of which it jumps to one of its neighbors with uniform probability.
The expected time spent by the random walk on a vertex z is proportional to the value of Wz. It

is thus natural to regard the environment W as a landscape of valleys or traps with depth given by
the values of the random variables {Wz : z ∈ V }. As the random walk evolves, it explores the random
landscape, finding deeper and deeper traps, and aging appears as a consequence of the longer and longer
times the process remains at the same vertex.

Assume that the distribution of Wx belongs to the domain of attraction of an α-stable law, 0 < α < 1.
The variables {Wx : x ∈ V } take now large values in certain sites, forcing the random walk to stay still
for a long time when it reaches one of them, causing a macroscopic subdiffusive behavior.

In dimension 1, Fontes, Isopi and Newman [18] proved under these hypotheses that for almost all
environments, the random walk converges, in the time scale t1+(1/α), to a singular diffusion with a
random discrete speed measure. In dimension d ≥ 2, Ben Arous and Černý [5] proved that for almost
all environments the Bouchaud trap model converges in a proper time scale, t2/α in dimension d ≥ 3
and a scale logarithmic smaller than t2/α in dimension 2, to the fractional-kinetic process, a self-similar,
non-Markovian, continuous process, obtained as the time change of a Brownian motion by the inverse
of an independent α-stable subordinator. In fact, they proved, under quite general conditions on the
environment, that the clock process converges to an α-stable subordinator, for a large range of time
scales [6]. In these time scales, the random walk does not visit the deepest traps, but exhibit an aging
behavior. During the exploration of the random scenery, the process discovers deeper and deeper traps
which slow down its evolution, the mechanism responsible for the aging phenomenon. We refer to [4, 10]
for recent reviews.

The investigation of trap models on graphs in the time scale in which the deepest traps are visited
started with Fontes and Mathieu [20]. The authors proved that the random walk among random traps
in the complete graph converges to the K-process, a continuous-time, Markov dynamics on N̄, the one
point compactification of N, which hits any finite subset A of N with uniform distribution. This latter
result was extended by Fontes and Lima [19] to the hypercube and by us [24] to the d-dimensional torus,
d ≥ 2.

In the present paper, we exhibit simple conditions that imply the convergence to the K-process in
the scaling limit. Our conditions are general enough to include the hypercube and the torus, as well as
random d-regular graphs and the largest component of the super-critical Erdös-Rényi random graphs.
These are good examples to keep in mind throughout the text.

Let {GN : N ≥ 1}, GN = (VN , EN ), be a sequence of possibly random, finite, connected graphs
defined on a probability space (Ω,F,P), where VN represents the set of vertices and EN the set of
unoriented edges. Assume that the number of vertices, |VN |, converges to +∞ in P-probability.
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Assume that on the same probability space (Ω,F,P), we are given an i.i.d collection of random variables
{WN

j : j ≥ 1}, N ≥ 1, independent of the random graph GN and whose common distribution belongs
to the basin of attraction of an α-stable law, 0 < α < 1. Hence, for all N ≥ 1 and j ≥ 1,

P[WN
1 > t] =

L(t)

tα
, t > 0 , (1.1)

where L is a slowly varying function at infinity.
For each N ≥ 1, re-enumerate in decreasing order the weights WN

1 , . . . ,WN
|VN |: Ŵ

N
j = WN

σ(j), 1 ≤
j ≤ |VN | for some permutation σ of the set {1, . . . , |VN |} and ŴN

j ≥ ŴN
j+1 for 1 ≤ j < |VN |. Let

(xN1 , . . . , x
N
|VN |) be a random enumeration of the vertices of GN and define WN

xNj
= ŴN

j , 1 ≤ j ≤ |VN |,
turning GN = (VN , EN ,W

N ) into a finite, connected, vertex-weighted graph.
Consider for each N ≥ 1, a continuous-time random walk {XN

t : t ≥ 0} on VN , which waits a mean
WN
x exponential time at site x, after which it jumps to one of its neighbors with uniform probability.

The generator LN of this walk is given by:

(LNf)(x) =
1

deg(x)

1

WN
x

∑
y∼x

[f(y)− f(x)] (1.2)

for every f : VN → R, where y ∼ x means that {x, y} belongs to the set of edges EN and where deg(x)
stands for the degree of x: deg(x) = #{y ∈ VN : y ∼ x}.

Heuristics. The main results of this article assert that, under fairly general conditions on the graph
sequence GN , the random walk XN

t converges in the ergodic time scale to a K-process. Let us now give
an informal description of the above statement.

Given the graph sequence GN and the associated weights WN
x , suppose that

(1) A small number of sites supports most of the stationary measure of the process XN
t , see (B0),

and that we are able to find a sequence `N satisfying the following conditions:

(2) the ball B(x, `N ) around a typical point x has a volume much smaller than |VN |, see (B1),
(3) starting outside of the above ball, the random walk ‘mixes’ before hitting its center x, see (B2)

and
(4) the graphs GN are transitive (or satisfy the much weaker hypothesis (B3)).

Under the above conditions, we are able to show that

XN
t converges to a K-process, (1.3)

introduced in [20, 31], after proper scaling, see Theorems 2.1 and 2.2.
Still on a heuristic level, let us give a brief explanation of why the above conditions should imply the

stated convergence. Let MN be a sequence of integers converging to +∞ slowly enough for the balls
B(xNj , `N ), 1 ≤ j ≤ MN , to be disjoint. We call the vertices {xN1 , . . . , xNMN

} the deep traps and the

remaining vertices {xNMN+1, . . . , x
N
|VN |} the shallow traps. The idea is to decompose the trajectory of the

random walk in excursions between the successive visits to the balls B(xNj , `N ).

Denote by v`N (xNj ) the escape probability from xNj . This is the probability that the random walk

XN
t starting from xNj attains the boundary of the ball B(xNj , `N ) before returning to xNj . The random

walk XN
t starting from xNj visits xNj on average v`N (xNj )−1 times before it escapes. After escaping, it

mixes and then it reaches a new deep trap with a distribution determined by the topology of the graph.
This distribution does not depend on the last deep trap visited because the process has mixed before
reaching the next trap. In an excursion between two deep traps, the random walk visits only shallow
traps, which should not influence the asymptotic behaviour.

Hence, if the escape probabilities and the degrees of the random graph have a reasonable asymptotic
behavior, see (B3), we expect the random walk XN

t to evolve as a Markov process on {1, . . . ,MN}
which waits at site j a mean WN

xNj
v`N (xNj )−1 exponential time, at the end of which it jumps to a point

in {1, . . . ,MN} whose distribution does not depend on j. This latter process can be easily shown to
converge to the K-process, proving the main result of this article.

There are several interesting examples of random graphs which are not considered in this article.
Either because the assumptions (B0)–(B3) fail or because they have not been proved yet. We leave
as open problems the asymptotic behavior of a random walk among random traps on uniform trees
on N vertices, on the critical component of an Erdös-Rényi graph, on Sierpinski carpets, on the giant
component of the percolation cluster on a torus or on the invasion percolation cluster.
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The article is organized as follows. In the next section we give a precise statement of our main
results. In the following two sections we present some preliminary results on hitting probabilities and
holding times of a random walk among random traps. In section 5 we present the topology in which
the convergence to the K-process takes place and in Section 6 we construct a coupling between the
random walk and a Markov process on the set {1, . . . ,M}. This latter process can be seen as the trace
of the K-process on the set {1, . . . ,M} and the coupling as the main step of the proof. In Section 7
we show that this latter process converges to the K-process. Putting together the assertions of Sections
5, 6, 7 we derive in Section 8 a result which provides sufficient conditions for the convergence to the
K-process of a sequence of random walks among random traps on deterministic graphs. We adapt this
result in Section 9 to random pseudo-transitive graphs and in Section 10 to graphs with asymptotically
random conductances. We show in Section 11 that this latter class includes the largest component of a
super-critical Erdös-Rényi graphs.

2. Notation and results

Recall the notation introduced in the previous section up to the subsection Heuristics. Denote by νN
the unique stationary distribution of the process {XN

t : t ≥ 0}. An elementary computation shows that
νN is in fact reversible and given by

νN (x) =
deg(x)WN

x

ZN
, x ∈ VN , (2.1)

where ZN is the normalizing constant ZN =
∑
y∈VN deg(y)WN

y .

For a fixed graph GN and a fixed environment W = {WN
z : z ∈ VN}, denote by PNx = PGN ,Wx ,

x ∈ VN , the probability on the path space D(R+, VN ) induced by the Markov process {XN
t : t ≥ 0}

starting from x. Expectation with respect to PNx is represented by ENx . We denote sometimes XN
t by

XN (t) to avoid small characters.
Let {XNn : n ≥ 0} be the lazy embedded discrete-time chain in XN

t , i.e., the discrete-time Markov
chain which jumps from x to y with probability (1/2) deg(x)−1 if y ∼ x and which jumps from x to
x with probability (1/2). Denote by πN the unique stationary, in fact reversible, distribution of the
skeleton chain, given by

πN (x) =
deg(x)∑

y∈VN deg(y)
· (2.2)

For a subset B of VN , we denote by HB the hitting time of B and by H+
B the return time to B:

HB = inf
{
t ≥ 0 : XN

t ∈ B
}
,

H+
B = inf

{
t ≥ 0 : XN

t ∈ B and ∃s < t s.t. XN
s 6∈ B

}
.

When B is a singleton {x}, we denote HB , H+
B by Hx, H+

x , respectively. We also write HB (resp. H+
B)

for the hitting time of a set B (resp. return time to B) for the discrete chain XNn .

K-processes. To describe the asymptotic behavior of the random walk XN
t , consider two sequences of

positive real numbers u = {uk : k ∈ N} and Z = {Zk : k ∈ N} such that∑
k∈N

Zk uk < ∞ ,
∑
k∈N

uk = ∞ . (2.3)

Consider the set N = N∪{∞} of non-negative integers with an extra point denoted by ∞. We endow
this set with the metric induced by the isometry φ : N→ R, which sends n ∈ N to 1/n and ∞ to 0. This
makes the set N into a compact metric space.

In Section 7, based on [20], we construct a Markov process on N, called the K-process with parameter
(Zk, uk) which can be informally described as follows. Being at k ∈ N, the process waits a mean Zk
exponential time, at the end of which it jumps to ∞. Immediately after jumping to ∞, the process
returns to N. The hitting time of any finite subset A of N is almost surely finite. Moreover, for each fixed
n ≥ 1, the probability that the process hits the set {1, . . . , n} at the state k is equal to uk/

∑
1≤j≤n uj .

In particular, the trace of the K-process on the set {1, . . . , n} is the Markov process which waits at k a
mean Zk exponential time at the end of which it jumps to j with probability uj/

∑
1≤i≤n ui.

Topology. Between two successive sojourns in deep traps, the random walk XN
t visits in a short time

interval several shallow traps. If we want to prove the convergence of the process XN
t to a process which

visits only the deep traps, we need to consider a topology which disregard short excursions. With this
in mind, we introduce the following topology.
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Fix T > 0. For any function f : [0, T ]→ R and any point t ∈ [0, T ], we say that f is locally constant
at t if f is constant in a neighborhood of t. Let

C(f) = {t ∈ [0, T ]; f is locally constant in t}, (2.4)

and D(f) = C(f)c. Notice that the set D(f) is always closed. Let Λ denote the Lebesgue measure in
[0, T ] and denote by M0 the space of functions which are locally constant a.e., that is

M0 := {f : [0, T ]→ R; Λ
(
D(f)

)
= 0} . (2.5)

We say that two locally constant functions f and g ∈ M0 are equivalent if f(t) = g(t) for any
t /∈ D(f) ∪D(g). Note that if f and g are equivalent then f = g almost everywhere.

Let make the space M0 into a metric space by introducing the distance

dT (f, g) = inf
A∈B

{
‖f − g‖∞,Ac + Λ(A)

}
, (2.6)

where B = B([0, T ]) is the set of Borel subsets of [0, T ], and ‖f − g‖∞,Ac stands for the supremum norm
of f − g restricted to Ac. Intuitively speaking, the distance between f and g is small if they are close to
each other, except for a set of small measure.

We prove in Section 5 that dT is well defined and that it introduces a metric in M0 which generates
the topology of convergence in measure with respect to the Lebesgue measure in [0, T ]. With this metric,
M0 is separable but not complete.

Main result. Let V = VN = |VN | and let ΨN : VN → {1, . . . ,VN} be the random function defined
by ΨN (xNj ) = j. The first main result of this article relies on three assumptions. We first require the
sequence of invariant measures νN to be almost surely tight. Assume that for any increasing sequence
JN , with limN JN =∞,

lim
N→∞

E
[
νN ({xN1 , . . . , xNmin{JN ,VN}}

c)
]

= 0 . (B0)

Denote by B(x, `) the ball of radius ` centered at x ∈ VN with respect to the graph distance d = dN in
GN . Fix a sequence {`N : N ≥ 1} of positive numbers, representing the radius of balls we place around
each deep trap. Let x be a vertex chosen uniformly among the vertices of VN . We assume that

lim
N→∞

E
[ |B(x, 2`N )|

VN

]
= 0 . (B1)

It follows from this condition that the number of vertices VN of the graph GN diverges in probability:

lim
N→∞

P
[
VN ≥ K

]
= 1

for every K ≥ 1.
Let ‖µ− ν‖TV be the total variation distance between two probability measures µ, ν defined on VN ,

and let tmix = tNmix be the mixing time of the discrete chain {XNn : n ≥ 0}, see equation (4.33) in [27].
We assume that the typical point x is not hit before the mixing time if one starts the random walk

at distance at least `N from x. More precisely, we suppose that there exists an increasing sequence LN ,
limN→∞ LN =∞, such that

lim
N→∞

E
[

sup
y 6∈B(x,`N )

Py
[
Hx ≤ LN tmix

] ]
= 0 . (B2)

We finally introduce the notion of pseudo-transitive graphs, which includes the classical definition
of transitive graphs but also encompasses other important examples such as random regular graphs,
discussed in Proposition 9.3.

Consider a sequence of possibly random graphs GN = (VN , EN ). We say that two subsets A, B of
VN with distinguished vertices x ∈ A, y ∈ B, are isomorphic, (x, A) ≡ (y, B), if there exists a bijection
ϕ : A→ B with the property that ϕ(x) = y and that for any a, b ∈ A, {a, b} is an edge of GN if and only
if {ϕ(a), ϕ(b)} is an edge of GN .

Let x, y ∈ VN be two vertices chosen independently and uniformly in VN . We say that GN is pseudo-
transitive for the sequence `N , if

lim
N→∞

P
[
(x, B(x, `N )) 6≡ (y, B(y, `N ))

]
= 0 . (2.7)

Clearly, any sequence of transitive graphs is pseudo-transitive for any given sequence `N .
For x ∈ VN , let v`(x) = vN`N (x) be the probability of escape from x:

v`(x) = PNx
[
HR(x,`) < H+

x

]
,
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where R(x, `) = B(x, `)c. Let {ck : k ≥ 1} be the sequence defined by

c−1
k = inf

{
t ≥ 0 : P[WN

1 > t] ≤ k−1
}
, (2.8)

The constant c−1
N represents the typical size of max1≤k≤N W

N
k , so that cVW

N
xj for fixed j is of order one.

Theorem 2.1. Fix a sequence of pseudo-transitive graphs GN with respect to a sequence `N . Suppose
that (B0)–(B2) hold and that ΨN (XN

0 ) converges in probability to some k ∈ N. Then, letting β−1
N =

cVv
N
`N

(xN1 ), we have that

(cVW
N ,ΨN (XN

tβN )) converges weakly to (w,Kt) ,

where the sequence w = (w1, w2, . . . ) is defined in (8.4) and where for each fixed w, Kt is a K-process with
parameter (w, 1) starting from k. In the convergence, we adopted L1(N) topology in the first coordinate
and dT -topology in the second.

It is not difficult to show from the definition of the random sequence w = (w1, w2, . . . ) that w1 has
a Fréchet distribution. In Section 9, we apply Theorem 2.1 to the hypercube, the d-dimensional torus,
d ≥ 2, and to a sequence of random d-regular graphs, d ≥ 3.

The second main result of the article concerns graphs in which the assumption (2.7) of isometry of
neighborhoods is replaced by an asymptotic independence and a second moment bound.

Assume that there exists a coupling QN between the random graph {GN : N ≥ 1} and a sequence of
i.i.d random vectors {(Dk, Ek) : k ≥ 1} (independent of N) such that for every K ≥ 1 and δ > 0,

lim
N→∞

QN

[
max

1≤j≤K

∣∣ v`(xj)−1 − E−1
j

∣∣ > δ
]

= 0 ,

lim
N→∞

QN

[ K⋃
j=1

{deg(xj) 6= Dj}
]

= 0 ,

QN
[
D1 ≥ 1 , 0 < E1 ≤ 1

]
= 1 , EQN

[
(D1/E1)2

]
< ∞ ,

(B3)

for one and therefore all N ≥ 1, where ` = `N is the radius of the balls placed around each trap and
introduced right above (B1), and x1, . . . , xK is a collection of distinct vertices chosen uniformly in VN .
We can now state our second main result, which can be seen as a generalization of Theorem 2.1.

Theorem 2.2. Fix a sequence of random graphs GN . Suppose that (B0)–(B3) hold and that ΨN (XN
0 )

converges in probability to some k ∈ N. Then, defining βN = c−1
V , we have that

(cVW
N ,ΨN (XN

tβN )) converges weakly to (w,Kt) ,

where the sequence w = (w1, w2, . . . ) is defined in (8.4) and where for each fixed w, Kt is a K-process
starting from k with parameter (Z,u), where Zk = wk/Ek and uk = DkEk. In the convergence, we
adopted L1(N) topology in the first coordinate and dT -topology in the second.

In Section 11, we apply this result to the largest component of a super-critical Erdös-Rényi random
graph. We expect this statement to be applicable in a wider context, such as random graphs with random
degree sequences, or percolation clusters on certain graphs.

3. Hitting probabilities

We prove in this section general estimates on the hitting distribution of a random walk on a finite
graph. These estimates will be useful in the description of the trace of our trap model on the deepest
traps. Since N will be kept fixed throughout the section, we omit N from the notation almost everywhere.

Recall that we denote by d = dN the graph distance on VN : d(x, y) = m if there exists a sequence
x = z0, z1, . . . , zm = y such that zi+1 ∼ zi for 0 ≤ i ≤ m− 1, and if there do not exist shorter sequences
with this property. For x ∈ VN and a subset C of VN , denote by d(x,C) the distance from x to C:
d(x,C) = miny∈C d(x, y). For ` ≥ 1, denote by B(C, `) the vertices at distance at most ` from C:
B(C, `) = {x ∈ VN : d(x,C) ≤ `} and let R(C, `) = B(C, `)c as before. When the set C is a singleton
{x}, we write B(x, `), R(x, `) for B({x}, `), R({x}, `), respectively.

