UNIVERSALITY OF TRAP MODELS IN THE ERGODIC TIME SCALE
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ABSTRACT. Consider a sequence of possibly random graphs Gy = (Vn, En), N > 1, whose vertices’s
have i.i.d. weights {W}Y : z € Vy} with a distribution belonging to the basin of attraction of an a-
stable law, 0 < a < 1. Let XtN, t > 0, be a continuous time simple random walk on G which waits a
mean WL exponential time at each vertex x. Under considerably general hypotheses, we prove that in
the ergodic time scale this trap model converges in an appropriate topology to a K-process. We apply
this result to a class of graphs which includes the hypercube, the d-dimensional torus, d > 2, random
d-regular graphs and the largest component of super-critical Erdés-Rényi random graphs.

1. INTRODUCTION

Trap models were introduced to investigate aging, a nonequilibrium phenomenon of considerable
physical interest [29, 9, 13, 3, 7]. These trap models are defined as follows: consider an unoriented graph
G = (V, E) with finite degrees and a sequence of i.i.d. strictly positive random variables {W, : z € V'}
indexed by the vertices. Let {X; : t > 0} be a continuous-time random walk on V' which waits a mean W,
exponential time at site z, at the end of which it jumps to one of its neighbors with uniform probability.

The expected time spent by the random walk on a vertex z is proportional to the value of W,. It
is thus natural to regard the environment W as a landscape of valleys or traps with depth given by
the values of the random variables {W, : z € V}. As the random walk evolves, it explores the random
landscape, finding deeper and deeper traps, and aging appears as a consequence of the longer and longer
times the process remains at the same vertex.

Assume that the distribution of W, belongs to the domain of attraction of an a-stable law, 0 < o < 1.
The variables {W, : € V'} take now large values in certain sites, forcing the random walk to stay still
for a long time when it reaches one of them, causing a macroscopic subdiffusive behavior.

In dimension 1, Fontes, Isopi and Newman [18] proved under these hypotheses that for almost all
environments, the random walk converges, in the time scale t'*(1/®) to a singular diffusion with a
random discrete speed measure. In dimension d > 2, Ben Arous and Cerny [5] proved that for almost
all environments the Bouchaud trap model converges in a proper time scale, 2/ in dimension d > 3
and a scale logarithmic smaller than ¢%/¢ in dimension 2, to the fractional-kinetic process, a self-similar,
non-Markovian, continuous process, obtained as the time change of a Brownian motion by the inverse
of an independent a-stable subordinator. In fact, they proved, under quite general conditions on the
environment, that the clock process converges to an a-stable subordinator, for a large range of time
scales [6]. In these time scales, the random walk does not visit the deepest traps, but exhibit an aging
behavior. During the exploration of the random scenery, the process discovers deeper and deeper traps
which slow down its evolution, the mechanism responsible for the aging phenomenon. We refer to [4, 10]
for recent reviews.

The investigation of trap models on graphs in the time scale in which the deepest traps are visited
started with Fontes and Mathieu [20]. The authors proved that the random walk among random traps
in the complete graph converges to the K-process, a continuous-time, Markov dynamics on N, the one
point compactification of N, which hits any finite subset A of N with uniform distribution. This latter
result was extended by Fontes and Lima [19] to the hypercube and by us [24] to the d-dimensional torus,
d>2.

In the present paper, we exhibit simple conditions that imply the convergence to the K-process in
the scaling limit. Our conditions are general enough to include the hypercube and the torus, as well as
random d-regular graphs and the largest component of the super-critical Erdos-Rényi random graphs.
These are good examples to keep in mind throughout the text.