Fix M ≥ 1, a subset A = {x1, . . . , xM} of VN and ` ≥ 1. Recall from Section 2 that we denote by
v`(x), x ∈ A, the escape probability from x, and let p(x,A) be the probability of reaching the set A at
x, when starting at equilibrium:

v`(x) = Px
[
HR(x,`) < H+

x

]
, p(x,A) = PπN

[
XN (HA) = x

]
, (3.1)

where πN is the stationary state of the discrete-time chain XNn , introduced in (2.2).
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Lemma 3.1. Fix a subset A = {x1, . . . , xM} of V . For any z 6∈ A and for any L ≥ 1,

M∑
j=1

∣∣Pz[XHA = xj ]− p(xj , A)
∣∣ ≤ 2

(
2−L + Pz[HA < Ltmix]

)
.

Moreover, if there exists ` ≥ 1 such that d(xa, xb) > 2` + 1 for a 6= b, then for all L ≥ 1 and for all
1 ≤ i ≤M ,∑

j 6=i

∣∣Pxi [XHA = xj ]− v`(xi) p(xj , A)
∣∣ ≤ 2 v`(xi) max

z∈R(A,`)

{
2−L + Pz

[
HA < Ltmix

]}
.

Proof. Fix a subset A = {x1, . . . , xM} of V and z 6∈ A. By definition of the mixing time tmix and by the
definition of the total variation distance,

M∑
j=1

∣∣∣Ez[PX(Ltmix)

[
XHA = xj

] ]
− Pπ

[
XHA = xj

] ∣∣∣
=

M∑
j=1

∣∣∣ ∑
w∈V

{
Pz
[
X(Ltmix) = w

]
− π(w)

}
Pw
[
XHA = xj

]∣∣∣
≤ 2

∥∥Pz[XLtmix
= · ] − π(·)

∥∥
TV
≤ 2 · 2−L .

To prove the first claim of the lemma, apply the Markov property to get that

Pz[XHA = xj ] ≤ Ez
[
PX(Ltmix)[XHA = xj ]

]
+ Pz

[
XHA = xj , HA ≤ Ltmix

]
and that

Pz
[
XHA = xj

]
≥ Pz

[
XHA = xj , HA > Ltmix

]
= Ez

[
PX(Ltmix)[XHA = xj ]

]
− Ez

[
PX(Ltmix)[XHA = xj ] , HA ≤ Ltmix

]
.

The triangular inequality together with the previous two bounds and the estimate presented in the
beginning of the proof show that

M∑
j=1

∣∣Pz[XHA = xj ]−Pπ[XHA = xj ]
∣∣ ≤ 2

(
2−L + Pz[HA < Ltmix]

)
.

This proves the first claim of the lemma.
We turn now to the proof of the second claim of the lemma. Since d(xi, A \ {xi}) > ` and i 6= j, the

expression inside the absolute value on the left hand side of the inequality can be written as

Pxi
[
X(HA) = xj

∣∣HR(xi,`) < H+
xi

]
v`(xi) − v`(xi) p(xj , A) .

The absolute value is thus bounded by∑
z∈V

∣∣Pz[X(HA) = xj ]− p(xj , A)
∣∣Pxi[HR(xi,`) < H+

xi , X(HR(xi,`)) = z
]
.

Since d(xa, xb) > 2`+ 1, a 6= b, the set of vertices z at distance `+ 1 from xi is disjoint from A. Hence,
by the first part of the proof, the sum over j 6= i of this expression is bounded above by

2 v`(xi) max
z∈R(A,`)

{
2−L + Pz[HA < Ltmix]

}
for every L ≥ 1. This proves the lemma. �

Denote by D(f) the Dirichlet form of a function f : V → R:

D(f) =
1

2

∑
x∈V

∑
y∼x

ν(x)

deg(x)Wx
(f(x)− f(y))2 .

For disjoint subsets A and B of V , denote by cap(A,B) the capacity between A and B:

cap(A,B) = inf
f

D(f) ,

where the infimum is carried over all functions f : V → R such that f(x) = 1 for x ∈ A, f(y) = 0, y ∈ B.
Let g : V → [0, 1] be given by

gA,B(x) = Px[HA ≤ HB ] .
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It is a known fact that

cap(A,B) = D(gA,B) =
∑
y∈A

ν(y)W−1
y Py[HB < H+

A ] . (3.2)

Note that we may replace in the above identity HB , H+
A by HB , H+

A, respectively.
Take a set A ⊂ V composed of M points which are far apart and let x be a point in A. In the next

lemma, we are going to estimate the probability p(x,A) = Pπ[XHA = x]. This probability will be roughly
proportional to deg(x)v`(x). Let us first introduce a normalizing constant. For ` ≥ 1 and a finite subset
A of V , let

Γ`(A) =
∑
x∈A

deg(x)v`(x) .

Lemma 3.2. Fix a subset A = {x1, . . . , xM} of V such that d(xa, xb) > 2` + 1, a 6= b, for some ` ≥ 1.
Then,

max
1≤i≤M

∣∣∣ p(xi, A)− deg(xi) v`(xi)

Γ`(A)

∣∣∣ ≤ 2 max
z∈R(A,`)

{
2−L + Pz[HA ≤ Ltmix]

}
.

Proof. Fix 1 ≤ i ≤M and let Ai = A \ {xi}. Since D(g{xi},Ai) = D(1− g{xi},Ai), by (3.2)

deg(xi)Pxi [HAi < H+
xi ] =

∑
j 6=i

deg(xj)Pxj [Hxi < H+
Ai

] . (3.3)

On the other hand, since d(xi, Ai) > `,

Pxi [HAi < H+
xi ] = Exi

[
1{HR(xi,`) < H+

xi}PX(HR(xi,`)
)[HAi < Hxi ]

]
= Exi

[
1{HR(xi,`) < H+

xi}
(
1−PX(HR(xi,`)

)[XHA = xi]
) ]

.

Therefore,

Pxi [HAi < H+
xi ]− v`(xi) [1− p(xi, A)]

= Exi

[
1{HR(xi,`) < H+

xi}
{
p(xi, A) − PX(HR(xi,`)

)[XHA = xi]
}]

.

Since d(xa, xb) > 2` + 1, we may replace in the previous expression X(HR(xi,`)) by X(HR(A,`)). By the
first assertion of Lemma 3.1, the absolute value of the difference inside braces is less than or equal to
2 maxz∈R(A,`){2−L + Pz[HA ≤ Ltmix]} for every L ≥ 1. Hence,∣∣∣Pxi [HAi < H+

xi ]− v`(xi) [1− p(xi, A)]
∣∣∣

≤ 2 v`(xi) max
z∈R(A,`)

{
2−L + Pz[HA ≤ Ltmix]

} (3.4)

for every L ≥ 1.
Similarly, from (3.3) one obtains that

deg(xi)Pxi [HAi < H+
xi ] =∑

j 6=i

deg(xj)Exj

[
1{HR(xj ,`) < H+

A}PX(R(xj ,`))[XHA = xi]
]
.

It follows from this identity and the previous argument that∣∣∣deg(xi)Pxi [HAi < H+
xi ]−

∑
j 6=i

deg(xj)v`(xj)p(xi, A)
∣∣∣

≤ 2
∑
j 6=i

deg(xj)v`(xj) max
z∈R(A,`)

{
2−L + Pz[HA ≤ Ltmix]

}
for all L ≥ 1.

The two previous estimates yield the bound∣∣∣deg(xi)v`(xi)[1− p(xi, A)]−
∑
j 6=i

deg(xj)v`(xj)p(xi, A)
∣∣∣

≤ 2

M∑
j=1

deg(xj)v`(xj) max
z∈R(A,`)

{
2−L + Pz[HA ≤ Ltmix]

}
.

To conclude the proof of the lemma, it remains to divide both sides of the inequality by Γ`(A). �
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4. Holding times of the trace process

We present in this section a general result on Markov chains computing the time spent by this chain
on a subset of the state space. This will be useful later in proving that the time spent by the walk on
the shallow traps can be disregarded.

Consider an irreducible continuous-time Markov process {Xt : t ≥ 0} on a finite state space V . Denote
by {Wx : x ∈ V } the mean of the exponential waiting times, by ν the unique stationary probability
measure, and by {τj : j ≥ 0} the sequence of jump times.

Denote by Px, x ∈ V , the probability measure on the path space D(R+, V ) induced by the Markov
process Xt starting from x. Expectation with respect to Px is represented by Ex. For a probability
measure µ on V , let Pµ =

∑
x∈V µ(x)Px.

Fix a set A ⊂ V and let U be a stopping time such that for all x ∈ A,

Px[τ1 ≤ U ] = 1 , Px[HA\{x} ≥ U ] = 1 , Ex[U ] <∞ .

U = HR(A,`) is the example to keep in mind, where ` is chosen so that d(x, y) > 2`+ 1 for all x 6= y ∈ A.
Let SA = U + HA ◦ θU be the hitting time of the set A after time U . Denote by v(x) the probability
that starting from x the stopping time U occurs before the process returns to x: v(x) = Px[U < H+

x ],
which should be understood as an escape probability.

Let Dk, k ≥ 0, be the time of the k-th return to A after escaping: D0 = 0, D1 = SA, Dk+1 =
Dk + SA ◦ θDk , k ≥ 1. Clearly, if X0 belongs to A, {XDk : k ≥ 0} is a discrete time Markov chain on A.
On the other hand, by assumption Ex[D1] = Ex[U +HA ◦ θU ] is finite.

Lemma 4.1. The Markov chain {XDk : k ≥ 0} is irreducible. Moreover, for every f : V → R,

lim
k→∞

1

k

∫ Dk

0

f(Xt) dt =
∑
z∈A

ρ(z)Ez

[ ∫ D1

0

f(Xt) dt
]

Pν-almost surely, where ρ is the unique stationary state of the discrete time chain {XDk : k ≥ 0}.

Proof. We first prove the irreducibility of the chain {XDk : k ≥ 0}. Fix x, y ∈ A and consider a self-
avoiding path x0 = x, . . . , xn = y such that the discrete-time Markov chain associated to the Markov
process Xt jumps from xi to xi+1, 0 ≤ i < n, with positive probability. Such path exists by the
irreducibility of Xt. Let xj be the first state in the sequence x1, . . . , xn which belongs to A. Since
Px[HA\{x} ≥ U ] = 1,

Px
[
XD1 = xj

]
≥ Px

[
XD1 = xj , Z1 = x1, . . . , Zj = xj

]
= Px

[
XU+HA◦θU = xj , U ≤ HA\{x} , Z1 = x1, . . . , Zj = xj

]
,

where {Zn : n ≥ 0} is the discrete-time jump chain associated to the process {Xt : t ≥ 0}. Since U ≥ τ1,
on the event {Z1 = x1, . . . , Zj = xj} ∩ {U ≤ HA\{x}}, U + HA ◦ θU = τj . The previous probability is
thus equal to

Px

[
Xτj = xj , Z1 = x1, . . . , Zj = xj

]
= Px

[
Z1 = x1, . . . , Zj = xj

]
> 0 .

Repeating this argument for the subsequent states in the sequence x1, . . . , xn which belong to A, we
prove that the chain XDk is irreducible.

Fix a function f : V → R. Clearly,

1

k

∫ Dk

0

f(Xt) dt =
1

k

∑
x∈A

k−1∑
j=0

∫ Dj+1

Dj

f(Xt) dt1{XDj = x} .

For x ∈ A, let Kx
1 = min{j ≥ 0 : XDj = x}, Kx

n+1 = min{j > Kx
n : XDj = x}, n ≥ 1, and let

Lxk = #{j < k : XDj = x}. With this notation, we can rewrite the previous sum as

1

k

∑
x∈A

Lxk∑
n=1

∫ DKxn+1

DKxn

f(Xt) dt =
∑
x∈A

Lxk
k

1

Lxk

Lxk∑
n=1

∫ DKxn+1

DKxn

f(Xt) dt .

By the irreducibility of the chain XDk , for each x ∈ A, Lxk/k converges a.s. as k ↑ ∞ to ρ(x). Moreover,
for each x, the variables

∫
[DKxn ,DKxn+1)

f(Xt) dt, n ≥ 1, are independent and identically distributed.
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Hence, since Lxk ↑ ∞, by the law of large numbers, Pν-almost surely,

lim
k→∞

1

Lxk

Lxk∑
n=1

∫ DKxn+1

DKxn

f(Xt) dt = Ex

[ ∫ D1

0

f(Xt) dt
]
.

The lemma follows from the two previous convergences. �

Proposition 4.2. The unique stationary state ρ of the discrete-time Markov chain {XDk : k ≥ 0}
satisfies

ρ(x) = ν(x) v(x)W−1
x Eρ[D1] =

ν(x) v(x)W−1
x∑

y ν(y) v(y)W−1
y

. (4.1)

Moreover, for every g : V → R,∑
x∈A

v(x) ν(x)W−1
x Ex

[ ∫ D1

0

g(Xt) dt
]

=
∑
x∈V

g(x) ν(x) . (4.2)

Proof. Applying Lemma 4.1 to f = 1, we obtain that Pν-almost surely

lim
k→∞

Dk

k
= lim

k→∞

1

k

∫ Dk

0

dt = Eρ
[
D1

]
. (4.3)

By Lemma 4.1 with f(y) = 1{y = x}, we get that Pν-almost surely

lim
k→∞

1

k

∫ Dk

0

1{Xt = x} dt = ρ(x)Ex

[ ∫ D1

0

1{Xt = x} dt
]

because starting from y 6= x, the process does not visit x before time D1. In particular, all terms on the
right-hand side in the statement of Lemma 4.1, but the one z = x, vanish. On the other hand, dividing
and multiplying the expression on the left-hand side of the previous equation by Dk, we obtain by the
ergodic theorem and by (4.3) that

Eρ
[
D1

]
ν(x) = ρ(x)Ex

[ ∫ D1

0

1{Xt = x} dt
]
. (4.4)

The time spent at x before D1 is the time spent at x before U which is a geometric sum of independent
exponential times. The success probability of the geometric is v(x) and the mean of the exponential
distributions is Wx. Hence, the right-hand side of the previous formula is equal to ρ(x)Wx/v(x). This
proves the first identity in (4.1). To derive the second identity, note that Eρ[D1] does not depend on x,
and it is therefore only a normalizing constant to make ρ into a probability distribution.

By the ergodic theorem, for every g : V → R,

lim
k→∞

1

Dk

∫ Dk

0

g(Xt) dt =
∑
x∈V

g(x) ν(x) .

To conclude the proof of the proposition, it remains to show that the left hand side of this expression is
equal to the left-hand side of (4.2). To this end, we will use the previous lemma.

For a function g : V → R, by Lemma 4.1 for f = g and (4.3), we get

lim
k→∞

1

Dk

∫ Dk

0

g(Xt) dt = lim
k→∞

k

Dk

1

k

∫ Dk

0

g(Xt) dt =
1

Eρ
[
D1

]Eρ[ ∫ D1

0

g(Xt) dt
]
.

To conclude the proof of the proposition, it suffices to use (4.1). �

Corollary 4.3. We have that

Eρ[D1] =
Eρ
[
Wx/v(x)

]
1− ν(V \A)

·

Furthermore, for any function g : V → R,

Eρ

[ ∫ D1

0

g(Xt) dt
]

= Eν [g]Eρ[D1] .
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Proof. We can write

Eρ[D1] = Eρ

[ ∫ D1

0

dt
]

= Eρ

[ ∫ D1

0

1{Xt ∈ A}dt
]

+ Eρ

[ ∫ D1

0

1{Xt 6∈ A}dt
]
.

By the same reasoning as below (4.4), we conclude that the first expectation in the sum above equals
Eρ
[
Wx/v(x)

]
. To evaluate the second expectation, we use Proposition 4.2 with g = 1{V \A} to conclude

that

Eρ

[ ∫ D1

0

1{Xt 6∈ A} dt
]

= Eρ[D1] ν(V \A) .

Putting together the above equations, we conclude the proof of the first assertion of the corollary.
The second claim follows from the first identity in (4.1) and from (4.2). �

5. On the topology of convergence in measure

Fix T > 0 and let us denote by M the space of measurable functions f : [0, T ] → R. We consider
the interval [0, T ] equipped with the Lebesgue measure, which will be denoted by Λ. As usual, we say
two functions f, g ∈M are equal if they differ on a set of zero Lebesgue measure on [0, T ]. Let B([0, T ])
denote the set of Borel subsets of [0, T ].

We introduce the following distance in M:

dT (f, g) = inf
A∈B([0,T ])

{
‖f − g‖∞,Ac + Λ(A)

}
, (5.1)

where ‖f − g‖∞,Ac stands for the supremum of f − g on the set Ac.

Lemma 5.1. The distance dT metrizes the topology of convergence in measure in M. Moreover, the
space M is complete and separable under this distance.

Proof. Let us recall the definition of the Ky Fan distance in M as

dKF(f, g) = inf
{
ε > 0; Λ(|f − g| > ε) ≤ ε

}
.

It is well-known that the Ky Fan distance metrizes the topology of convergence in measure [14], and
that the space M is complete and separable under this metric. Therefore, it is enough to show that the
distances dT and dKF are equivalent. First we notice that we can assume that the sets A in the definition
of dT are of the form {|f − g| > ε}. In fact, if a set A is not of this form, let us write ε = ‖f − g‖∞,Ac .
We can take out the points of A such that |f − g| ≤ ε without changing the supremum, and this lowers
the value of Λ(A). This procedure transforms the set A into {|f − g| > ε}. Therefore,

dT (f, g) = inf
ε>0

{
ε+ Λ(|f − g| > ε)

}
, (5.2)

which looks very close to the Ky Fan distance. Let us prove the aforementioned equivalence starting
from (5.2). In one hand, if dKF(f, g) = ε then there exists a sequence δn ↓ 0 such that

Λ(|f − g| > ε+ δn) ≤ ε+ δn.

Therefore,

dT (f, g) ≤ ε+ δn + Λ(|f − g| > ε+ δn) ≤ 2(ε+ δn),

which shows that dT (f, g) ≤ 2dKF(f, g). In the other hand, if dT (f, g) = a then there exist sequences
δn ↓ 0 and εn > 0 such that

a+ δn = εn + Λ(|f − g| > εn).

In particular, εn ≤ a+ δn. Therefore,

Λ(|f − g| > a+ δn) ≤ Λ(|f − g| > εn) = a+ δn − εn ≤ a+ δn,

from where we conclude that dKF(f, g) ≤ dT (f, g). �

Now we define the set of locally constant functions as a subset of the space M. Let B(t, δ) be the ball
of radius δ centered at t. For any function f : [0, T ]→ R and any point t ∈ [0, T ], we say that f is locally
constant at t if there exists δ > 0 such that f is (Λ-almost surely) constant in B(t, δ). Define the set

C(f) = {t ∈ [0, T ] ; f is locally constant in t},
and notice that C(f) is open. Let D(f) be the closed set D(f) = C(f)c. Let M0 be the set

M0 := {f ∈M ; Λ
(
D(f)

)
= 0} .
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We call M0 the set of locally constant functions. Let f ∈M0. Notice that the value of f in D(f) is not
relevant, since Λ(D(f)) = 0, and that the space of locally constant functions M0 is not closed. In fact,
the closure of M0 is the whole space M.

Let f ∈M0. From the point of view of the topological properties of M the values of f on D(f) are not
relevant. However, since f is locally constant, it has a modification which is continuous Λ-a.e. Therefore,
it makes sense to fix a representative of f . A simple way to do this is the following. We say that x ∈ C0(f)
if there exists δ > 0 such that f(y) = f(x) Λ-a.e. in B(x, δ). We will write D0(f) = C0(f)c. Notice that

Λ(C(f) \ C0(f)) = 0. Now let f̃ : [0, T ]→ R be given by

f̃(t) =
1

2

{
lim inf
s→t

s∈C0(f)

f(s) + lim sup
s→t

s∈C0(f)

f(s)
}
. (5.3)

When lim infs→t,s∈C0(f) f(s) = −∞ and lim sups→t,s∈C0(f) f(s) = +∞, we set f̃(t) = 0. Clearly, f̃ = f

on C0(f) so that D0(f̃) ⊂ D0(f), where inclusion may be strict.

Lemma 5.2. Fix f , g ∈M0. We have that

lim sup
s→t

s∈C0(f)

f(s) = lim sup
s→t

s∈C0(g)

g(s)

whenever f = g Λ-a.e., with a similar identity if we replace lim sup by lim inf. In particular, f̃ = g̃ if
f = g Λ-a.e. and equation (5.3) distinguishes a unique representative for each equivalence class of M0.

Proof. Consider two functions f , g such that f = g Λ-a.e. It is enough to show that

lim sup
s→t

s∈C0(f)

f(s) ≤ lim sup
s→t

s∈C0(g)

g(s) and lim inf
s→t

s∈C0(f)

f(s) ≥ lim inf
s→t

s∈C0(g)

g(s) .

We prove the first inequality, the derivation of the second one being similar. There exists a sequence
{sj : j ≥ 1} such that sj ∈ C0(f), limj sj = t,

lim sup
s→t

s∈C0(f)

f(s) = lim
j→∞

f(sj) .

Since sj belongs to C0(f), f is Λ-a.e. constant in an interval (sj − ε, sj + ε) and therefore in the interval
Ij = (sj − ε, sj + ε) ∩ (sj − (1/j), sj + (1/j)). Of course, Ij ⊂ C(f). As D0(g) has Lebesgue measure
0, C0(g) ∩ Ij 6= ∅. Take an element s′j of this latter set. Since Ij is contained in C(f), s′j belongs to
C0(f) ∩ C0(g) so that g(s′j) = f(s′j). Moreover, since f is Λ-a.e. constant in Ij and sj , s

′
j belong to Ij ,

f(sj) = f(s′j). On the other hand, limj s
′
j = t because sj converges to t and |s′j − sj | < (1/j). Hence,

lim
j→∞

f(sj) = lim
j→∞

g(s′j) ≤ lim sup
s→t

s∈C0(g)

g(s) ,

which proves the lemma. �

From now on when considering a function in M0, we always refer to the representative defined by
(5.3). For example, if we say that f is continuous at x, we actually mean that f̃ is continuous at x.

Let us introduce the following modulus of continuity in M. For a measurable function f : [0, T ]→ R
and δ > 0, let

ωδ(f) = Λ
(
B(D(f), δ)

)
.

The modulus of continuity ωδ(f) converges to 0 as δ → 0 if and only if f belongs to M0. We extend this

definition to the space M. Notice that D(f̃) ⊆ D(f). Therefore, the modulus of continuity of f̃ goes
to 0 at least as fast as the modulus of continuity of f . Following the convention made above, when we
write ωδ(f) we really mean ωδ(f̃):

ωδ(f) = Λ
(
B(D(f̃), δ)

)
.

With this convention, Lemma 5.2 ensures that the modulus of continuity is well defined, i.e., that
ωδ(f) = ωδ(g) if f = g Λ-a.e. The main motivation for the introduction of the modulus of continuity
ωδ(f) will be a comparison criterion between the topology in M0 induced by dT and the one induced
by Skorohod’s M2 topology. We postpone the discussion of this criterion to Lemma 5.4, and we present
here another motivation which we consider to be of independent interest.
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Proposition 5.3. A subset F ⊆M0 is sequentially precompact with respect to dT if

sup
f∈F
‖f‖∞ < ∞ and lim

δ→0
sup
f∈F

ωδ(f) = 0 . (5.4)

Proof. For f ∈ F, define `δf (t) = dist(t, B(D(f̃), δ)c). Since `δf is 1-Lipschitz for any f ∈ M0 and any

δ > 0, the family {`δf , f ∈ F} is equicontinuous. Fix a sequence fn in F and a sequence {δm : m ≥ 1}
of positive numbers such that limm δm = 0. Since supf∈F ‖f‖∞ < ∞, by a standard Cantor diagonal

argument, we can extract a subsequence, still denoted by fn, for which, as n ↑ ∞, `δmfn converges uniformly

to some function `δm for every m, and for which f̃n(t) converges to some limit F (t) for any rational t in
[0, T ].

Let εm = lim supn→∞ ωδm(fn). By (5.4), limm εm = 0. Since `δmfn converges uniformly to `δm and

since {`δmfn 6= 0} = B(D(f̃n), δm),

Λ(`δm 6= 0) ≤ lim sup
n→∞

Λ(`δmfn 6= 0) = lim sup
n→∞

ωδm(fn) = εm . (5.5)

We claim that for every t ∈ [0, T ] such that `δm(t) = 0 for some m ≥ 1, there exist a neighborhood

N(t) of t and an integer n0 ≥ 1 for which F is constant on N(t) ∩ Q and f̃n(t) is constant on N(t) for
n ≥ n0. We postpone the proof of this claim.

As limm εm = 0, by (5.5) limm Λ(`δm 6= 0) = 0. There exists therefore a subsequence {m(j) : j ≥ 1}
such that

∑
j Λ(`δm(j) 6= 0) <∞. Let A = ∩k≥1 ∪j≥k {`δm(j) 6= 0} so that Λ(A) = 0. If t belongs to the

set Ac, which has full measure, `δm(j)(t) = 0 for some j. By the conclusions of the previous paragraph,
there exist a neighborhood N(t) of t and an integer n0 ≥ 1 for which F is constant on N(t) ∩ Q and

f̃n(t) is constant on N(t) for n ≥ n0.

In view of the previous result we may define a function F̂ : [0, T ] → R which vanishes on the set A,
and which on each element t of the set Ac is locally constant with value given by the value of F on a
rational point close to t. In particular, Ac ⊂ C(F̂ ) which ensures that F̂ belongs to M0. Moreover, it

follows from the convergence of f̃n to F on the rationals that f̃n(t) converges to F̂ (t). Since the set A

has Lebesgue measure 0, fn converges almost surely to F̂ . Therefore, by Egoroff theorem, fn converges
to F̂ with respect to the metric dT .

To conclude the proof of the proposition, it remains to verify the assertion assumed in the beginning
of the argument. Fix t ∈ [0, T ] and suppose that `δm(t) = 0 for some m ≥ 1. In this case, since

`δmfn (t) converges to `δm(t) = 0, limn dist(t, B(D(f̃n), δm)c) = 0. Take a point tn in the compact set

B(D(f̃n), δm)c realizing this distance to conclude that there exists a sequence tn converging to t for

which `δmfn (tn) = 0. As `δmfn (tn) = 0, f̃n is constant in the interval (tn − δm, tn + δm). Therefore, the

functions f̃n are constant in a neighborhood N(t) of t for n large enough. Since f̃n converges on the
rationals to F , we conclude, as claimed, that F is constant in N(t) ∩Q. �

Another topology which can be defined in the space M0 corresponds to the projection of the Skorohod’s
M2 topology, which is generated by the Hausdorff distance between the graphs of the functions. For

f, g ∈M0, define the distance d
(2)
T (f, g) by

d
(2)
T (f, g) := dH(Γf̃ ,Γg̃) ,

where f̃ , g̃ are the representatives of f , g defined in (5.3),

Γf̃ =
⋃

t∈[0,T ]

{t} × [lim inf
s→t

f̃(s), lim sup
s→t

f̃(s)] ,

and dH is the Hausdorff distance.
Recall the definition of the modulus of continuity ωδ(f) and note that ωδ(f) ≥ 2δ unless f is constant.

Denote by B(f ; r), B(2)(f ; r) the ball of center f and radius r with respect to the metric dT , d
(2)
T ,

respectively.

Lemma 5.4. For any f ∈M0 and any δ > 0,

B(2)(f ; δ) ⊆ B(f ; δ + ω2δ(f)) .
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Proof. Fix f ∈M0, δ > 0 and g ∈ B(2)(f ; δ). By definition of dT ,

dT (g, f) = dT (g̃, f̃) ≤ ‖f̃ − g̃‖∞,B(D(f̃),2δ)c + Λ
(
B(D(f̃), 2δ)

)
= ‖f̃ − g̃‖∞,B(D(f̃),2δ)c + ω2δ(f̃) .

In order to evaluate the first term above, fix t /∈ B(D(f̃), 2δ) so that f̃ is constant in B(t, 2δ). In

particular, Γf̃ ⊂ Σ = [0, t − 2δ] × R ∪ [0, T ] × {f̃(t)} ∪ [t + 2δ, T ] × R. Since d
(2)
T (g̃, f̃) = d

(2)
T (g, f) ≤ δ,

by definition of the Hausdorff distance,

δ ≥ dist
(
(t, g̃(t)) , Γf̃

)
≥ dist

(
(t, g̃(t)) , Σ

)
= 2δ ∧ |f̃(t)− g̃(t)| .

This implies that |f̃(t)− g̃(t)| ≤ δ for every t /∈ B(D(f̃), 2δ), which finishes the proof of the lemma. �

Consider a sequence {Yn : 1 ≤ n ≤ ∞} of real-valued stochastic processes defined on some probability
space (Ω,F, P ). Assume that the trajectories of each Yn, 1 ≤ n ≤ ∞, belong to M0 P -almost surely.
This is the case, for instance, of continuous-time Markov chains taking values on a countable subset of
R.

Theorem 5.5. Fix T > 0. If d
(2)
T (Yn, Y∞) converges to 0 in probability as n ↑ ∞, then dT (Yn, Y∞)

converges to 0 in probability as n ↑ ∞.

Proof. It is enough to show that for each ε > 0, limn→∞ P [dT (Yn, Y∞) > 2ε] = 0. Fix δ < ε so that the
previous probability is bounded by P [dT (Yn, Y∞) > ε+ δ]. This latter probability is in turn less than or
equal to

P
[
dT (Yn, Y∞) > ε+ δ , ω2δ(Ỹ∞) ≤ ε

]
+ P

[
ω2δ(Ỹ∞) > ε

]
.

Since Y∞ has trajectories in M0 P -almost surely, the second term vanishes as δ ↓ 0. The first one
is bounded by P [dT (Yn, Y∞) > δ + ω2δ(Ỹ∞)] which by the previous lemma is less than or equal to

P [d
(2)
T (Yn, Y∞) > δ]. By assumption, this term vanishes as n ↑ ∞. �

Assume that in the probability space (Ω,F, P ) introduced before the statement of the previous theorem
is also defined a sequence {Xn : 1 ≤ n <∞} of real-valued stochastic processes whose trajectories belong
to M0 P -almost surely.

Corollary 5.6. Fix T > 0. If both dT (Xn, Yn) and d
(2)
T (Yn, Y∞) converge to zero in probability as n ↑ ∞,

then dT (Xn, Y∞) also converges to zero in probability as n ↑ ∞.

Remark 5.7. We would like to justify the introduction of the topology of convergence in measure. In
particular, we explain why we did not choose one of the Skorohod topologies which are canonically used
to define convergence of càdlàg processes. For this, let us present some shortcomings of the Skorohod
topologies in this context.

In [20], the authors introduce a compactification of N̄ = {0, 1, . . . } ∪ {∞}, induced by the isometry
φ : N̄ → R which sends n to 1/n and ∞ to zero. The Skorohod’s J1 topology induced by this metric in
D(R+, N̄) is used in [20] when developing a criterion for convergence towards the K-process. However,
this choice is not convenient in the current context, as we explain below.

Consider a sequence of graphs in which the escape probabilities v` do not converge to one (for instance
the torus case in Proposition 9.2, or the Erdös-Rényi in Theorem 11.10). In such examples the random
walk will perform small excursions around a deep trap x before escaping from the ball B(x, `). Due to
the acceleration factor βN , these excursions will last shorter and shorter times as we increase N and
should be neglected in the scaling limit. However, this is not the case for any of the Skorohod topologies.
For example, the sequence of functions fN (t) = 1{1≤t<1+1/N} does not converge in any of the Skorohod
topologies to f(t) ≡ 0.

There is a simple solution for the above problem, based on the fact that the excursions around x before
escaping from B(x, `) vanish in the supremum norm for the Euclidean metric of the torus. There is
however a different shortcoming in this case. Consider for instance the discrete torus TdN embedded
in the continuous torus Td. As we said above, this naturally introduces a metric on TdN for which the
small excursions around a deep trap x do not pose any problems in the Skorohod’s J1 topology since they
stay close to x in the supremum norm. In this case, the problem arises when an excursion exits the
neighborhood B(x, `N ). In this situation, the random walk typically performs a very short and “dense”
excursion around the torus before finding the next deep trap to settle. Again, this phenomenon prevents
convergence in any of the associated Skorohod topologies. Actually not even the limiting process belongs
to the Skorohod topology of Td as its trajectories are not right continuous.
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The topology of convergence in measure deals with these two obstructions, as it ignores what happens
in vanishing time intervals. Due to its variational character, it turns out that our metric dT is extremely
well suited for computations, when compared with the equivalent Ky Fan metric dKF.

6. Main result

We prove in this section that under certain assumptions the continuous time Markov process XN
t ,

introduced in Section 2, is close, in an appropriate time scale and with respect to the topology introduced
in Section 5, to a simple random walk Y Nt which only visits the set AN of the deepest traps and which
has identically distributed jump probabilities: pN (x, y) = ρN (y), x, y ∈ AN . For such result we need,
roughly speaking, the set of deepest traps AN

• to support most of the stationary measure ν.
• to consist of well separated points,
• to be unlikely to be hit in a short time,
• to have comparable escape probabilities from each of its points.

The main result presented below holds in a more general context than the one described in Section 2.
We suppose throughout this section that {GN : N ≥ 1} is a sequence of finite, connected, vertex-weighted
graphs, where {WN

x : x ∈ VN} represents the positive weights. The vertices of VN are enumerated in
decreasing order of weights, VN = {xN1 , . . . , xN|VN |}, W

N
xj ≥W

N
xj+1

, 1 ≤ j ≤ |VN | − 1.

Denote by XN
t the Markov process on VN with generator given by (1.2). We do not assume that the

depths WN
x are chosen according to (1.1), but we impose some conditions presented below in (A0)–(A3).

We write in this section JN ↑ ∞ to represent a non-decreasing sequence of natural numbers {JN :
N ≥ 1} such that limN→∞ JN =∞. To keep notation simple, we sometimes omit the dependence on N
of states, measures and sets.

Recall that ν = νN , defined in (2.1), is the stationary measure of the random walk XN
t . Assume

that ν(BcN ) vanishes asymptotically for any sequence of subsets BN = {xN1 , . . . , xNJN } ⊂ VN such that
JN ↑ ∞:

lim
N→∞

νN (BcN ) = 0 . (A0)

We now fix sequences MN ↑ ∞ and `N ↑ ∞ (MN ≤ |VN |). The sequence MN represents the number
of deep traps selected, and `N a lower bound on the minimal distance among these deepest traps. We
formulate three assumptions on these sequences. Let AN = {xN1 , . . . , xNMN

} be the set of the deepest
traps. We first require the deepest traps to be well separated:

d(xNi , x
N
j ) > 2`N + 1 , 1 ≤ i 6= j ≤MN (A1)

for all N large enough. This condition, which is analogous to condition (B1), ensures that any path
{xNi = z0, z1, . . . , zm = xNj } from xNi to xNj has a state zk which belongs to R(AN , `N ).

The second assumption is somehow related to (B3) and requires, as explained below, the different
escape probabilities vx, x ∈ AN , to have similar order of magnitude. For a subset B of VN , let νB be
the measure ν conditioned on B:

νB(x) =
WN
x deg(x)∑

y∈BW
N
y deg(y)

, x ∈ B .

Expectation with respect to νB is denoted by EνB .
We suppose that there exists a sequence {βN : N ≥ 1} such that for any sequence of subsets BN =

{xN1 , . . . , xNJN } ⊂ AN such that |BN | = JN ↑ ∞

lim sup
N→∞

EνB

[ WN
x

βN v`(x)

]
< ∞ , lim sup

N→∞

1

|BN |
EνB

[βN v`(x)

WN
x

]
< ∞ . (A2)

This hypothesis postulates essentially a law of large numbers for deg(xj) v`(xj) and a bound for the sum
of (WN

xj )
2 deg(xj)/v`(xj).

In analogy with (B2), we will also assume that the hitting time of AN is much larger than the mixing
time of the discrete-time random walk on GN . For L ≥ 1 let

κN = κ(L,MN , `N ) = max
x∈AN

max
z 6∈B(x,`N )

PNz
[
Hx < LtNmix

]
. (6.1)

Assume that for some sequence LN ↑ ∞,

lim
N→∞

M3
N κN = 0 , lim

N→∞
M2
N 2−LN = 0 . (A3)
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Remark 6.1. Consider three sequences MN ↑ ∞, `N ↑ ∞ and LN ↑ ∞ satisfying (A0)–(A2) and such
that

lim
N→∞

κ(LN ,MN , `N ) = 0 . (6.2)

Then, there exists a sequence M ′N ↑ ∞, M ′N ≤ MN , for which the three sequence M ′N , `N , LN satisfy
(A0)–(A3).

Indeed, it follows from (6.2) and the fact that LN ↑ ∞ that there exists a sequence KN ↑ ∞ such
that limN→∞K2

N 2−LN = 0, limN→∞K3
N κ(LN ,MN , `N ) = 0. Define a new sequence M ′N by M ′N =

min{MN ,KN} and define A′N accordingly. Since A′N ⊂ AN and κ′N ≤ κN , (A0)–(A3) hold for the
sequences M ′N , `N , LN .

Hence, in applications, if one is able to prove (6.2), one can redefine the sequence MN to obtain (A3)
which is the condition assumed in the main result of this section. Moreover, if a sequence MN satisfies
conditions (A1), (A2), (6.2), then any sequence M ′N ↑ ∞ which increases to infinity with N at a slower
pace than MN , M ′N ≤ MN , also satisfies these three conditions. The same observation holds for the
sequence LN . Hence, in the applications, both sequences shall increase very slowly to infinity, in a way
that (A3) is fulfilled, and all the problem rests on the identification of a convenient space scale `N , large
for the process to mix before returning to a state, as required in condition (6.2), but not too large, to
permit a good description of a ball of radius `N and a good estimate of the escape probability v`(x).