Let {Gy : N > 1}, Gy = (V, En), be a sequence of possibly random, finite, connected graphs
defined on a probability space (2,F,P), where Vi represents the set of vertices and En the set of
unoriented edges. Assume that the number of vertices, |Vx|, converges to +oo in P-probability.
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Assume that on the same probability space (2, F,P), we are given an i.i.d collection of random variables
{WjN :j > 1}, N > 1, independent of the random graph G and whose common distribution belongs
to the basin of attraction of an a-stable law, 0 < o < 1. Hence, for all N > 1 and 57 > 1,

L(t)
P[W{V>t]:t—a, t>0, (1.1)
where L is a slowly varying function at infinity.
For each N > 1, re-enumerate in decreasing order the weights W, .. .,Wllx\lez WjN = Wé\('j), 1<
j < |Vn| for some permutation o of the set {1,...,|Vn|} and WjN > leil for 1A§ Jj < |Vn|. Let
(V... ,xlj}'/m) be a random enumeration of the vertices of Gy and define Waﬁj = WJN, 1 <5< |V,

turning Gy = (Vy, Ex, W) into a finite, connected, vertex-weighted graph.

Consider for each N > 1, a continuous-time random walk {X}¥ : ¢ > 0} on Vi, which waits a mean
WX exponential time at site x, after which it jumps to one of its neighbors with uniform probability.
The generator £ of this walk is given by:

1 1
c _ _ 1.2
(eI = oy i LU~ 1) (1.2
for every f: Vy — R, where y ~ = means that {z,y} belongs to the set of edges En and where deg(x)
stands for the degree of x: deg(z) = #{y € Vn : y ~ z}.

Heuristics. The main results of this article assert that, under fairly general conditions on the graph
sequence G, the random walk X} converges in the ergodic time scale to a K-process. Let us now give
an informal description of the above statement.

Given the graph sequence G and the associated weights WV, suppose that

(1) A small number of sites supports most of the stationary measure of the process X}V, see (BO),
and that we are able to find a sequence £y satisfying the following conditions:

(2) the ball B(z,{y) around a typical point = has a volume much smaller than |Vy|, see (B1),

(3) starting outside of the above ball, the random walk ‘mixes’ before hitting its center x, see (B2)
and

(4) the graphs G are transitive (or satisfy the much weaker hypothesis (B3)).

Under the above conditions, we are able to show that
X} converges to a K-process, (1.3)

introduced in [20, 31], after proper scaling, see Theorems 2.1 and 2.2.

Still on a heuristic level, let us give a brief explanation of why the above conditions should imply the
stated convergence. Let My be a sequence of integers converging to +oo slowly enough for the balls
B(z,In), 1 < j < My, to be disjoint. We call the vertices {a7',...,z}; } the deep traps and the
remaining vertices {;10%]\,4_17 . ,x‘]\{,N‘} the shallow traps. The idea is to decompose the trajectory of the
random walk in excursions between the successive visits to the balls B (mﬁv N

Denote by vy, (xév ) the escape probability from a:é\' . This is the probability that the random walk
XN starting from l‘;v attains the boundary of the ball B(mév, ¢n) before returning to xév The random
walk X}V starting from 935\7 visits SC;V on average vy, (xév )~! times before it escapes. After escaping, it
mixes and then it reaches a new deep trap with a distribution determined by the topology of the graph.
This distribution does not depend on the last deep trap visited because the process has mixed before
reaching the next trap. In an excursion between two deep traps, the random walk visits only shallow
traps, which should not influence the asymptotic behaviour.

Hence, if the escape probabilities and the degrees of the random graph have a reasonable asymptotic
behavior, see (B3), we expect the random walk X}V to evolve as a Markov process on {1,..., My}

which waits at site j a mean Wﬁv’va (xév)’l exponential time, at the end of which it jumps to a point
J

in {1,..., My} whose distribution does not depend on j. This latter process can be easily shown to
converge to the K-process, proving the main result of this article.