Let ρN be the probability measure on the set AN given by

ρN (xj) =
deg(xj) v`(xj)∑

1≤i≤MN
deg(xi) v`(xi)

, (6.3)

where v`(xj) = vN`N (xj) is the escape probability introduced in (3.1). By (2.1), ρN can also be written as

ρN (xj) =
ν(xj)v`(xj)W

−1
xj∑

1≤i≤MN
ν(xi)v`(xi)W

−1
xi

, (6.4)

which corresponds to (4.1) with U = HR(AN ,`N ).

For each N ≥ 1, consider the continuous-time Markov process {Y Nt : t ≥ 0} on AN defined as follows.
While at x ∈ AN the process waits a mean WN

x /v`(x) exponential time at the end of which it jumps
to y ∈ AN with probability ρN (y). Note that the jump distribution is independent of the current state
and that the process may jump to its current state since we did not impose y to be different from x.
Moreover, the probability measure νN (x)/νN (AN ) is the (reversible) stationary state of the Markov
chain {Y Nt : t ≥ 0}.

We are now in a position to state the main result of this paper, from which we will deduce Theorems 2.1
and 2.2.

Theorem 6.2. Suppose that conditions (A0)–(A3) are in force. Then, for every N ≥ 1, there exists a
coupling QN between the stationary, continuous-time Markov chain {Y NβN t : t ≥ 0} described above, and

the Markov chain {XN
βN t

: t ≥ 0} such that QN [XN
0 = Y N0 = y] = ρ(y), y ∈ AN , and

lim
N→∞

QN
[
dT (XN

βN ·, Y
N
βN ·) > δ

]
= 0

for every T ≥ 0 and δ > 0, where dT stands for the distance introduced in (5.1).

Theorem 6.2 follows from Lemmas 6.3, 6.4 and Proposition 6.5 below. Theorem 6.2 asserts that the
process XN

βN t
is close to the process Y NβN t which jumps at rate βNv`(x)/WN

x . If this latter expression

is not of order one, the asymptotic behavior of Y NβN t will not be meaningful and our approximation of

XN
βN t

by Y NβN t devoid of interest. Hence, in the applications we expect

βN ≈
WN
xj

v`(xj)
·
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Lemma 6.3. Assume that hypotheses (A0)–(A3) are in force. Then, there exists a subset BN =
{xN1 , . . . , xNJN } ⊂ AN such that,

lim
N→∞

MN (2−LN +MN κN )
βN

Eρ

[
WN
x

v`(x)

] = 0 , (6.5)

lim
N→∞

ν(BcN ) = 0 , (6.6)

lim sup
N→∞

βN

Eρ

[
WN
x

v`(x)

] ν(AcN ) ρ(BN ) = 0 . (6.7)

Proof. We start proving (6.5). By definition of the probability measure ρN this expression is equal to

M2
N (2−LN +MN κN )

1

MN
EνA

[βN v`(x)

WN
x

]
, recall (6.4).

This term vanishes as N ↑ ∞ in view of (A3) and (A2) with BN = AN .
By (A0), ν(AcN ) vanishes as N ↑ ∞. There exists, therefore, a sequence KN ↑ ∞ such that

limN→∞KNν(AcN ) = 0. Let BN = {xN1 , . . . xNJN }, where JN = min{MN ,KN} so that |BN |ν(AcN ) → 0.
The second assertion of the lemma follows from assumption (A0) because JN ↑ ∞. Moreover, as

βN Eρ

[ WN
x

v`(x)

]−1

ρ(BN ) ≤ EνB

[βN v`(x)

WN
x

]
,

by (A2) and by definition of the set BN , we have that

lim sup
N→∞

βN

Eρ

[
WN
x

v`(x)

] ν(AcN ) ρ(BN ) ≤ C0 lim sup
N→∞

|BN | ν(AcN ) = 0 (6.8)

for some finite constant. This concludes the proof of the lemma. �

Lemma 6.4. Assume that conditions (A2), (A3), (6.5)–(6.7) are in force. Then, there exists a sequence
{KN : N ≥ 1} such that

lim
N→∞

KN MN 2−LN = 0 , lim
N→∞

KN M
2
N κN = 0 , (6.9)

lim
N→∞

KN ν(VN \AN )

βN ν(AN )
Eρ

[ WN
x

v`(x)

]
= 0 , (6.10)

lim
N→∞

KN

βN
Eρ

[ WN
x

v`(x)
1{x /∈ BN}

]
= 0 , (6.11)

lim
N→∞

K2
Nν(VN \AN )

βNν(AN )
Eρ

[ WN
x

v`(x)

]
ρ(BN ) = 0 , (6.12)

lim
N→∞

KN ν(VN \AN ) ρ(BN ) = 0 , (6.13)

lim
N→∞

KN

βN
Eρ

[ WN
x

v`(x)

]
= ∞ . (6.14)

Proof. In view of (A3), there exists a sequence ψN ↑ ∞ such that ψN M
2
N 2−LN , ψN M

3
N κN vanish as

N ↑ ∞. We may choose this sequence ψN so that the limits in (6.5) and (6.6) still hold when multiplied
by ψN , as well as the one in (6.7) when multiplied by ψ2

N . Given this sequence ψN , let

KN =
ψNβN

Eρ

[
WN
x

v`(x)

] = ψN βN EνA

[v`(x)

WN
x

]
.

Conditions (6.9) follow the definition of ψN and from (6.5), while condition (6.10) follows from (6.6)
since BN ⊆ AN . To verify (6.11), it is enough to remember that ρ(x)WN

x v`(x)−1 = ν(x) and to recall
(6.6). Condition (6.12) follows from assumptions (6.7), (6.6) and the definition of KN . Condition (6.13)
follows from (6.7) and the definition of KN . Finally, condition (6.14) requires ψN to diverge. �

Proposition 6.5. Suppose that conditions (A1), (A2), (6.9)–(6.14) are in force. Then, for every N ≥ 1,
there exists a coupling QN between the stationary, continuous-time Markov chain {Y NβN t : t ≥ 0} on AN
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with mean WN
x /βNv`(x) exponential waiting times and uniform jump probabilities pN (x, y) = ρN (y), x,

y ∈ AN , and the Markov chain {XN
βN t

: t ≥ 0} such that QN [XN
0 = Y N0 = y] = ρ(y), y ∈ AN , and

lim
N→∞

QN
[
dT (XN

βN ·, Y
N
βN ·) > δ

]
= 0

for every T ≥ 0 and δ > 0, where dT stands for the distance introduced in (5.1).

Proof. Recall the definition of the sequence of stopping times {Dk : k ≥ 0} introduced in Section 4
with U = HR(AN ,`N ). Since by (A1) R(AN , `N ) 6= ∅ and since the state space is finite and irreducible,
Ex[U ] <∞ for all x ∈ A. It also follows from assumption (A1) that Px[HA\{x} ≥ U ] = 1 for all x ∈ A.

Therefore, by Lemma 4.1 and Proposition 4.2, the discrete-time Markov chain XN
Dk

is irreducible and its
unique stationary state is the measure ρ defined in (6.3).

We start the construction of the measure QN by coupling the discrete skeleton of the chain Y Nt with
the chain XN

Dk
, and by coupling the waiting times of the chain Y Nt with the times spent by XN

t at each
site of AN . It follows from Lemma 3.2, which presents an estimate of the distance between the measure
ρ and the measure p( · , A), from Lemma 3.1 and from the strong Markov property at time HR(A,`) that

sup
y∈A

∥∥Py[XN
D1

= ·]− ρ(·)
∥∥
TV
≤ (MN + 1) (2−LN + MN κN ) =: aN . (6.15)

Let σ0 = 0 and denote by {σi : i ≥ 1} the jump times of the chain Y Nt , including among these
jumps the ones to the same site. We couple the initial state XN

0 and Y N0 so that QN [XN
0 = Y N0 ] = 1,

QN [XN
0 = x] = ρ(x), x ∈ A. As Y Nσ1

is distributed according to ρ, by (6.15) we can couple XN
D1

and Y Nσ1

in a way that they coincide with probability at least 1 − aN . Moreover, conditioned on XN
Di

= x, the

number of visits of XN
t to the point x between times Di and Di+1 is a geometric random variable with

success probability v`(x), so that ∫
[Di,Di+1)

1{XN
t = x} dt

is an exponential random variable with expectation Wx/v`(x). This is also the distribution of the time
that Y Nt spends in x. Proceeding by induction and using the strong Markov property at times Di (for
XN
t ) and σi (for Y Nt ), we obtain a coupling QN between XN

t and Y Nt such that

QN

[
XN
Di

= Y Nσi ,
∫Di+1

Di
1{XN

t = XN
Di
} dt = σi+1 − σi

for every 0 ≤ i ≤ KN

]
≥ 1−KN aN ,

where KN is the sequence introduced in Lemma 6.4. Denote the event appearing in the previous formula
by G. By (6.9),

lim
N→∞

QN [Gc ] = 0 . (6.16)

We claim that the coupling QN defined above satisfies the statement of the theorem. To estimate
the distance between the processes XN

t and Y Nt , we introduce a third process X̄N
t close to XN

t in the
distance dT . Following [2], consider the process X̄N

t defined by

X̄N
t = XN (sup{s ≤ t : XN

s ∈ AN}) . (6.17)

The (non-Markovian) process X̄N
t indicates the last site in AN visited by XN

s before time t. We adopt
for X̄N

t the same convention agreed for the process Y Nt and consider that the process X̄N
t jumped from

y ∈ AN to y at time t′ if the process XN
t being at y at time s < t′, reached R(AN , `) and then returned

to y at time t′ before hitting another site z ∈ AN \ {y}. With this convention, the jump times of the
process X̄N

t are exactly the stopping times {Di : i ≥ 1}.
We assert that for every T > 0 and δ > 0,

lim
N→∞

Pρ
[
dT (X̄N

βN ·, X
N
βN ·) > δ

]
= 0 . (6.18)

Fix T > 0 and δ > 0. By definition of the process X̄N ,

dT (X̄N
βN ·, X

N
βN ·) ≤

1

βN

∫ βNT

0

1{XN
t /∈ AN} dt . (6.19)

Therefore,

Pρ
[
dT (X̄N

βN ·, X
N
βN ·) > δ

]
≤ 1

βNδ
Eρ

[ ∫ DKN

0

1{XN
t 6∈ AN} dt

]
+ Pρ[DKN ≤ βNT ] .
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Let us define

∆N :=

∫ DKN

0

1{XN
t /∈ AN}dt = DKN − σKN .

This quantity will appear a couple of times in the computations below. By (6.22), Pρ[DKN ≤ βNT ]
vanishes as N ↑ ∞ because σKN ≤ DKN . On the other hand, by definition of the process X̄N

t and by
stationarity,

1

βNδ
Eρ[∆N ] =

KN

βNδ
Eρ

[ ∫ D1

0

1{XN
t 6∈ AN} dt

]
.

By Corollary 4.3, the previous expression equals

KN

βNδ
νN (VN \AN )Eρ[D1] =

KNνN (VN \AN )

βNνN (AN )δ
Eρ

[ WN
x

v`(x)

]
· (6.20)

By (6.10), this expression vanishes as N ↑ ∞. This proves (6.18).
Now we turn into the estimation of the distance between X̄N

t and Y Nt . On the event G, the first KN

jumps of the processes X̄N
t and Y Nt are the same, and the process Y Nt is always “ahead of” X̄N

t in the
sense that X̄N

t spends more time at each site than Y Nt . We need to show that the delay between X̄N
t and

Y Nt is small. Let BN = {xN1 , . . . , xNM ′N } ⊆ AN be the set introduced in Lemma 6.3 and which satisfies

conditions (6.11) and (6.12), and let NN be the number of times the process Y N visits BN before σKN :

NN := #{j < KN : Y Nσj ∈ BN} .

Denote by G1 the event G ∩ {σKN ≥ βNT}. Since we have that dT (X̄N
βN ·, Y

N
βN ·) ≤ β−1

N

∫ βNT
0

1{X̄N
t 6=

Y Nt }dt, on the set G1, dT (X̄N
βN ·, Y

N
βN ·) ≤ β

−1
N

∫ σKN
0

1{X̄N
t 6= Y Nt }dt. Therefore, on the set G1,

dT (X̄N
βN ·, Y

N
βN ·) ≤

1

βN

KN∑
j=1

∫ σj

σj−1

1{Y Nt 6= X̄N
t } dt

≤ 1

βN

∫ σKN

0

1{Y Nt /∈ BN} dt +
1

βN

KN∑
j=1

∫ σj

σj−1

1{Y Nt ∈ BN , Y Nt 6= X̄N
t } dt .

We claim that each integral in the second term of the previous sum is bounded by ∆N . Indeed, the total
delay of the process X̄N

t with respect to the process Y Nt in the interval [0, σKN ] is DKN −σKN = ∆N . On
the other hand, either the length of time interval [σj−1, σj ] is bounded by ∆N , in which case the claim is
trivial, or the length is greater than ∆N . In this latter situation, since the total delay between Y and X̄
in the interval [0, σKN ] is ∆N , Dj−1−σj−1 ≤ ∆N for 1 ≤ j ≤ KN . Hence, in the interval [σj−1 +∆N , σj)
we have that X̄t = Yt. This proves our assertion. In conclusion, if one recalls the definition of NN , on
the set G1,

dT (X̄N
βN ·, Y

N
βN ·) ≤

1

βN

∫ σKN

0

1{Y Nt /∈ BN} dt +
1

βN
∆NNN .

In conclusion,

QN
[
dT (X̄N

βN ·, Y
N
βN ·) > δ

]
≤ QN [Gc1] +

2

βNδ
QN

[ ∫ σKN

0

1{Y Nt /∈ BN}dt
]

+ QN
[
∆NNN > (1/2)δβN

]
.

(6.21)

The first term vanishes as N ↑ ∞ by (6.16) and (6.22). By Tchebyshev and Cauchy-Schwarz inequalities,

P [ZW > δ] = P [
√
ZW >

√
δ] ≤ (δ−1E[Z]E[W ])1/2 for any pair of nonnegative random variables Z, W .

Therefore, the sum of the second and third terms is bounded by

2KN

βNδ
Eρ

[ WN
x

v`(x)
1{x /∈ BN}

]
+

√
2QN [∆N ]QN [NN ]

δ βN

Since QN [NN ] = KNρ(BN ), by (6.20) this expression is less than or equal to

2KN

βNδ
Eρ

[ WN
x

v`(x)
1{x /∈ BN}

]
+

√
2K2

N

βNδ

ν(V N \AN )

ν(AN )
Eρ

[ WN
x

v`(x)

]
ρ(BN ) .

By assumptions (6.11) and (6.12), this expression vanishes as N ↑ ∞.
To conclude the proof of the theorem it remains to show that

lim
N→∞

QN
[
σKN ≤ βNT

]
= 0 . (6.22)
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For any random variable Z and any T ≥ 0 such that E[Z] ≥ 2T , by Tchebycheff inequality we have that

P [Z < T ] ≤ 4 Var(Z)

E[Z ]2
·

Note that

QN [σKN ] = KN Eρ

[ WN
x

v`(x)

]
, VarQN (σKN ) ≤ 2KN Eρ

[( WN
x

v`(x)

)2]
,

and that, by assumption (6.14), KNEρ[W
N
x /v`(x)] ≥ 2βNT for N sufficiently large. By the previous

elementary inequality,

QN
[
σKN ≤ βNT

]
≤

8Eρ

[(
WN
x

v`(x)

)2]
KNEρ

[
WN
x

v`(x)

]2 ≤ 8βN

KNEρ

[
WN
x

v`(x)

] Eρ
[(

WN
x

v`(x)

)2]
βNEρ

[
WN
x

v`(x)

] · (6.23)

By assumption (6.14), the first term of this expression vanishes as N ↑ ∞. The second one is equal to

EνA

[ WN
x

βNv`(x)

]
.

By (A2) this expression is bounded uniformly in N . This concludes the proof of (6.22) and the one of
Proposition 6.5. �

Instead of starting from the stationary measure ρN , we may also start from any state xNi .

Corollary 6.6. Assume that

lim inf
N

νN (xNi ) > 0 for every i ≥ 1. (6.24)

Under the assumptions of Proposition 6.5, for every i ≥ 1, N ≥ 1, there exists a coupling Q?N between
the stationary, continuous-time Markov chains {Y NβN t : t ≥ 0} and {XN

βN t
: t ≥ 0} such that Q?N [XN

0 =

Y N0 = xNi ] = 1, and

lim
N→∞

Q?N
[
dT (XN

βN ·, Y
N
βN ·) > δ

]
= 0

for every T ≥ 0 and δ > 0.

Proof. The coupling is constructed as in Proposition 6.5, with the condition Q?N [XN
0 = Y N0 = xNi ] = 1

replacing the analogous condition there. Consider the sequence KN introduced in Lemma 6.4 and recall
the definition of the set G introduced just before (6.16).

Since ν is the stationary state of the process XN , for every δ > 0,

PxNi

[ ∫ TβN

0

1{XN
t 6∈ AN} dt > δβN

]
≤ 1

βN δ ν(xNi )
Eν

[ ∫ TβN

0

1{XN
t 6∈ AN} dt

]
≤ Tν(AcN )

δ ν(xNi )
·

Hence, in view of (6.19), PxNi [dT (X̄N
βN ·, X

N
βN ·) > δ] vanishes by (6.24) and assumption (A0).

Let BN be the set introduced in Lemma 6.3. Since νA is the stationary measure for the process Yt,
for the same reasons,

ExNi

[ 1

βN

∫ TβN

0

1{Y Nt 6∈ BN} dt
]
≤ Tν(BcN )

ν(xNi )
·

The distribution of the jump times {σj −σ1 : j ≥ 1} of the process Y constructed in this corollary is the
same as the distribution of the jump times {σj : j ≥ 0} of Proposition 6.5. In particular, by (6.23),

Q?N
[
σKN+1 ≤ βNT

]
≤ QN

[
σKN ≤ βNT

]
≤ 8

KNEρ

[
WN
x

v`(x)

] EνA[ WN
x

v`(x)

]
.

Let

∆?
N =

∫ βNT

0

1{XN
t 6∈ AN} dt .

As in the proof of Proposition 6.5, on the set G?1 = G ∩ {σKN+1 ≥ βNT},∫ TβN

0

1{X̄N
t 6= Y Nt , Y Nt ∈ BN} dt =

KN∑
j=0

∫ σj+1∧βNT

σj∧βNT
1{X̄N

t 6= Y Nt , Y Nt ∈ BN} dt

≤
KN∑
j=0

1{Y Nσj ∈ BN}∆?
N = (1 + N?

N )∆?
N ,
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where N?
N := #{1 ≤ j < KN : Y Nσj ∈ BN} has the same distribution as NN . Therefore, on the set G?1,

βN dT (X̄βN ·, YβN ·) ≤
∫ TβN

0
1{Y Nt 6∈ BN} dt + (1 + N?

N )∆?
N . In view of the argument below (6.21) and

the previous estimates,

Q?N
[
dT (X̄βN ·, YβN ·) > δ

]
≤ aNKN +

2T ν(BcN )

ν(xNi )
+

√
2T ν(AcN )

δ ν(xNi )
[1 +KN ρ(BN )] ,

where aN is given by (6.15). By (6.24), (6.13), and as in Proposition 6.5, this expression vanishes as
N ↑ ∞. �

The following remark will be important when proving Theorem 2.2

Remark 6.7. Assumption (A0) has only been used in Lemma 6.3 to prove the existence of a sequence
of subsets BN satisfying (6.6), (6.7). In particular, Theorem 6.2 remains in force if hypothesis (A0) is
replaced by the existence of a sequence IN ≤MN , IN ↑ ∞, for which BN = {xN1 , . . . xNIN } satisfies (6.6)
and such that

lim
N→∞

|BN | νN (AcN ) = 0 , see (6.8). (6.25)

7. K-processes

We introduce in this section K-processes, a class of strong Markov processes on N = N ∪ {∞} with
one fictitious state. We refer to [20] for historical remarks and to [31] for a detailed presentation and the
proofs omitted here. The main result of this section presents sufficient conditions for the convergence of
a sequence of finite-state Markov processes to a K-process.

Throughout this section we fix two sequences of positive real numbers {uk : k ∈ N} and {Zk : k ∈ N}.
The first sequence represents the ‘entrance measure’ and the second one the ‘hopping times’ of the
K-process. The only assumption we make over these sequences is that∑

k∈N
Zkuk <∞. (7.1)

However, the process will be more interesting in the case∑
k∈N

uk =∞ . (7.2)

If this sum is finite, the K-process associated to the sequences uk and Zk corresponds to a Markov
process on N with no fictitious state.

Consider the set N of non-negative integers with an extra point denoted by ∞. We endow this set
with the metric induced by the isometry φ : N→ R which sends n ∈ N to 1/n and ∞ to 0. This makes
the set N into a compact metric space. We use the notation dist(x, y) = |φ(y)− φ(x)| for this metric.

For each k ∈ N, define independent Poisson process {Nk
t : t ≥ 0} with jump rate given by uk.

Denote by σki , i ≥ 1, the time of the i-th jump performed by the process Nk
t . Independently from the

Poisson processes, let {T0, T
k
i ; k ∈ N, i ≥ 1} be a collection of mean one independent exponential random

variables.
Let Z∞ = 0 and for y ∈ N consider the process

Γy(t) = ZyT0 +
∑
k∈N

Zk

Nkt∑
i=1

T ki .

Define the K-process with parameter (Zk, uk), starting from y as follows

Xy(t) =


y if 0 ≤ t < ZyT0,

k if Γy(σki −) ≤ t < Γy(σki ) for some i ≥ 1 and

∞ otherwise.

(7.3)

Note that Xy(0) = y almost surely if y ∈ N, and even in the case y = ∞ if (7.2) holds. We summarize
in the next result the main properties of the process Xy

t . Its proof can be found in [31] or adapted from
[20] where the case in which uk = 1 for all k ≥ 1 is examined. Recall that we denote by HA the hitting
time of a set A and that Z∞ = 0.
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Theorem 7.1. For any y ∈ N, the process {Xy(t) : t ≥ 0} is a strong Markov process on N with
right-continuous paths with left limits. Being at k ∈ N, the process waits a mean Zk exponential time at
the end of which it jumps to ∞. For any finite subset A of N, HA is a.s. finite and

P
[
Xy(HA) = j

]
=

uj∑
i∈A ui

, j ∈ A .

We investigate in this section the convergence of a sequence of Markov processes in finite state spaces
towards the process Xy(t). Let {MN : N ≥ 1} be a sequence of integers such that MN ↑ ∞, and consider
the sequences of positive real numbers

uNk , ZNk , 1 ≤ k ≤MN , N ≥ 1 . (7.4)

In analogy with (7.3), we define processes Xy
N (t) with ‘entrance measure’ given by uNk and ‘hopping

times’ given by ZNk . For N ≥ 1, let TN0 , TN,ki , NN,k
t and σN,ki , 1 ≤ k ≤MN , i ≥ 1, be defined as above

and write

ΓyN (t) = ZNy T
N
0 +

MN∑
k=1

ZNk

NN,kt∑
i=1

TN,ki , for 1 ≤ y ≤MN

and

Xy
N (t) =

{
y if 0 ≤ t < ZNy T

N
0 ,

k if ΓyN (σN,ki −) ≤ t < ΓyN (σN,ki ) for some i ≥ 1.
(7.5)

One can easily see that the process Xy
N is a continuous-time càdlàg, Markov chain over {1, . . . ,MN}.

The order in which the points {1, . . . ,MN} are visited by Xy
N , after the starting position, is given by

the order of the times σN,ki . From this fact we can conclude that the law of Xy
N is characterized by the

following properties:

• The state space is {1, . . . ,MN} and the process starts from y almost surely,
• The process Xy

N remains at any site k an exponential time with mean ZNk , after which it jumps
to a site j with probability uNj /

∑
1≤i≤MN

uNi .

Remark 7.2. Note that the dynamics of the process Xy
N does not change if one replaces the vector

{uNk : 1 ≤ k ≤MN} by the vector {γNuNk : 1 ≤ k ≤MN} for some γN > 0. In particular, when applying
the theorem below we may multiply the sequence uNk by a constant γN to ensure the convergence of γNu

N
k

to uk.

The main result of this section is stated below. Recall from [17], (5.2) the definition of the Skorohod’s
J1 topology.

Theorem 7.3. Assume that for every k ∈ N

lim
N→∞

(ZNk , u
N
k ) = (Zk, uk) (7.6)

and that

lim
m→∞

lim sup
N→∞

MN∑
k=m

ZNk uNk = 0 .

Then, for any given y ∈ N, Xy
N converges weakly, as N ↑ ∞, towards Xy in the Skorohod’s J1 topology.

Proof. The proof is a modification of the one of Lemma 3.11 in [20]. We first couple the Poisson point
processes used to define ΓyN and Γy. In some probability space (Ω,A,Q) we construct a collection
{Nk : k ∈ N} of Poisson point processes in R+×R+ with respect to the Lebesgue measure. Let Nk(u, t)
be the number of points falling in the rectangle [0, t] × [0, u]. For fixed k ∈ N and u ≥ 0, Nk(u, · )
is distributed as a Poisson counting process with rate u. Define Γy and ΓyN as before, but using these
coupled arrival processes, with corresponding intensities uk and uNk . Moreover, we also use the same
jump clocks {T ki : k ∈ N , i ≥ 1} in their constructions.

Fix an integer m ∈ N and denote by {Smi : i ≥ 1} the arrival times of the process N1(u1, · ) +
N2(u2, · ) + · · ·+Nm(um, · ), with Sm0 = 0. Fix T ≥ 0 and let

LmT = inf{i ≥ 1; ΓyN (Smi ) ≥ T for every N ≥ 1}.

Since (ZN1 , u
N
1 ) converges to (Z1, u1) and since ΓyN (s) ≥

∑
1≤i≤N1(uN1 ,s)

ZN1 T
1
i , by the law of large

numbers the above infimum is finite.
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Since the sequence {uk : k ∈ N} is not summable, there exists a random integer m′ large enough so
that almost surely

m′∑
k=m+1

Zk

Nk(uk,S
m
i+1−)∑

j=Nk(uk,Smi )

T kj > 0 , i = 0, . . . , LmT , (7.7)

where f(s−) stands for the left limit at s of a càdlàg function f .
Since uNk converges to uk, almost surely there exists N(m) such that

Nk(uNk , t) = Nk(uk, t) (7.8)

for all 1 ≤ k ≤ m, 0 ≤ t ≤ SmLmT
and all N ≥ N(m). By possibly increasing N(m) we can also assume

that,

inf
N≥N(m)

m′∑
k=m+1

ZNk

Nk(uNk ,S
m
j+1−)∑

j=Nk(uNk ,S
m
j )

T kj > 0 , i = 0, . . . , LmT . (7.9)

It follows from (7.8) that the arrival times Smi are the same for the process Xy and Xy
N . Furthermore,

by (7.7), (7.9), on each interval (Smi , S
m
i+1) there is at least one arrival of a Poisson process Nk(uk, ·)

for some k > m and one arrival for a Poisson process Nk(uNk , ·) for some k > m. In particular, in the
time interval [Γy(Smi ),Γy(Smi+1−)) (resp. [ΓyN (Smi ),ΓyN (Smi+1−))), 0 ≤ i < LmT , the process Xy (resp.
Xy
N ) performs an excursion in the set {1, . . . ,m}c, while on each time interval [Γy(Si−),Γy(Si)) (resp.

[ΓyN (Si−),ΓyN (Si))), 1 ≤ i ≤ LmT , the processes Xy and Xy
N sit on the same site of {1, . . . ,m}.

For N ≥ N(m), define the time changes λmN : [0,ΓyN (SmLmT
)]→ R+ by

λmN (t) =
Zy
ZNy

t for 0 ≤ t < ZNy T0 .

For 0 ≤ i ≤ LmT − 1, let

λmN (t) = Γy(Smi ) +
Γy(Smi+1−)− Γy(Smi )

ΓyN (Smi+1−)− ΓyN (Smi )
[t− ΓyN (Smi )]

if ΓyN (Smi ) ≤ t ≤ ΓyN (Smi+1−) and let

λmN (t) = Γy(Smi+1−) +
Γy(Smi+1)− Γy(Smi+1−)

ΓyN (Smi+1)− ΓyN (Smi+1−)
[t− ΓyN (Smi+1−)]

if ΓyN (Smi+1−) ≤ t ≤ ΓyN (Smi+1).
In view of our previous discussion,

dist(Xy(λmN (t)), Xy
N (t)) ≤ (1 +m)−1, for every t ≤ T . (7.10)

Indeed, whenever Xy(λmN (t)) differs from Xy
N (t), they are both above m, and the diameter of the set

{m+ 1,m+ 2, . . . } under dist(·, ·) is given by (m+ 1)−1.
We claim that λmN is close to the identity: for any δ > 0,

lim
m

lim sup
N

Q
[

sup
0≤t≤T

|λmN (t)− t| > δ
]

= 0. (7.11)

To prove this claim, fix m ≥ 1 and note that

sup
0≤t≤T

|λmN (t)− t| ≤ max
0≤i≤LmT

{
|Γy(Smi )− ΓyN (Smi )| ∨ |Γy(Smi −)− ΓyN (Smi −)|

}
.

By construction, the right hand side is bounded above by

|ZNy − Zy|T0 +

m∑
k=1

|ZNk − Zk|
Nk(uNk ,S

m
Lm
T

)∑
j=1

T kj

+

∞∑
k=m+1

Zk

Nk(uk,S
m
Lm
T

)∑
j=1

T kj +

MN∑
k=m+1

ZNk

Nk(uNk ,S
m
Lm
T

)∑
j=1

T kj .

(7.12)
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For each fixed m, the first two terms vanish almost surely as N goes to infinity. To estimate the other
two terms note that LmT ≥ L

m+1
T , that Sm+1

Lm+1
T

≤ SmLmT and that Nk, {T kj : j ≥ 1} are independent of SmLmT
for k > m. In particular, for k > m and u > 0,

EQ

[Nk(u,SmLm
T

)∑
j=1

T kj

]
= uEQ

[
SmLmT

]
≤ uEQ

[
S1
L1
T

]
.

Last expectation is bounded because S1
L1
T

is defined through a Poisson process. Therefore, as Zkuk

is summable in k, the third term in (7.12), which does not depend on N , has finite expectation and
converges to zero almost surely and in L1(Q) as m tends to infinity. Similarly,

EQ

[ MN∑
k=m+1

ZNk

Nk(uNk ,S
m
Lm
T

)∑
j=1

T kj

]
≤

∑
k≥m+1

ZNk uNk EQ

[
S1
L1
T

]
.

By assumption, this expression vanishes as N ↑ ∞ and then m ↑ ∞. This proves that (7.11) holds in
fact in L1(Q).

As a consequence of (7.11), one can extract a sequence mN growing slowly enough such that

sup
0≤t≤T

|λmNN − t| converges to zero in probability as N ↑ ∞ .

This, together with (7.10) provides the two conditions of Proposition 5.3 (c) in [17]. Hence, Xy
N converges

in probability to Xy in the Skorohod’s J1 topology as N tends to infinity. �

8. Scaling limit of trap models

In this section we join the results of the last three sections to establish the asymptotic behaviour of
random walks on vertex-weighted graphs.

Throughout this section, we restrict our attention to weights given by an i.i.d. sequence of random
variables in the basin of attraction of an α-stable distribution, as in (1.1). Let us first collect some con-
sequences of this choice of random variables. In particular we obtain the convergence of the environment
to a limiting distribution.

Recall that α ∈ (0, 1) is the parameter of the stable distribution. Let λ be the measure on R× (0,∞)
given by λ = αw−(1+α)dx dw. Denote by {(zi, ŵi) ∈ R × (0,∞) : i ≥ 1} the marks of a Poisson point
process of intensity λ independent of the sequence of graphs {GN : N ≥ 1} and defined on a probability
space (Ω′,F′, P ). Define the random measure ζ on R by

ζ =
∑
i≥1

ŵi δzi , (8.1)

and let ζt = ζ((0, t]), t ≥ 0, be the ζ-measure of the interval (0, t]. Let F : [0,∞)→ [0,∞) be defined by

P [ζ1 > F (t)] = P[WN
x > t] , t ≥ 0 .

The function F is non-decreasing and right-continuous. Denote its right-continuous generalized inverse
by F−1 and let

τ̂Ni = F−1
(
V1/α[ζi/V − ζ(i−1)/V]

)
, 1 ≤ i ≤ V . (8.2)

Denote by τNi , 1 ≤ i ≤ V, the sequence τ̂Ni in decreasing order: τ̂Ni = τNσ(i) for some permutation σ of

{1, . . . ,V} and τNi ≥ τNi+1.

By [18, Proposition 3.1], {τ̂Ni : 1 ≤ i ≤ V} has the same distribution as {WN
x : x ∈ VN}. Therefore,

(τN1 , . . . , τNV ) has the same distribution as (WN
xN1
, . . . ,WN

xNV
). Moreover, since VN = |VN | → ∞ P-almost

surely, the same result implies that (P× P )-almost surely,

lim
N→∞

∑
j≥1

| cVτNj − wj | = 0 , (8.3)

where W = {wi : i ≥ 1} represents the weights in decreasing order of the measure ζ restricted to [0, 1]:

w1 = max{ŵi : zi ∈ [0, 1]} ,
wj+1 = max{ŵi : zi ∈ [0, 1] , ŵi 6∈ {w1, . . . , wj}} , j ≥ 1 ,

(8.4)

and {ck : k ≥ 1} is the sequence defined by (2.8).
Recall the definition of the function ΨN introduced just before the statement of Theorem 2.1.
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Theorem 8.1. Let GN = (VN , EN ) be a sequence of finite vertex-weighted graphs fulfilling assumptions
(A0)–(A2) for some sequences MN , `N . Assume, furthermore, that there exist sequences LN ↑ ∞,
{βN : N ≥ 1} and {γN : N ≥ 1} such that

lim
N→∞

κ(LN ,MN , `N ) = 0 , (8.5)

and such that

lim
N→∞

( WN
xj

βNv`(xj)
, γN v`(xj) deg(xj)

)
= (Zj , uj) , for all j ≥ 1 ,

lim
m→∞

lim sup
N→∞

MN∑
j=m

WN
xj

βNv`(xj)
γN v`(xj) deg(xj) = 0 .

(8.6)

Suppose, finally, that ΨN (XN
0 ) converges weakly to k ∈ N. Then, for every T > 0, the Markov chain

{ΨN (XN
βN t

) : 0 ≤ t ≤ T} converges to the K-process with parameters (Zj , uj) starting from k, in the
topology introduced in Section 5.

Proof. Repeating the arguments presented below (6.2), we obtain a new sequence M ′N for which (A3)
holds, as well as (8.6) with M ′N instead of MN . Denote this new sequence by MN . Under assumptions
(A0)–(A3), Theorem 6.2 furnishes a coupling between the random walk XN

βN t
and a Markov process Y NβN t

on {1, . . . ,MN} whose dT -distance converges to 0 in probability. In view of Remark 7.2 and by Theorem
7.3, under conditions (8.6), the Markov process Y NβN t converges to the K-process with parameters (Zj , uj)
in the Skorohod’s J1 topology. By Skorohod’s representation theorem, there exists a probability space
in which this convergence take place almost surely. It remains to apply Corollary 5.6. �

In view of Remark 6.7, we may replace condition (A0) by assumptions (6.6) and (6.25).

Theorem 8.2. Let GN = (VN , EN ) be a sequence of finite vertex-weighted graphs fulfilling assumptions
(A1)–(A3) for some sequences MN , `N , LN . Assume that there exists a sequence of subsets BN =
{xN1 , . . . , xNIN }, IN ≤ MN , IN ↑ ∞, satisfying (6.6), (6.25). Suppose, furthermore, that condition (8.6)

is in force and that ΨN (XN
0 ) converges weakly to k ∈ N. Then, for every T > 0, the Markov chain

{ΨN (XN
βN t

) : 0 ≤ t ≤ T} converges to the K-process with parameters (Zj , uj) starting from k, in the
topology introduced in Section 5.

Proof. By Remark 6.7, there exists a coupling between the random walk XN
βN t

and a Markov process

Y NβN t on {1, . . . ,MN} whose dT -distance converges to 0 in probability. By Theorem 7.3, under conditions

(8.6), the Markov process Y NβN t converges to the K-process with parameters (Zj , uj) in the Skorohod’s J1

topology. By Skorohod representation theorem, there exists a probability space in which this convergence
take place almost surely. It remains to apply Corollary 5.6. �

9. Pseudo-transitive graphs

We prove in this section Theorem 2.1, inspired by Theorem 8.2, and we apply this result to some
pseudo-transitive graphs. The assumptions (A1)–(A3), (6.6), (6.25), (8.6) simplify in this context
because the degree and the escape probability from the deep traps do not depend on the specific vertex.

Proof of Theorem 2.1. Fix an increasing sequence `N and a sequence of pseudo-transitive graphs GN
with respect to the sequence `N . We first derive some consequences of assumptions (B0)–(B2) and
(2.7).

It follows from these hypotheses that there exists an increasing sequence MN ↑ ∞ such that

lim
N→∞

M2
N E

[ |B(x, 2`N )|
VN

]
= 0 , lim

N→∞
MN P

[
(x, B(x, `N )) 6≡ (y, B(y, `N ))

]
= 0 ,

lim
N→∞

M5
N E

[
sup

y 6∈B(x,`N )

Py
[
Hx ≤ LN tmix

] ]
= 0 , lim

N→∞
M3
N 2−LN = 0 .
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Let ΣjN , 1 ≤ j ≤ 3 be the events

Σ1
N =

⋂
1≤i 6=j≤MN

{
B(xNi , `N ) ∩B(xNj , `N ) = ∅

}
,

Σ2
N =

MN⋂
j=1

{
(xN1 , B(xN1 , `N )) ≡ (xNj , B(xNj , `N ))

}
,

Σ3
N =

{
M3
N max

1≤j≤MN

sup
y 6∈B(xNj ,`N )

Py
[
HxNj ≤ LN tmix

]
≤M−1

N

}
.