There are several interesting examples of random graphs which are not considered in this article.
Either because the assumptions (B0)—(B3) fail or because they have not been proved yet. We leave
as open problems the asymptotic behavior of a random walk among random traps on uniform trees
on N vertices, on the critical component of an Erdos-Rényi graph, on Sierpinski carpets, on the giant
component of the percolation cluster on a torus or on the invasion percolation cluster.
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The article is organized as follows. In the next section we give a precise statement of our main
results. In the following two sections we present some preliminary results on hitting probabilities and
holding times of a random walk among random traps. In section 5 we present the topology in which
the convergence to the K-process takes place and in Section 6 we construct a coupling between the
random walk and a Markov process on the set {1,...,M}. This latter process can be seen as the trace
of the K-process on the set {1,..., M} and the coupling as the main step of the proof. In Section 7
we show that this latter process converges to the K-process. Putting together the assertions of Sections
5, 6, 7 we derive in Section 8 a result which provides sufficient conditions for the convergence to the
K-process of a sequence of random walks among random traps on deterministic graphs. We adapt this
result in Section 9 to random pseudo-transitive graphs and in Section 10 to graphs with asymptotically
random conductances. We show in Section 11 that this latter class includes the largest component of a
super-critical Erdés-Rényi graphs.

2. NOTATION AND RESULTS

Recall the notation introduced in the previous section up to the subsection Heuristics. Denote by vy
the unique stationary distribution of the process {X/Y : ¢t > 0}. An elementary computation shows that
vy is in fact reversible and given by
deg(z) W,

ZN ’
where Zy is the normalizing constant Zy =3, v, deg(y)W,N.

For a fixed graph Gy and a fixed environment W = {WX : z € Vy}, denote by PY = PG~W,
x € Vy, the probability on the path space D(R,,Vy) induced by the Markov process {X{¥ : ¢t > 0}
starting from z. Expectation with respect to PY is represented by EY. We denote sometimes X}V by
XN(t) to avoid small characters.

Let {XJ : n > 0} be the lazy embedded discrete-time chain in X}, i.e., the discrete-time Markov
chain which jumps from x to y with probability (1/2)deg(z)~! if y ~ 2 and which jumps from x to
x with probability (1/2). Denote by 7y the unique stationary, in fact reversible, distribution of the
skeleton chain, given by

vn(z) = x € Vy, (2.1)

() = 5 deg(w) (2.2)

yEVN deg(y)
For a subset B of Vi, we denote by Hpg the hitting time of B and by H;F the return time to B:

Hp = inf {t >0: XN € B},
Hf = inf{t>0:X) € Band 3s <tst. X ¢ B} .

When B is a singleton {2}, we denote Hp, H;F by H,, H, respectively. We also write Hp (resp. HE)
for the hitting time of a set B (resp. return time to B) for the discrete chain XV,

K-processes. To describe the asymptotic behavior of the random walk X}V, consider two sequences of
positive real numbers u = {uy : k € N} and Z = {Z;, : k € N} such that

ZZkUk < o0, Zuk = 0. (2.3)

keN keN

Consider the set N = NU {oo} of non-negative integers with an extra point denoted by co. We endow
this set with the metric induced by the isometry ¢ : N — R, which sends n € N to 1/n and oo to 0. This
makes the set N into a compact metric space.

In Section 7, based on [20], we construct a Markov process on N, called the K-process with parameter
(Zk,uy) which can be informally described as follows. Being at k € N, the process waits a mean Zj
exponential time, at the end of which it jumps to co. Immediately after jumping to oo, the process
returns to N. The hitting time of any finite subset A of N is almost surely finite. Moreover, for each fixed
n > 1, the probability that the process hits the set {1,...,n} at the state k is equal to ux/ >, o<, u;.
In particular, the trace of the K-process on the set {1,...,n} is the Markov process which waits at k a
mean Zj, exponential time at the end of which it jumps to j with probability u;/ >, -, -, -

Topology. Between two successive sojourns in deep traps, the random walk X}V visits in a short time
interval several shallow traps. If we want to prove the convergence of the process X;¥ to a process which
visits only the deep traps, we need to consider a topology which disregard short excursions. With this
in mind, we introduce the following topology.