In the places where the vertices of the graph appear, as in the definition of the set Σ1
N , the sequence

MN obtained above has to be replaced by min{MN ,VN}, where VN stands for the number of vertices
of the random graph GN . It is easy to see that all three events have probability asymptotically equal to
one. We prove this assertion for Σ1

N and leave to the reader the proof for the other two. By definition,
P[(Σ1

N )c] is bounded above by∑
1≤i 6=j≤MN

P
[
B(xNi , `N ) ∩B(xNj , `N ) 6= ∅

]
≤ M2

N P
[
B(xN1 , `N ) ∩B(xN2 , `N ) 6= ∅

]
because xN1 , . . . , x

N
V is uniformly distributed. By this same reason, conditioning on xN1 , we obtain that

the right-hand side is equal to

M2
N E

[ |B(xN1 , 2`N )| − 1

VN − 1

]
,

which vanishes as N ↑ ∞ in view of the definition of the sequence MN .
Let AN = {xN1 , . . . , xNMN

}. By hypothesis (B0), νN (AcN ) converges to 0 in P-probability. In particular,
there exists a deterministic sequence IN ↑ ∞, IN ≤ MN , such that INνN (AcN ) converges to 0 in P-
probability. Let BN = {xN1 , . . . xNIN }. Since IN ↑ ∞, by hypothesis (B0), νN (BcN ) converges to 0 in
P-probability. Therefore, there exists a sequence εN ↓ 0 for which

lim
N→∞

P
[
νN (BcN ) + INνN (AcN ) ≥ εN

]
= 0 .

Let Σ4
N = {νN (BcN ) + INνN (AcN ) < εN}.

We turn now into the proof of the theorem which relies on Theorem 8.2. Recall the definition of the
random weights τ̂Nj , 1 ≤ j ≤ VN , introduced at the beginning of Section 8. Since {τ̂Nj : 1 ≤ j ≤ VN} has

the same distribution as {WN
j : 1 ≤ j ≤ N}, we may replace the latter random weights by the former

and assume that the random walk XN
t evolves among random traps with depth τNj instead of WN

xj .

To show that the pair (cVτ
N ,ΨN (XN

tβN
)) converges weakly to (w,Kt), it is enough to show that any

subsequence {Nj : j ≥ 1} possesses a sub-subsequence n such that (cnτ
n,Ψn(Xn

tβn
)) converges to (w,Kt).

Fix, therefore, a subsequence Nj .

By (8.3), the ordered sequence (cNjτ
Nj
1 , . . . , cNjτ

Nj
V ) converges almost surely in L1(N) to w = (w1, w2, . . . ).

This proves the weak convergence of the first coordinate. Let ΣNj = ∩1≤k≤4ΣkNj . There exists a sub-

subsequence, denoted by n, for which

P
[ ⋃
n0≥1

⋂
n≥n0

Σn

]
= 1 .

We affirm that all assumptions of Theorem 8.2 hold on the set ∪n0≥1 ∩n≥n0
Σn. Indeed, recall that

β−1
n = cnv

n
`n

(xn1). Condition (A1) follows from the definition of the set Σ1
n. On the set Σ2

n, the escape
probabilities v`(x

n
j ) and the degrees deg(xnj ) are all the same for 1 ≤ j ≤Mn. In particular, by definition

of the sequence βn, condition (A2) becomes

lim sup
n→∞

∑Jn
j=1 cn(τnj )2∑Jn

j=1 τ
n
j

< ∞ , lim sup
n→∞

1∑Jn
j=1 cnτ

n
j

< ∞ .

for all sequences Jn such that Jn ≤ Mn, Jn ↑ ∞. Since the sequence τnj is decreasing in j, the first
ratio is bounded by cnτ

n
1 , and these bounds are a consequence of (8.3). Condition (A3) follows from

the definition of the sequence MN and from the definition of the set Σ3
n. Conditions (6.6), (6.25) follow

from the definition of the set Σ4
n. Finally, on the set Σ2

n, v`(x
n
j ) deg(xnj ), 1 ≤ j ≤ Mn, is constant and

the hypotheses (8.6) with γn = [v`(x
n
1) deg(xn1)]−1 and (Zj , uj) = (wj , 1) follow from (8.3). This proves

the affirmation.
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We may now apply Theorem 8.2 to conclude that the Markov chain Ψn(Xn
βnt

) converges to the K-

process with parameters (wj , 1) starting from k, in the topology introduced in Section 5. This concludes
the proof of Theorem 2.1. �

We conclude this section with some examples of graphs satisfying the assumptions of Theorem 2.1.

9.1. Hypercube. We prove in this subsection the convergence of the trap model on the n-dimensional
hypercube towards the K-process associated to constant entrance measure. This result has been estab-
lished in [19] under the stronger Skorohod’s J1 topology with a different approach. Here we give a proof
as an application of Theorem 2.1.

Let N = 2n, n ≥ 1, and let GN be the n-dimensional hypercube {0, 1}n with edges connecting any
two points that differ by only one coordinate. By estimate (6.15) in [27], tNmix � n2.

Proposition 9.1. The assumptions of Theorem 2.1 are in force for the hypercube GN with `N =
log2(N)/10 = n/10.

Proof. Since the graph is transitive, condition (2.7) is satisfied and (B0) follows from (8.3). To estimate
the ratio in (B1) note that |B(0, 2`N )|/VN is equal to the probability that the sum of n Bernoulli(1/2)
independent random variables is less than or equal to 2`N = n/5. By the law of large numbers, this
probability vanishes as n ↑ ∞.

To show that (B2) is in force, we could compare the distance d(0, Xt) with an Ehrenfest’s urn, see
[27, Section 2.3], and proceed with a calculation based on a birth and death chain. For simplicity, we
give instead a reference implying the result. By Lemmas 3.6 (i) and 3.2 (i) of [11], with m(N) = N2 and
a = 1, there exists a finite constant C0 independent of n such that

sup
y 6∈B(0,`N )

Py
[
H0 ≤ n2

]
≤ C0

(
n2/N +

(
n

n/10

)−1

n1/2 log(n)
)

≤ C0

(
n2/N + (10)−n/10n1/2 log(n)

)
,

which vanishes as n ↑ ∞, proving (B2). �

To complete the description of the asymptotic behavior of the trap model on the hypercube, it re-
mains to determine the time scale βN . By a computation based on a birth-and-death chain, the escape
probability converges to 1 as N ↑ ∞, and therefore limN βN cN = 1.

9.2. Discrete torus for d ≥ 2. In this subsection the graph GN stands for the d-dimensional discrete
torus TdN = (Z/NZ)d, d ≥ 2, endowed with nearest neighbors edges. By [27, Theorem 5.5],

tNmix ≤ C0N
2 (9.1)

for some C0 = C0(d). This constant may change from line to line, but will only depend on d.
We proved in [24] that in this context the trap model converges to the K-process. The next proposition

shows that this result follows from Theorem 2.1.

Proposition 9.2. The assumptions of Theorem 2.1 are in force for the d-dimensional torus GN with

`N =

{
N1/2 d ≥ 3 ,

N
log1/4N

d = 2 ,
LN =

{
log2N d ≥ 3 ,

log1/4N d = 2 .

Proof. Since the graph is transitive, condition (2.7) is satisfied and (B0) follows from (8.3). On the
other hand, assumption (B1) is clearly in force by definition of `N . It remains to check hypothesis (B2).
Recall the definition of the sequence LN . The case d ≥ 3 follows directly from Lemma 3.1 of [33], and we
focus on the case d = 2. Fix x ∈ TdN and z 6∈ B(x, `N ). If Π stands for the canonical projection from Z2

to T2
N and Pz for the probability corresponding to the symmetric nearest neighbor discrete time random

walk on Z2,
Pz[Hx < LN t

N
mix] = Pz[HΠ−1(x) < LN t

N
mix] .

We may bound the previous probability by

Pz[HB(z,N log1/4N)c < LN t
N
mix] +

∑
i

Pz[Hxi < LN t
N
mix] , (9.2)

where the sum is performed over all sites xi in the pre-image of x which belong to the ballB(z,N log1/4N).
The first term can be bounded using the estimate (9.1) for the mixing time and an exponential Doob

inequality since each component of the random walk is a martingale. This argument shows that the first
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term is bounded by 4 exp{−a log1/4N} for some a > 0. Since there are no more than C0

√
logN terms

in the sum, the second expression in the previous decomposition is bounded above

C0

√
logN P0[Hx < LN t

N
mix] ,

where x is a site at distance `N from the origin. Decomposing this probability according to whether the

random walk reached the boundary of the ball with radius N log1/4N before time C0N
2 log1/4N or not,

and recalling the argument employed to bound the first term in (9.2), we conclude that the previous
expression is bounded by

C0

√
logNe−a log1/4N + C0

√
logN P0[Hx < HB(0,N log1/4N)c ]

for some finite constant C0 and some positive a. By [25, Proposition 1.6.7] and the reversibility of the
random walk, the second term is less than or equal to

C0

√
logN

(
1− log `N

log(N log1/4N)
+

C0

log2N

)
≤ C0 log−1/4N ,

which proves condition (B2). �

To complete the description of the asymptotic behavior of the trap model on the discrete torus TdN ,
it remains to determine the time scale βN . Let vd, d ≥ 3, be the escape probability of a simple random
walk on Zd, and let

β′N =

{
c−1
|TdN |

(2/π) log(N) d = 2 ,

c−1
|TdN |

v−1
d d ≥ 3 .

In view of the definition of βN and of [25, Theorem 1.6.6], limN→∞ βN/β
′
N = 1.

9.3. Random d-regular graphs. In this subsection we consider a sequence of graphs GN with N
vertices satisfying the following three assumptions.

(G1) GN is d-regular for some d ≥ 3;
(G2) There is a constant α > 0 such that for any vertex x of VN , the ball B(x, α logN) contains at

most one cycle;
(G3) The spectral gap λN of the continuous time random walk on GN is bounded below by some

positive constant: λN ≥ γ > 0 for all N ≥ 1.

It follows from [12, Remark 1.4] that these three hypotheses hold, with probability approaching 1 as
N ↑ ∞, for a sequence of random d-regular graphs on N vertices. They are also satisfied by the so-called
Lubotzky-Phillips-Sarnak graphs [28].

By [32] p. 328, under conditions (G1) and (G3), the mixing time tNmix is bounded above by C0 logN
for some finite constant C0.

Proposition 9.3. Let {GN : N ≥ 1} be a sequence of random graphs defined on some probability
space (Ω,F,P) satisfying the assumptions (G1)–(G3) with a P-probability converging to 1 as N ↑ ∞.
Then, the conditions of Theorem 2.1 are fulfilled with LN = logN and `N = α′ logN for some α′ <
min{α, [2 log(d− 1)]−1}, where α is the constant appearing in condition (G2).

Proof. Condition (B0) follows from assumption (G1) and (8.3). The rest of the proof is based on
estimates obtained in [12].

By [12, Lemma 6.1] with ∆ = `N , the probability that a ball B(x, `N ) is not a tree is bounded by

(d− 1)−(α−α′) logN . Let ΣN be the event

ΣN =
{
B(xN1 , `N ) and B(xN2 , `N ) are disjoint trees

}
. (9.3)

We claim that P[ΣN ] converges to 1 as N ↑ ∞. Indeed, if Σ̃N stands for the event that B(xN1 , `N ),

B(xN2 , `N ) are trees, in view of the estimate of the previous paragraph, P[Σ̃cN ] is bounded by 2(d −
1)−(α−α′) logN which vanishes as N ↑ ∞. On the other hand, since |B(x1, r)| ≤ 4(d− 1)r for any ball in
a d-regular graph and since xN1 , xN2 are uniformly distributed,

P
[
B(x1, `N ) ∩B(x2, `N ) 6= ∅

]
≤ 4

(d− 1)2`N

N
·

As α′ < [2 log(d−1)]−1, this expression vanishes as N ↑ ∞. This proves the claim and assumption (2.7),
which clearly follows from the claim. Condition (B1) is also in force because |B(x1, 2`N )| ≤ 4(d− 1)2`N .
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It remains to examine the escape probability appearing in condition (B2). It follows from the bound
for the mixing time presented just before the statement of the proposition and from our choice of the
sequence LN that

Pz
[
Hx < LN t

N
mix

]
≤ Pz

[
Hx < C0(logN)2

]
.

By [12, Lemma 3.3] with r = 0 and s = α′ logN , the previous expression for z 6∈ B(x, `N ), is bounded
by C0N

−a for some finite constant C0 and some positive a > 0. This concludes the proof of the
proposition. �

We conclude this section computing the scaling factor βN in the context of graphs satisfying assump-
tions (G1)–(G3). On the event (9.3), which has asymptotic probability equal to one, B(x1, `N ) is a
d-regular tree so that

v`N (x1) =
d− 2

d− 1

( 1

1− (d− 1)−`N

)
.

In particular, limN→∞ βNcN = (d− 1)/(d− 2).

10. Graphs with asymptotically random conductances

We prove in this section Theorem 2.2. The proof follows the one of Theorem 2.1. However, the
absence of regularity of the graph requires some extra effort in establishing (A2).

Recall the coupling QN defined in (B3) between the random graph GN and the sequence of i.i.d.
random vectors {(Dj , Ej) : j ≥ 1}. We extend this coupling QN to a coupling Q between all random
graphs GN and the sequence of i.i.d. random vectors {(Dj , Ej) : j ≥ 1} using QN as the conditional
probability:

Q
[
GN = G

∣∣{(Dj , Ej) : j ≥ 1}
]

= QN
[
GN = G

∣∣{(Dj , Ej) : j ≥ 1}
]
,

with the further condition that the graphs GN , N ≥ 1, are conditionally independent, given {(Dj , Ej) :
j ≥ 1}. Include in the probability space just defined the random measure ζ introduced in (8.1) which
is associated to the marks of a Poisson point process independent from the variables (Dj , Ej) and from
the random graphs GN . The probability measure on this new space is still denoted by Q.

Recall the definition of the random weights τ̂Nj , 1 ≤ j ≤ VN , introduced in Section 2. Since {τ̂Nj :

1 ≤ j ≤ VN} has the same distribution as {WN
j : 1 ≤ j ≤ |VN |}, we may replace the latter random

weights by the former and assume that the random walk XN
t evolves among random traps with depth

τNj instead of WN
xj .

Since wj is a.s. summable, since by (B3) D1/E1 has finite Q-expectation and since the sequences
{wj} and {(Dj , Ej)} are independent,∑

j≥1

wj
Dj

Ej
is Q-almost surely finite . (10.1)

By the strong law of large numbers, almost surely

1

n

n∑
j=1

Dj/Ej ≤ C1 (10.2)

for all large enough n, where C1 = 2EQ[D1/E1].
By hypotheses (B1)–(B3), there exists an increasing sequence MN ↑ ∞ such that

lim
N→∞

M2
N EQ

[ |B(x, 2`N )|
VN

]
= 0 , lim

N→∞
M3
N 2−LN = 0 ,

lim
N→∞

Q
[

max
1≤j≤MN

∣∣ [v`(xj)]−1 − E−1
j

∣∣ > M−2
N

]
= 0 ,

lim
N→∞

Q
[ MN⋃
j=1

{deg(xj) 6= Dj}
]

= 0 ,

lim
N→∞

M5
N EQ

[
sup

y 6∈B(x,`N )

Py
[
Hx ≤ LN tmix

] ]
= 0 .

As before, in the places where the vertices of the graph appear, as in the definition of the set Σ1
N , the

sequence MN obtained above has to be replaced by min{MN ,VN}, where VN stands for the number of
vertices of the random graph GN .
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Let ΣjN , 1 ≤ j ≤ 4 be the events

Σ1
N =

⋂
1≤i 6=j≤MN

{
B(xNi , `N ) ∩B(xNj , `N ) = ∅

}
,

Σ2
N =

{
max

1≤j≤MN

∣∣ [v`(xNj )]−1 − E−1
j

∣∣ ≤M−2
N

}
,

Σ3
N =

MN⋂
j=1

{deg(xNj ) = Dj} ,

Σ4
N =

{
M3
N max

1≤j≤MN

sup
y 6∈B(xNj ,`N )

Py
[
HxNj ≤ LN tmix

]
≤M−1

N

}
.

Similarly to what was done in the proof of Theorem 2.1, we can show that these events have probability
asymptotically equal to one.

By (8.3), we may replace the sequenceMN by a possibly random increasing sequenceM ′N ≤ min{MN ,VN},
M ′N ↑ ∞ Q-a.s., still denoted by MN , for which all the previous estimates hold and such that for all
N ≥ 1, ∑

j≥1

|cVτNj − wj | ≤ M−2
N . (10.3)

By hypothesis (B0), even though the sequence MN is random, the expectation E[νN ({xN1 , . . . , xNMN
}c)]

vanishes as N ↑ ∞. Let AN = {xN1 , . . . , xNMN
}. As in the proof of Theorem 2.1, presented in the

previous sections, using again hypothesis (B0) we construct a set BN = {xN1 , . . . , xNIN }, |BN | = IN , and
a sequence εN ↓ 0 for which

lim
N→∞

Q
[
νN (BcN ) + INνN (AcN ) ≥ εN

]
= 0 .

Let Σ5
N = {νN (BcN ) + INνN (AcN ) ≤ εN}.

To show that the pair (cVτ
N ,ΨN (XN

tβN
)) converges weakly to (w,Kt), it is enough to show that any

subsequence {Nj : j ≥ 1} possesses a sub-subsequence n such that (cnτ
n,Ψn(Xn

tβn
)) converges to (w,Kt).

Fix, therefore, a subsequence Nj . By (8.3), the ordered sequence (cNjτ
Nj
1 , . . . , cNjτ

Nj
V ) converges almost

surely in L1(N) to w = (w1, w2, . . . ). This proves the weak convergence of the first coordinate. Let
ΣNj = ∩1≤k≤5ΣkNj . There exists a sub-subsequence, denoted by n, for which

Q
[ ⋃
n0≥1

⋂
n≥n0

Σn

]
= 1 .

We affirm that all assumptions of Theorem 8.2 hold on the event ∪n0≥1 ∩n≥n0
Σn intersected with

the ones in (10.1), (10.2) and (10.3). Indeed, condition (A1) follows from the definition of the set Σ1
n.

Similarly to the proof of Theorem 2.1, condition (A3) follows from the definitions of the sequence Mn

and the set Σ4
n. Conditions (6.6), (6.25) follow from the definition of the set Σ5

n.
We turn to condition (A2). Recall that βn = c−1

n . Fix a sequence Jn ↑ ∞ such that Jn ≤ Mn, and
let Bn = {xn1 , . . . , xnJn}. Since we replaced the weights W n

xn
j

by τnj , the first expectation appearing in this

hypothesis can be rewritten as ∑
1≤j≤Jn [cnτ

n
j ]2

deg(xn
j )

v`(xn
j )∑

1≤j≤Jn cnτ
n
j deg(xnj )

· (10.4)

By definition of the set Σ3
n we may replace deg(xnj ) by Dj . Since τnj is decreasing, by definition of the

set Σ2
N the numerator is bounded by

cnτ
n
1

Jn∑
j=1

cnτ
n
j

Dj

Ej
+

cnτ
n
1

M2
n

Jn∑
j=1

cnτ
n
j Dj .

The second term divided by the denominator in (10.4) is less than or equal to cnτ
n
1M

−2
n which goes to

0 as n→∞ in view of (10.3). Also, by (10.3), the first term is bounded by

cnτ
n
1

Jn∑
j=1

wj
Dj

Ej
+ cnτ

n
1

1

Mn
max

1≤j≤Jn

Dj

Ej
.
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Since the denominator in (10.4) is bounded below by cnτ
n
1 D1 ≥ cnτn1 , the first condition in (A2) follows

from (10.1), (10.2).
The second condition of assumption (A2) can be written as

1

Jn

∑
1≤j≤Jn v`(x

n
j ) deg(xnj )∑

1≤j≤Jn cnτ
n
j deg(xnj )

·

By definition of the set Σ3
n we may replace deg(xnj ) by Dj . The sum in the denominator is bounded

below by cnτ
n
1D1 ≥ cnτ

n
1 , which is uniformly bounded. Since the escape probability is bounded by one

and since by (B3) Ej is bounded by one, the numerator is less than or equal to
∑

1≤j≤Jn(Dj/Ej), whose

average by (10.2) is bounded.
It remains to establish (8.6) with γN = 1, Zj = wj/Ej and uj = EjDj . The convergence of the first

term follows from (10.3), the definition of Σ2
n and Σ3

n and the fact that the variables Ej are bounded by
one. The second part of (8.6) amounts to estimate

Mn∑
j=m

cnτ
n
j deg(xnj ) =

Mn∑
j=m

cnτ
n
j Dj ≤

Mn∑
j=m

wj (Dj/Ej) +
1

M2
n

max
1≤j≤Mn

(Dj/Ej) ,

where the identity follows from the definition of Σ3
n and the inequality from (10.3) and the boundedness

of Ej . The first term on the right hand side vanishes in view of (10.1) and the second one by (10.2).
This concludes the proof of the Theorem.

11. Supercritical Erdös-Rényi random graphs

We show in this section that super-critical Erdös-Rény random graphs satisfy the assumptions of
Theorem 2.2. Let VN be the set of vertices VN = {1, . . . , N}. For λ > 1 fixed, let {ξx,y : x, y ∈ VN}
be i.i.d. Bernoulli(λ/N) random variables constructed in a probability space (Ω,A,P). The Erdös-
Rényi random graph is defined as GN = (VN ,EN ), where EN is the random set of edges given by
{{x, y}; ξx,y = 1}. Throughout this section, cj , Cj , j ≥ 0, represent positive constants depending on λ
and sometimes on further parameters, the first ones being tipically small and the last ones large. Next
result can be found in [16, Theorem 2.3.2].

Theorem 11.1. There is a constant c0 such that with P-probability converging to one as N tends to
infinity, there is a unique component Cmax in (VN ,EN ) with |Cmax| > c0 logN . Moreover, there exists
0 < vλ < 1 such that

lim
N→∞

P
[ ∣∣∣ |Cmax|

N
− vλ

∣∣∣ > ε
]

= 0 .

for all ε > 0.

We will be interested in analyzing the trap model in Cmax, providing another interesting example for
which our theory can be applied. For the sake of simplicity we shall assume that the common distribution
of the traps {WN

j : j ≥ 1} is α-stable. More precisely, recall the definition of the variables τ̂Ni , 1 ≤ i ≤ V,

introduced in (8.2) with V = N and F (t) = t. We assume in this section that WN
i = τ̂Ni , 1 ≤ i ≤ N .

Let VN = Cmax be the random set of vertices and let EN = {{x, y} ⊂ Cmax : {x, y} ∈ EN} be the
random set of edges of the random graph GN . In contrast with the previous examples presented in
Section 9, the number of vertices of the random graph GN is also random. The weights are distributed
as follows. Given VN , re-enumerate the weights WN

j , 1 ≤ j ≤ |VN |, in decreasing order and denote by

ŴN
j the new sequence, so that ŴN

j ≥ ŴN
j+1, 1 ≤ j < |VN |, ŴN

σ(j) = WN
j for some permutation σ of

VN . Randomly enumerate the vertices of VN , obtaining a vector (xN1 , . . . , x
N
|VN |), and set WN

xNj
= ŴN

j .

Given this random vertex-weighted graph, we examine the continuous-time random walk XN
t on GN

with generator given by (1.2).
Note that to define the random weights WN

j = τ̂Nj we divided the interval [0, 1] in N sub-intervals in-

stead of dividing it in |VN | intervals. In particular, in contrast with the examples of Section 9, N−1/αWN
xN1

does not converge to a Fréchet distribution, but so does v
−1/α
λ N−1/αWN

xN1
, where vλ is given by Theorem

11.1.
In the rest of this section, we prove that the assumptions of Theorem 2.2 are fulfilled. By Theorem

11.1, the number of vertices converges in probability to +∞. To establish (B0), fix a sequence JN ↑ ∞
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and denote by W N
1 , . . . ,W N

N the sequence WN
1 , . . . ,WN

N enumerated in decreasing order. Note that

W N
j ≥ ŴN

j , 1 ≤ j ≤ |VN |. By (8.3) and (2.8), for every ε > 0,

lim
N→∞

P
[∑
j≥1

|N−1/αW N
j − wj | ≥ ε

]
= 0 .

Since
∑
j≥JN wj vanishes almost surely as N ↑ ∞, if Σ0

N stands for the event
∑
j≥JN N

−1/αW N
j ≤ 1,

lim
N→∞

P
[
Σ0
N

]
= 1 .

Denote by Σ1
N the event {|VN − vλN | ≤ εN} for some 0 < ε < min{vλ, 1 − vλ}. By Theorem 11.1,

P[Σ1
N ]→ 1. In conclusion, to prove (B0) we need to show that

lim
N→∞

E
[
νN
(
{x1, . . . , xmin{JN ,|VN |}}

c
)
1{Σ0

N ∩ Σ1
N}
]

= 0 .

By definition of νN , and since all vertices in VN have degree at least equal to one,

νN
(
{x1, . . . , xmin{JN ,|VN |}}

c
)
≤
∑|VN |
j=JN+1W

N
xj deg(xj)

WN
x1

·

Since W N
j ≥ ŴN

j , 1 ≤ j ≤ |VN |,
|VN |∑

j=JN+1

WN
xj deg(xj) ≤

|VN |∑
j=JN+1

W N
j deg(xj) ≤

N∑
j=JN+1

W N
j deg(xj) ,

if x|VN |+1, . . . , xN represents a random enumeration of the vertices of VN which do not belong to the

largest component. On the set Σ1
N , WN

x1
≥ max1≤k≤cλN W

N
k , where cλ = vλ − ε. This latter variable as

well as the variables W N
j depend only on the Poisson point process defined at the beginning of Section

8. Hence if we denote by W the σ-algebra generated by this process and let Σ0,1
N = Σ0

N ∩Σ1
N , we obtain

that

E
[∑N

j=JN+1 W N
j deg(xj)

WN
x1

1{Σ0,1
N }

]
≤ E

[∑N
j=JN+1 W N

j deg(xj)

max1≤k≤cλN W
N
k

1{Σ0,1
N }

]
≤ E

[ 1{Σ0
N}

max1≤k≤cλN W
N
k

N∑
j=JN+1

W N
j E

[
deg(xj)1{Σ1

N}
∣∣W] ] .

We first estimate the conditional expectation and then the remaining expression. Since the law
of the graph GN is independent of the σ-algebra W, the previous conditional expectation is equal to
E[deg(xj)1{Σ1

N}]. By construction if j ≤ |VN |, deg(xj) has the same distribution as deg(xk) for 1 ≤
k ≤ |VN |, with a similar fact if j > |VN |. Therefore, for a fixed j, the previous expectation is bounded
by ∑

`≤j−1

E
[
1{|VN | = `} 1

N − `
∑
y 6∈VN

deg(y)
]

+
∑
`≥j

E
[
1{|VN | = `} 1

`

∑
y∈VN

deg(y)
]
,

where the sum is carried over all ` such that |`− vλN | ≤ εN . Estimating the denominators by the worst
case, we get that the sum is less than or equal to

1

min{vλ − ε, 1− ε− vλ}
E
[ 1

N

N∑
y=1

deg(y)
]
.

This expectation is equal to λ.
It remains to estimate the expectation involving the weights. On the set Σ0

N ,
∑
JN+1≤j≤N W N

j ≤
N1/α. On the other hand, using the notation introduced in (8.1), max1≤k≤cλN N

−1/αWN
k ≥ w(λ), where

w(λ) = maxi ŵi, and where the maximum is carried over all indices i such that zi ≤ cλ. Hence,

E
[ 1{Σ0

N}
max1≤k≤cλN W

N
k

N∑
j=JN+1

W N
j

]
≤ E

[ 1

w(λ)

]
.

Since w′ = w(λ)/c
1/α
λ has a Fréchet distribution, P (w′ ≤ t) = exp{−1/tα}, this expectation is finite,

which proves condition (B0).
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The results of this section should still hold if we require the variables WN
j to belong to the domain of

attraction of an α-stable law and to satisfy the bound

lim sup
N→∞

E
[(
cN sup

1≤i≤N
WN
i

)−1
]
< +∞ ,

where cN has been introduced in (2.8).
To understand the asymptotic law of the escape probabilities, we need to introduce a related branching

process. Let T be the random tree obtained by the Galton-Watson process with offspring distribution
Poisson(λ) and denote its law by P. Since λ is assumed to be greater than one, the event that T is
infinite has positive P-probability, [16, Theorem 2.1.4]. We denote by ∅ the root of T.

We first show that the neighborhood of a random point in the Erdös-Rényi graph looks like the
neighborhood of ∅ in T. This is made precise as follows. We write (x,G) for a graph with a marked
vertex x. We say that (x,G) is isometric to (x′, G′) if there exists an isometry between G and G′, sending
x to x′. As an abuse of notation, we consider A ⊆ VN both as a set of vertices and as the corresponding
induced subgraph of GN .

Proposition 11.2. Let 0 < γ < (3 log λ)−1. There exist constants C1 and N0 = N0(λ, γ) such that
given a random point z ∈ VN , we can find a coupling QN between the random graph GN under P and the
Galton-Watson tree T under P such that for all N ≥ N0,

QN

[(
z,B(z, γ logN)

)
is isometric to

(
∅, B(∅, γ logN)

)]
≥ 1− C1N

3γ log λ−1 .

Proof. We follow an argument similar to the one in [16, Section 2.2]. Assume, without loss of generality,
that z = 1 and define an exploration of the cluster C1 containing 1 in the following way. Let S0 =
{2, 3, . . . , N}, I0 = {1} and R0 = ∅. These sets represent respectively the ‘susceptible’, the ‘infected’
and the ‘removed’ sites. Define a discrete time evolution by

Rt+1 = Rt ∪ It,
It+1 = {y ∈ St; ξx,y = 1 for some x ∈ It},
St+1 = St \ It+1.

Note that the cluster C1 is given by ∪∞t=1It and that B(1, r) = ∪rt=1It.
In order to couple the above exploration process with a Galton-Watson branching process, we introduce

a new set of independent Bernoulli(λ/N) random variables ζtx,y, t ≥ 1, x ≥ 1, 1 ≤ y ≤ N . Let Z0 = 1
and

Zt+1 =
∑
x∈It
y∈St

ξx,y +
∑
x∈It

y∈VN\St

ζtx,y +

N+Zt−|It|∑
x=N+1

N∑
y=1

ζtx,y . (11.1)

The first term in the above sum can be written as |It+1| + Ct+1, where Ct+1 represents the number of
‘collisions’ occurring in the exploration process, that is, individuals in It+1 connected to more than one
individual in It. The second term stands for the ‘immigrants’ introduced to compensate the fact that
|St| < N , and the third term for children of individuals that are not in It.

It is easy to check that the process {Zt : t ≥ 0} is a branching process with offspring distribution
Binomial(N,λ/N). Let T′ be the random tree associated with Zt. More precisely, if x is the i-th
individual in the t-th generation of T′, the number of offsprings of x will be given by{∑

y∈St ξx,y +
∑
y∈VN\St ζ

t
x,y if i ≤ |It|,∑N

y=1 ζ
t
x,y otherwise.

It is immediate to check that Zt is the size of the t-th generation of T′ and that Zt ≥ |It|.
On the event Zs = |Is|, 1 ≤ s ≤ t, there were no collisions and no immigrants. Therefore, in this

event the subgraph (1, B(1, t)) of GN is isometric to the subgraph (∅, B(∅, t)) of T′. Hence, by [16,
Theorem 2.2.2] with t = γ logN , there exist a constant C1 < ∞ and a coupling Q′ between GN and T′

such that with probability at least 1− C1N
2γ log λ−1, (1, B(1, t)) is isometric to (∅, B(∅, t)).

Claim A: Let 0 < γ < (3 log λ)−1. There exist n0 and a coupling Q′′ between the tree T′ with
Binomial(N,λ/N) offsprings and the tree T with Poisson(λ) offsprings, such that, with probability at
least 1− C1N

3γ log λ−1, (∅, B(∅, γ logN)) (in T′) is isometric to (∅, B(∅, γ logN)) (in T) for N ≥ n0.
It is well known that a Poisson(λ) random variable Y can be coupled with a Binomial(N , λ/N)

random variable Y ′, in a way that

P [Y = Y ′] ≥ 1− 2λ2N−1 , (11.2)
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see for instance [15, Chapter 2.6] or [26, Theorem 1] for a bound on the total variation distance and [27,
Chapter 4] for a connection between total variation distance and coupling. On the other hand, by [1,
Theorem 4], there exist θ = θ(λ) > 0 and C3 such that for and any t, A ≥ 0,

P
[
Zt ≥ Aλt

]
= P

[
eθ (Zt/λ

t) ≥ eθA
]
≤ e−θA E

[
eθ (Zt/λ

t)
]
≤ C3 e

−θA .

This bound permits to estimate the volume of the subgraph B(∅, γ logN) of T. Fix γ ∈ (0, 1). Since
|B(∅, γ logN)| =

∑
0≤t≤γ logN Zt, we have that

P
[
|B(∅, γ logN)| ≥ N3γ log λ

]
≤

γ logN∑
t=0

P[Zt ≥ N2γ log λ] ≤
γ logN∑
t=0

P[Zt ≥ Nγ log λλt]

for all N greater than some constant N0 = N0(λ, γ). Therefore, applying the previous estimate, we
conclude that for every 0 < γ < 1, there exist C3 <∞ and N0(λ, γ) <∞ such that

P
[
|B(∅, γ logN)| ≥ N3γ log λ

]
≤ C3 exp{−θ Nγ log λ}. (11.3)

for all N ≥ N0.
Claim A follows from (11.2) and (11.3), which concludes the proof of Proposition 11.2. �

In the proof of the previous lemma we also obtained a bound on the size of a ball B(z, γ logN) around
a typical point z.

Corollary 11.3. For any 0 < γ < (3 log λ)−1, there exist a finite constant C2 and an integer N0,
depending only on λ and γ, such that for any random point z ∈ {1, . . . , N},

P
[
|B(z, γ logN)| ≥ N3γ log λ

]
≤ C2N

3γ log λ−1

for all N ≥ N0.

As required in (B3), we extend the local isometry obtained in Proposition 11.2 to various balls in the
random graph GN .

Corollary 11.4. Fix positive numbers b and γ such that 0 < 2b + 6γ log λ < 1. There exist constants
C0, N0, depending only on λ and γ, and a coupling Q′ = Q′N between the random graph GN and N b

independent Galton-Watson trees Ti, 1 ≤ i ≤ N b, such that for all N ≥ N0,

Q′[Bc] ≤ C0N
2b+6γ log λ−1 ,

where B is the event “The balls (zi, B(zi, γ logN)), 1 ≤ i ≤ N b, are disjoint and isometric to (∅i, B(∅i, γ logN))”,
and z1, . . . , zNb are sites randomly chosen in {1, . . . , N}.

Proof. Choose randomly N b sites on {1, . . . , N}, denoted by z1, . . . , zNb . By Proposition 11.2, for N
large, there is a coupling Q′ between independent Erdös-Rényi random graphs G i

N , 1 ≤ i ≤ N b, and
independent Galton-Watson trees Ti in a way that with probability at least 1 − C1N

bN3γ log λ−1 each
ball

(
zi, B(zi, γ logN)

)
in G i

N is isomorphic to
(
∅i, B(∅i, γ logN)

)
in Ti.

We construct an Erdös-Rényi-distributed graph GN which is partially determined by the above G i
N ’s.

We first explore the ball B(z1, γ logN) in G 1
N . Every edge {x, y} revealed during this exploration is open

in GN if and only if it is open in G 1
N . Then we proceed by exploring B(z2, γ logN) in GN observing only

that we do not reassign values to edges in GN that were already established in the previous step. After
proceeding with this exploration for i = 1, . . . , N b, we assign the remaining edges of GN independently.

It is clear from the above exploration procedure that the graph GN is distributed as an Erdös-Rényi
random graph. Moreover, on the event A defined as “the balls B(zi, γ logN), i = 1, . . . , N b, are pairwise
disjoint in {1, . . . , N}”, we have that (zi, B(zi, γ logN)) in GN is isomorphic to the corresponding pair
in G i

N . Consequently they will be isomorphic to (∅i, B(∅i, γ logN)) in Ti. Therefore, to conclude the
proof of the corollary, it remains to estimate Q′[A c].

Since all the vertices are indistinguishable, Q′[A c] is bounded by

N2bQ′
[
B(z1, γ logN) ∩B(z2, γ logN) 6= ∅

]
= N2bQ′

[
z1 ∈ B(z2, 2γ logN)

]
.

Since z2 is independent of z1, this latter probability is bounded by

Q′
[
|B(z2, 2γ logN)| ≥ N6γ log λ

]
+

1

N
N6γ log λ .
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By Corollary 11.3, for N large, the first term is bounded above by C2N
6γ log λ−1 for some finite constant

C2. Hence,

Q′[A c] ≤ C2N
2b+6γ log λ−1 ,

which proves the corollary. �

It is a well known fact that

conditioned on being infinite, T is P-a.s. transient, (11.4)

see Theorem 3.5 and Corollary 5.10 in [30]. We denote by v∅ the probability that a simple random walk
starting at ∅ never returns to this site, the so called escape probability. As we will show, the distribution
of v∅ under P is close to that of the probability that a random walk on the giant component Cmax of the
random graph GN escapes from a certain neighborhood of a random vertex.