Fix T > 0. For any function f : [0,7] — R and any point ¢ € [0,T], we say that f is locally constant
at t if f is constant in a neighborhood of ¢. Let

C(f)={t €[0,T7; f is locally constant in t}, (2.4)

and D(f) = C(f)¢. Notice that the set D(f) is always closed. Let A denote the Lebesgue measure in
[0,T] and denote by 9, the space of functions which are locally constant a.e., that is

Mo = {f:[0,T] > R; A(D(f)) =0} . (2.5)

We say that two locally constant functions f and g € 9y are equivalent if f(t) = g(¢t) for any
t ¢ D(f)UD(g). Note that if f and g are equivalent then f = g almost everywhere.
Let make the space 91, into a metric space by introducing the distance

ar(f,9) = it {If = gllooae + M)} | (2.

where B = B([0,T)) is the set of Borel subsets of [0, 7], and || f — g||co, 4c stands for the supremum norm
of f — g restricted to A°. Intuitively speaking, the distance between f and g is small if they are close to
each other, except for a set of small measure.

We prove in Section 5 that dp is well defined and that it introduces a metric in 9%, which generates
the topology of convergence in measure with respect to the Lebesgue measure in [0, T]. With this metric,
My is separable but not complete.

Main result. Let V= Vy = |[Vy]| and let Uy : Vy — {1,...,Vy} be the random function defined
by ¥ N(xé\’ ) = j. The first main result of this article relies on three assumptions. We first require the
sequence of invariant measures vy to be almost surely tight. Assume that for any increasing sequence
Jn, with limy Jy = o0,

lim E[vy({z),... mﬁin{JN’VN}}C)] =0. (BO)

N—o00
Denote by B(x, ¢) the ball of radius ¢ centered at € Vy with respect to the graph distance d = dy in
Gy. Fix a sequence {¢y : N > 1} of positive numbers, representing the radius of balls we place around
each deep trap. Let ¢ be a vertex chosen uniformly among the vertices of Viy. We assume that

Vn
It follows from this condition that the number of vertices V of the graph G diverges in probability:

lim P[Vy > K] = 1

N—oc0

lim E[ = 0. (B1)

for every K > 1.
Let ||+ — v||7v be the total variation distance between two probability measures u, v defined on Vy,
and let ¢ = Y, be the mixing time of the discrete chain {XY :n > 0}, see equation (4.33) in [27].
We assume that the typical point ¢ is not hit before the mixing time if one starts the random walk
at distance at least ¢ from r. More precisely, we suppose that there exists an increasing sequence Ly,

limy_ oo Ly = 00, such that

lim E[ sup  Py[Hy < Lyt | = 0. (B2)
N=oo LygB(rtn)

We finally introduce the notion of pseudo-transitive graphs, which includes the classical definition
of transitive graphs but also encompasses other important examples such as random regular graphs,
discussed in Proposition 9.3.

Consider a sequence of possibly random graphs Gy = (Vy, En). We say that two subsets A, B of
Vn with distinguished vertices r € A, y € B, are isomorphic, (r, A) = (n, B), if there exists a bijection
¢ : A — B with the property that ¢(r) =y and that for any a,b € A, {a,b} is an edge of G if and only
if {(a),p(b)} is an edge of G .

Let ¢, n € Vv be two vertices chosen independently and uniformly in V. We say that G is pseudo-
transitive for the sequence fy, if

Clearly, any sequence of transitive graphs is pseudo-transitive for any given sequence £y .
For x € Vy, let vg(z) = v} () be the probability of escape from z:

ve(z) = PY [Hp@e <H],
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where R(z,¢) = B(z,£)¢. Let {c : k > 1} be the sequence defined by
¢yt = inf{t>0:PW{ >4 <k '}, (2.8)
The constant ¢y’ represents the typical size of max; <<y W}V, so that cvwg for fixed j is of order one.
Theorem 2.1. Fix a sequence of pseudo-transitive graphs G with respect to a sequence {n. Suppose
that (B0)~(B2) hold and that Uy (X{) converges in probability to some k € N. Then, letting " =
cyopy (@), we have that
(cyWV, \IJN(X%N)) converges weakly to (w, Ky) ,

where the sequence w = (w1, wa, . .. ) is defined in (8.4) and where for each fited w, K; is a K -process with
parameter (w, 1) starting from k. In the convergence, we adopted L*(N) topology in the first coordinate
and dp-topology in the second.

It is not difficult to show from the definition of the random sequence w = (wy,ws,...) that w; has
a Fréchet distribution. In Section 9, we apply Theorem 2.1 to the hypercube, the d-dimensional torus,
d > 2, and to a sequence of random d-regular graphs, d > 3.

The second main result of the article concerns graphs in which the assumption (2.7) of isometry of
neighborhoods is replaced by an asymptotic independence and a second moment bound.

Assume that there exists a coupling Qn between the random graph {Gy : N > 1} and a sequence of
i.i.d random vectors {(Dy, Ex) : k > 1} (independent of N) such that for every K > 1 and ¢ > 0,

lim QN{ 1I<I§8%XK ‘ ’L)Z(;j)*l _ E;1| > 5] =0,

N—oo
K
Jim x| Utdeste) # 0] = 0, (B3)

On[D1>1,0<E; <1] =1, Eo,[(Di/E1)?] < o0,

for one and therefore all N > 1, where £ = { is the radius of the balls placed around each trap and
introduced right above (B1), and ry,...,rx is a collection of distinct vertices chosen uniformly in Vy.
We can now state our second main result, which can be seen as a generalization of Theorem 2.1.

Theorem 2.2. Fiz a sequence of random graphs G . Suppose that (B0)—(B3) hold and that ¥ n(XJV)
converges in probability to some k € N. Then, defining Sy = c@l, we have that

(cyW?, \IIN(X%N)) converges weakly to  (w, Ky) ,

where the sequence W = (w1, wa,...) is defined in (8.4) and where for each fixred w, K; is a K-process
starting from k with parameter (Z,u), where Zy = wi/Er and u = DypEy. In the convergence, we
adopted L*(N) topology in the first coordinate and dr-topology in the second.

In Section 11, we apply this result to the largest component of a super-critical Erdés-Rényi random
graph. We expect this statement to be applicable in a wider context, such as random graphs with random
degree sequences, or percolation clusters on certain graphs.

3. HITTING PROBABILITIES

We prove in this section general estimates on the hitting distribution of a random walk on a finite
graph. These estimates will be useful in the description of the trace of our trap model on the deepest
traps. Since N will be kept fixed throughout the section, we omit N from the notation almost everywhere.

Recall that we denote by d = dy the graph distance on Vy: d(x,y) = m if there exists a sequence
T = 20,21,--.,2m = Yy such that z;11 ~ z; for 0 < ¢ <m — 1, and if there do not exist shorter sequences
with this property. For x € Viy and a subset C of Vi, denote by d(x,C) the distance from z to C:
d(z,C) = mingec d(x,y). For £ > 1, denote by B(C,¢) the vertices at distance at most ¢ from C:
B(C,t) = {x € VN : d(z,C) < £} and let R(C,¢) = B(C,£)¢ as before. When the set C' is a singleton
{z}, we write B(z,£), R(x,{) for B({z},¢), R({z},{), respectively.

Fix M > 1, a subset A = {x1,...,zp} of Viy and £ > 1. Recall from Section 2 that we denote by
ve(x), x € A, the escape probability from z, and let p(z, A) be the probability of reaching the set A at
x, when starting at equilibrium:

Ué(x) =P, [HR(;C,Z) < Hi] ) p(xaA) = P‘rrN [XN(HA) ::C] y (31)

where 7y is the stationary state of the discrete-time chain X%, introduced in (2.2).
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Lemma 3.1. Fiz a subset A= {x1,...,2p} of V. For any z ¢ A and for any L > 1,

M

Z |PZ[XHA = xj} _p(xj,A)| < 2 (27[1 + PZ[HA < LtmmD .

j=1
Moreover, if there exists £ > 1 such that d(xq,zp) > 20+ 1 for a # b, then for all L > 1 and for all
1<i<M,

P [Kuny = 5] —velai) play, A)| < 2ue(w) _max, {278 + P [Ha < Ltwa] |
i e

Proof. Fix a subset A = {z1,...,xp} of V and z ¢ A. By definition of the mixing time t,;x and by the
definition of the total variation distance,

M
> B Prtptnn [Kus = 5] ] — Pu[Xu, =] |

J=1

— i‘ Z {PZ[X(Ltmix) =w| - W(w)} Py [Xu, = %]‘

j=1 weV
2||P.[Xpty =] — 7()|lpy < 2-27F.