Since the isometry obtained in Corollary 11.4 is local, we need a tool to show that looking at a
neighborhood of ∅ ∈ T we can obtain precise estimates on the escape probability v∅. The next result
plays a central role in this respect. Denote by ∆l, l ≥ 0, the points of the l-th generation of a tree:
∆l = B(∅, l) \B(∅, l − 1).

For a fixed tree T, we denote by Py = Pτy , y ∈ T the probability induced by the discrete-time simple
random walk on T starting from y.

Proposition 11.5. There exist constants c1, c2, depending only on λ, such that, for every l ≥ 1,

P
[

sup
y∈∆l

Py[H∅ <∞] ≥ exp{−c1l}
]
≤ exp{−c2l} .

Proof. Throughout the proof of this lemma, given a rooted tree T and a vertex y ∈ T, we denote by Ty
the subtree formed by the root y together with the descendants of y in T.

The idea is to show that in the path between y and ∅ there are many tunnels from which the random
walk can escape to infinity. In order to properly define these tunnels, we need to introduce some extra
notation. For an arbitrary tree T rooted at ∅, we define the tree Ttail, obtained by adding a vertex ∅′
which is connected to ∅ by an edge. This extra element should be regarded as the ancestor of ∅. In the
proof, we use the notation PT

x to specify on which tree the random walk is defined.
For a given δ > 0, we say that a tree T with root ∅ satisfies the property Qδ if

PTtail

∅ [H∅′ =∞] ≥ δ .

In other words, the property Qδ is saying that a random walk on Ttail has probability at least δ of never
hitting the ancestor ∅′ of the root ∅.

It is clear from (11.4) that for every ε > 0, there exists a δ = δ(ε, λ) > 0 such that

P[T does not satisfy Qδ] ≤ q + ε, (11.5)

where q is the extinction probability: q = P[T is finite].
If y is in the l’th generation of T, we write ∅ = y0, y1, . . . , yl = y to denote the unique simple path

connecting ∅ to y. Moreover, we denote by Γ(y) the number of elements yk, 0 ≤ k < l, having at least
one descendant y′k 6= yk+1 such that Ty′k satisfies Qδ.

We can now use (11.5) together with [23, Lemma 1] to conclude that there exist constants c3 and c4
such that

P[∃ y ∈ ∆l such that Γ(y) < c3l] ≤ exp{−c4l} .
To conclude the proof of the lemma it remains to show that there exists c1 > 0 for which the event
“∃ y ∈ ∆l such that Py[H∅ <∞] ≥ exp{−c1l}” is contained in the event “∃ y ∈ ∆l such that Γ(y) < c3l”.

Assume that all points z in generation l of T are such that Γ(z) ≥ c3l and fix a point y ∈ ∆l. Recall
the definition of y0, . . . , yl given above and consider a subsequence kj , 1 ≤ j ≤ c3l, for which ykj has a

descendant y′kj 6= ykj+1 such that Ty′kj
satisfies Qδ. These points are the entrance to the tunnels Ty′kj

that we have referred to in the beginning of the proof.
Let T− be the subtree of T with all the descendants of ykj removed, 1 ≤ j ≤ c3l, with the exception of

ykj+1 and y′kj . An argument based on flows or capacities shows that PT
y [H∅ < ∞] ≤ P

T−
y [H∅ < ∞] ≤

P
T−
ykm [H∅ <∞] where m = c3l. By the strong Markov property,

PT−
ykm

[H∅ <∞] ≤ PT−
ykm

[Hykm−1
<∞]PT−

ykm−1
[H∅ <∞] .
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Since Ty′kj
satisfies Qδ and since we removed all descendants of ykj with the exception of y′kj and ykj+1,

P
T−
ykm [Hykm−1

=∞] ≥ (1/3)P
T−
y′km

[Hykm
=∞] ≥ δ/3. Hence, the previous expression is bounded by

[1− (δ/3)]PT−
ykm−1

[H∅ <∞] .

Iterating this argument m − 1 times we finally get that PT
y [H∅ < ∞] is bounded by [1 − (δ/3)]c3l−1,

which concludes the proof of the lemma. �

Proposition 11.5 permits to approximate the inverse of the escape probability v∅ by a local quantity.

Fix a infinite tree T and m ≥ 1. Let v
(m)
∅ be the probability to escape from B(∅,m), v

(m)
∅ = P∅[H+

∅ >
HB(∅,m)c ]. Recall from [27, Chapter 9] the notion of flow and energy of a flow. Since |T| = ∞, we can
define a trivial unit flow from ∅ to B(∅,m)c which has energy equal to m. Hence, by Proposition 9.5
and Theorem 9.10 of [27],

v
(m)
∅ ≥ (d∅m)−1 , (11.6)

where d∅ is the degree of the root.

Corollary 11.6. There exist positive constants c1 and c2, depending only on λ, such that

P
[
|∆l| < exp{c1l}

∣∣∆l 6= ∅
]
≤ exp{−c2l}

for every l ≥ 1.

Proof. For a tree with at least l generations, let Gl be the graph obtained by identifying all points in ∆l,
naming this vertex zl. All other sites are left untouched, and the number of vertices of this new graph is
|B(∅, l)| − |∆l|+ 1. Since the stationary measure of a simple random walk is proportional to the degree
of the vertex,

|∆l|/d∅ = π(zl)/π(∅),

where π stands for the stationary measure of a simple random walk on Gl. The ratio in the right hand
side of the above equation can be estimated using the escape probabilities from these two points. Let
PG
x , x ∈ Gl stand for the probability on the path space induced by a discrete-time random walk on Gl

starting from x. Recall that the resistence between ∅ and zl is the same as the resistence between zl
and ∅, so that

π(zl)

π(∅)
=

PG
∅[Hzl < H+

∅ ]

PG
zl [H∅ < H+

zl ]
·

We may couple the random walk on Gl with a random walk on the tree in such a way that PG
∅[Hzl <

H+
∅ ] = P∅[H∆l

< H+
∅ ] and that PG

zl
[H∅ < H+

zl
] ≤ maxy∈∆l

Py[H∅ < H+
∆l

]. By (11.6), P∅[H∆l
<

H+
∅ ] ≥ (d∅l)

−1. Putting together all previous estimates, we get that on the set ∆l 6= ∅,

|∆l|−1 ≤ l max
y∈∆l

Py[H∅ < H+
∆l

] ≤ l max
y∈∆l

Py[H∅ <∞] . (11.7)

Since there is a positive probability that a super-critical tree survives, the probability appearing in
the statement of the lemma is bounded by C0P[ |∆l| < exp{c1l}, ∆l 6= ∅]. By (11.7), this probability is
bounded by C0P[ l maxy∈∆l

Py[H∅ <∞] ≥ exp{−c1l}], which is bounded by exp{−c2l} by Proposition
11.5 �

Corollary 11.7. For any 0 < γ < 1, there exist positive constants c0 and N0 ≥ 1, depending only on γ
and λ, such that for all N ≥ N0,

P
[∣∣ 1
v∅
− 1

v′∅

∣∣ ≥ d∅N−c0 ∣∣∣|T| =∞] ≤ N−c0 ,

where d∅ represents the degree of ∅ and v′∅ = P∅[H+
∅ > HB(∅,γ logN)c ].

Proof. Fix 0 < γ < 1 and an infinite tree T. To keep notation simple, let B = B(∅, γ logN) and let ∂B
be the set of points in Bc which have a neighbor in B. By the strong Markov property,

P∅[H+
∅ > HBc ] ≥ P∅[H+

∅ =∞] ≥ P∅[H+
∅ > HBc ] inf

x∈∂B
Px[H+

∅ =∞] .

Inverting these terms, we obtain

0 ≤ 1

v′∅
− 1

v∅
≤ 1

v′∅

( 1

infx∈∂B Px[H∅ =∞]
− 1
)
.
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By Proposition 11.5 with l = γ logN , there exists constants c1, c2 > 0, depending on λ, such that on
a set with probability at least 1 − N−γc2 the previous infimum is bounded below 1 − N−γc1 . Since
(1− x)−1 ≤ 1 + 2x for x ∈ (0, 1/2), there exists N0 = N0(γ, λ) such that for N ≥ N0,∣∣∣ 1

v′∅
− 1

v∅

∣∣∣ ≤ 2

Nγc1

1

v′∅
·

Estimate (11.6) permits to conclude the proof of the corollary, changing the values of the exponents if
necessary. �

Corollary 11.8. Let T be a Galton-Watson tree with Poisson(λ) offsprings, λ > 1. Then, there exist
finite constants c0, C0 and s0 <∞, depending only on λ, such that

P
[
(v∅)−1 ≥ s

∣∣ |T| =∞] ≤ C0 exp{−c0
√
s}

for all s ≥ s0.

Proof. Since T is super-critical, the probability appearing in the statement of the lemma is bounded by
C3 P[(v∅)−1 ≥ s , |T| = ∞] for some finite constant C3 depending only on λ. Fix an integer n ≥ 1.
By the strong Markov property, v∅ is bounded below by P∅[HBc ≤ H+

∅ ] infy∈Bc Py[H∅ = ∞], where

B = B(∅, n). Therefore, P[(v∅)−1 ≥ s , |T| =∞] is less than or equal to

P
[
P∅[HBc ≤ H+

∅ ]−1 ≥ s/2, |T| =∞
]

+ P
[

inf
y∈Bc

Py[H∅ =∞] ≤ 1/2
]
.

By (11.6), P∅[HBc ≤ H+
∅ ] ≥ (d∅n)−1. The previous expression is thus bounded by

P[d∅n ≥ s/2] + P
[

sup
y∈Bc

Py[H∅ <∞] ≥ 1/2
]
.

Set n =
√
s, recall that d∅ has a Poisson(λ) distribution. Apply an exponential Tchebychev inequality

to estimate the first term. By Proposition 11.5 with l =
√
s, the second term is bounded by exp{−c2

√
s}

provided s is large enough. �

The following corollary allows us to bound the quantity εN appearing in (6.5) and (6.7). This cor-
responds to the probability of entering the neighborhood of a deep trap before LN times the mixing
time.

Corollary 11.9. Fix an arbitrary vertex y ∈ {1, . . . , N} and 0 < γ < (3 log λ)−1. Then, there exists
positive constants c0 and N0 ≥ 1, depending only on γ and λ, such that for all N ≥ N0,

P
[

sup
z∈B(y,γ logN)c

Pz[Hy ≤ log4N ] > N−c0
]
≤ N−c0 .

Proof. Denote by ∂iA the internal boundary of a set A: ∂iA = {x ∈ A : d(x,Ac) = 1}. Fix 0 < γ <
(3 log λ)−1. By Propositions 11.2 and 11.5, there exist positive constants c1, c2 and C1, depending only
on λ, such that

P
[

sup
z∈∂iB

Pz[Hy ≤ HBc ] > N−γc1
]

≤ C1N
−c + P

[
sup
z∈∂iB

Pz[H∅ ≤ HBc ] > N−γc1
]
≤ C1N

−c + N−γc2 ,

where c = 3γ log λ− 1 and B = B(y, γ logN).
Assume that supz∈∂iB Pz[Hy ≤ HBc ] ≤ N−γc1 . We claim that in this case

sup
z∈Bc

Pz[Hy ≤ log4N ] ≤ N−γc1 + sup
z∈Bc

Pz[Hy ≤ log4N − 1] . (11.8)

Iterating this estimate log4N times, we conclude the proof of the corollary. It is enough, therefore,
to prove (11.8). By the strong Markov property, Pz[Hy ≤ log4N ] is bounded by supw∈∈∂iB Pw[Hy ≤
log4N ]. If {Hy < HBc}, by the initial assumption we may bound the probability by N−γc1 . This
gives the first term on the right hand side of (11.8). On the other hand, on the set {Hy > HBc},
Hy = HBc + Hy ◦ θHBc and Hy ◦ θHBc ≤ log4N − 1. Hence, by the strong Markov property, for every
w ∈ ∂iB,

Pw[Hy ≤ log4N , HBc < Hy] ≤ Pw[HBc < Hy] sup
z∈Bc

Pz[Hy ≤ log4N − 1] ,

which proves (11.8) and the corollary. �
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We conclude this section deriving the scaling limit of the random walk XN
t on the giant component

of the super-critical Erdös-Rényi random graph.

Theorem 11.10. Consider the trap model XN
t on the largest component Cmax of the Erdös-Rényi random

graph with traps WN
x , x ∈ Cmax, as described in the beginning of this section. Assume that ΨN (XN

0 )
converges in probability to some k ∈ N. Let βN = (vλN)1/α. Then,

(β−1
N WN ,ΨN (XN

tβN )) converges weakly to (w,Kt) ,

where w is the sequence defined in (8.4) and where, for each fixed w, Kt is a K-process starting from k
with parameter (Z,u), where Zk = wk/Ek and uk = DkEk. Here, (Dk, Ek), k ≥ 1 is an i.i.d. sequence,
distributed as (d∅, v∅) under P

[
·
∣∣|T| =∞]. The above convergence refers to the L1-topology in the first

coordinate and dT -topology in the second.

Proof. We need to establish conditions (B0)–(B3) for the above sequence of graphs and to apply Theo-
rem 2.2. Condition (B0) has been proven in the beginning of this section. The main difficulty in checking
the remaining hypotheses comes from the fact that we are dealing with the giant component Cmax, which
has a random size, instead of the whole set {1, . . . , N} as in the above lemmas and propositions.

In order to prove (B1), let `N = (γ/2) logN with γ satisfying the conditions of Corollary 11.4. Since
the term inside the expectation in (B1) is bounded by one, the expectation in (B1) is less than or equal
to

E
[ 1

|Cmax|
∑

x∈Cmax

|B(x, 2`N )|
|Cmax|

]

≤ P
[
|Cmax| < (vλ/2)N

]
+

4

(vλN)2
E
[ N∑
x=1

|B(x, 2`N )|
]
.

By Theorem 11.1 the first term vanishes as N ↑ ∞, while by Proposition 11.2 and Corollary 11.3 the
second term vanishes. This proves that condition (B1) is fulfilled.

By [8, 21, 22], with high probability the mixing time of a random walk on Cmax is less than or equal to
C0 log2N for some finite constant C0. Choosing LN = C−1

0 log2N , the hypothesis (B2) becomes a direct
consequence of Corollary 11.9. It is indeed enough to condition the event appearing in the statement
of Corollary 11.9 on the set that y belongs to Cmax and to recall from Theorem 11.1 that the giant
component has a positive density with probability converging to 1.

It remains to check (B3). Let Q′N be the coupling between the random graph GN and N b independent
Galton-Watson trees Ti constructed in Corollary 11.4. We assume that these trees are the first N b trees
of an infinite i.i.d. sequence of Galton-Watson trees.

Fix K ≥ 1 and let x1, x2, . . . , xK be the first K points zi which belongs to Cmax: x1 = zj if zj ∈ Cmax

and zi 6∈ Cmax for 1 ≤ i < j, and so on. It is clear that x1, . . . , xK is uniformly distributed among all
possible choices and that the probability of not finding K points in Cmax among N b points uniformly
distributed in VN converges to 0.

Let yj , 1 ≤ j ≤ K, be the first K indices of trees Ti which are infinite and let (Dj , Ej) be the
degree and the escape probabilities (d∅, v∅) in Tyj . Note that the vectors (Dj , Ej) are independent

and identically distributed and that Q′N [(D1, E1) ∈ A] = P
[
(d∅, v∅) ∈ A

∣∣|T| = ∞
]
. In particular, by

Corollary 11.8 and Schwarz inequality the last two conditions in (B3) are fulfilled.
Let AN be the event “the graphs (xi, B(xi, γ logN)), 1 ≤ i ≤ K, are isometric to the graphs

(yi, B(yi, γ logN)), 1 ≤ i ≤ K”. In view of Corollary 11.7, on the set AN , the first two condition
in (B3) are fulfilled. To conclude the proof of condition (B3) it remains to show that

lim
N→∞

P
[
AcN
]

= 0 . (11.9)

We define six sets ΣN,j , 0 ≤ j ≤ 5, such that ∩0≤j≤5ΣN,j ⊂ AN and then prove that each of this
set has asymptotic full measure. Recall that b and γ satisfy the assumptions of Corollary 11.4 and let
ΣN,0 = B be the set introduced in that corollary. Since {(xi)Ki=1 = (yi)

K
i=1} ∩B ⊂ AN , it is enough to

find conditions which guarantee that xi = yi, 1 ≤ i ≤ K.
Let ΣN,1 = {diam(Cmax) ≥ γ logN}, let ΣN,2 = {|{z1, . . . , zlogN} ∩ Cmax| ≥ K} and let ΣN,3 be

the event “every three Ti, 1 ≤ i ≤ logN , with diameter greater or equal to γ logN survives”. On
ΣN,0 ∩ ΣN,1 ∩ ΣN,2 ∩ ΣN,3, the graphs (xi, B(xi, γ logN)), 1 ≤ i ≤ K, are coupled to infinite trees.

It remains to guarantee that there is no infinite tree coupled with a graph (zi, B(zi, γ logN)) whose
root zi does not belong to Cmax. Let ΣN,4 be the event “Every tree Ti, 1 ≤ i ≤ logN , with diameter
greater of equal than γ logN has at least Nδ elements among the first γ logN generations”, and let ΣN,5
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be the event “Every connected subset of VN with more than Nδ elements is contained in Cmax”. On
ΣN,0 ∩ ΣN,4 ∩ ΣN,5, all infinite trees Ti, 1 ≤ i ≤ logN , are coupled with graphs whose root belongs to
Cmax.

Putting together the previous assertions, we get that ∩0≤j≤5ΣN,j ⊂ AN , as claimed. We next show
that each event introduced above has asymptotic full probability. By Corollary 11.4, P[ΣcN,0] vanishes,

by Theorem 11.1 and by Corollary 11.3 P[ΣcN,1], and by Theorem 11.1, P[ΣcN,2] vanishes. By Corollary

11.6, P[ΣcN,4] vanishes for some δ > 0, and by Theorem 11.1 P[ΣcN,5] vanishes. Finally, by Corollary

11.6, there exists δ = δ(γ, λ) > 0 with the following property. A tree which has diameter γ logN has at
least Nδ elements at generation γ logN with probability converging to 1. Since from each element of the
generation γ logN descends an independent super-critical tree which has positive probability to survive,
P[ΣcN,3] vanishes �
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[7] G. Ben Arous, J. Černý and Th. Mountford; Aging in two-dimensional Bouchaud’s model. Probab. Theory Related

Fields 134 1–43 (2006).
[8] I. Benjamini, G. Kozma and N. Wormald; The mixing time of the giant component of a random graph,

arXiv:math/0610459v1 (2006).
[9] J. P. Bouchaud. Weak ergodicity breaking and aging in disordered systems. J. Phys. I France 2, 1705–1713, (1992)
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