IN

To prove the first claim of the lemma, apply the Markov property to get that
P.Xg, =2;] < E.[PxrinXu, =z;]] + P.[Xu, =2, Ha < Ltpix]
and that
P.[Xp, =z;] > P.[Xu, =z;, Ha > Ltnix]
= B2 [Px(rtno Ko, = 7] ] — B2 [Px(rn[Xu, = 5], Ha < Lt -

The triangular inequality together with the previous two bounds and the estimate presented in the
beginning of the proof show that

M
> |P.Xn, = ;] — Pr[Xu, = ;]| < 2275 +P.[Ha < Ltmix]) -
j=1

This proves the first claim of the lemma.
We turn now to the proof of the second claim of the lemma. Since d(x;, A\ {z;}) > ¢ and i # j, the
expression inside the absolute value on the left hand side of the inequality can be written as
Po, [X(Ha) = 2 | Hp,,0) < HE ] ve(zi) — vel@i) p(x;, A) .

The absolute value is thus bounded by

Z |P.[X(Ha) = 2] — p(zj, A) | Py, [Hpe, o) < HY, , X(Hp(,0) = 2] -

zeV
Since d(zq4,xp) > 20 + 1, a # b, the set of vertices z at distance £ + 1 from z; is disjoint from A. Hence,
by the first part of the proof, the sum over j # i of this expression is bounded above by

2ug(ar) max, {275 + P.[H4 < Ltwic]}

for every L > 1. This proves the lemma. (I

Denote by D(f) the Dirichlet form of a function f: V — R:
1 v(z) 2
@ =3 3 7 Nt1i7r - .
(N =322 gmw, V@ /)

eV y~zx
For disjoint subsets A and B of V, denote by cap(A, B) the capacity between A and B:

cap(4, B) = inf D(f)
where the infimum is carried over all functions f : V' — R such that f(z) =1foraz € A, f(y) =0,y € B.
Let g : V — [0, 1] be given by

gap(z) = P, [Hy < Hp].
6



It is a known fact that
cap(4,B) = D(gap) = »_v(y) W, P,[Hp < Hj]. (3.2)
yEA

Note that we may replace in the above identity Hp, H:{ by Hp, HX, respectively.

Take a set A C V composed of M points which are far apart and let x be a point in A. In the next
lemma, we are going to estimate the probability p(z, A) = P.[Xg, = z]|. This probability will be roughly
proportional to deg(x)ve(x). Let us first introduce a normalizing constant. For £ > 1 and a finite subset

Aof V, let
= Z deg(z)ve(x
T€A

Lemma 3.2. Fiz a subset A ={x1,...,xp} of V such that d(x,,xp) > 204+ 1, a # b, for some £ > 1.
Then,

deg(z;) ve(s)
i - | < < ) .
max | p(zi, A) T (A) ‘ <2 max {27 + PL[H4 < Ltynis]}
Proof. Fix 1 <i < M and let A; = A\ {x;}. Since D(g(a,}.4,) = D(1 = g(a;}.4,), by (3.2)
deg(w:) Py [Ha, <H[] = 3 deg(s;)Ps, [Hy, <HE]. (3.3)

Jj#i
On the other hand, since d(x;, A;) > ¢,

Pri [HAl < H;} = Eri [1{HR(xi,€) < Hjcrt} PX(]HIR(I%Z))[HAi < Hrl]}
- E,, [1{HR(M) <HE} (1 Priting, o) [Kety = J;i])] .
Therefore,
P, [Ha, <H ] —ve(z:) [1 = plas, A)]
= Eg, [I{HR(%‘,@) < H;} {p(xia A) - PX(HR(”,Z)) [XHA = ’le]}} .

Since d(zq,25) > 2¢ + 1, we may replace in the previous expression X(Hp(z, ¢)) by X(Hg(a,r)). By the
first assertion of Lemma 3.1, the absolute value of the difference inside braces is less than or equal to
2 maxzeR(A,e){Q_L + P, [H4 < Ltyiz]} for every L > 1. Hence,

[P (B, < B = velar) [1 = pla, A)] |

(3.4)
< 2wp(x;) m?jl(e {2 +P.[Hy < Ltmm]}
for every L > 1.
Similarly, from (3.3) one obtains that
deg(z;)Py,[Ha, <Hf] =
Z deg(z;)E, [1{HR(xj,e) <HE} Px(r(a; 0) X, = ﬂfi]} :
G
It follows from this identity and the previous argument that
‘ deg(x;)Py, [Ha, < H[] = deg(z;)ve(z;)p(a:, A)’
J#i
<2 Zdeg(mj)vg(xj) GIE?/)K(Z) {271 + P.[Ha < Lty }
J#i
for all L > 1.
The two previous estimates yield the bound
‘deg(asi)vg(xi)[l p(x;, A Zdeg xj)ve(x;)p (xi,A)‘
J#i
M
< 23 deg(z; 9L 4L P,[Hy < Ltnia]} .
< ; eg(w;)ve(z;) max (27" +Pa[Ha < Ltmicl}
To conclude the proof of the lemma, it remains to divide both sides of the inequality by I';(A). O
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4. HOLDING TIMES OF THE TRACE PROCESS

We present in this section a general result on Markov chains computing the time spent by this chain
on a subset of the state space. This will be useful later in proving that the time spent by the walk on
the shallow traps can be disregarded.

Consider an irreducible continuous-time Markov process {X; : t > 0} on a finite state space V. Denote
by {W, : © € V} the mean of the exponential waiting times, by v the unique stationary probability
measure, and by {7; : j > 0} the sequence of jump times.

Denote by P, € V| the probability measure on the path space D(R,, V) induced by the Markov
process X; starting from x. Expectation with respect to P, is represented by E,. For a probability
measure g on V,let Py =53 _\ p(z)Py.

Fix aset A C V and let U be a stopping time such that for all x € A,

U = Hp(a,p is the example to keep in mind, where £ is chosen so that d(x,y) > 2+ 1 for all x # y € A.
Let Sy = U 4+ Hy4 o 0y be the hitting time of the set A after time U. Denote by v(z) the probability
that starting from z the stopping time U occurs before the process returns to z: v(z) = P,[U < H},
which should be understood as an escape probability.

Let Dy, k > 0, be the time of the k-th return to A after escaping: Dy = 0, D1 = Sa, Dii1 =
Dy + Saobp,, k> 1. Clearly, if Xy belongs to A, {Xp, : k > 0} is a discrete time Markov chain on A.
On the other hand, by assumption E;[D;] = E,[U + H4 o 6y] is finite.

Lemma 4.1. The Markov chain {Xp, : k > 0} is irreducible. Moreover, for every f : V — R,

1 Dy, D,
li o [ X = 3 pe) | [ di]

z€A

P, -almost surely, where p is the unique stationary state of the discrete time chain {Xp, : k > 0}.

Proof. We first prove the irreducibility of the chain {Xp, : kK > 0}. Fix z, y € A and consider a self-

avoiding path zg = z,...,z, = y such that the discrete-time Markov chain associated to the Markov
process X; jumps from z; to z;11, 0 < @ < n, with positive probability. Such path exists by the
irreducibility of X;. Let z; be the first state in the sequence z1,...,z, which belongs to A. Since

Pz[HA\{J;} >Ul=1,
Pm[XDl :.’13]] Z PxI:XDl =Zj, Zl :.’171,...,Zj :$J:|
= Pm[XU+HA00U =wj, U< Ha\({z}, Z1 =21,...,7Zj :l'j} ,

where {Z,, : n > 0} is the discrete-time jump chain associated to the process {X; : t > 0}. Since U > 7,
on the event {Z1 = x1,...,Z; = 2} N{U < Ha\{s1}, U+ Ha o0y = 7;. The previous probability is
thus equal to

Pm[XT].::rj,lexl,...,ijxj] = Pz[21:$1,...,Zj:$j] > 0.

Repeating this argument for the subsequent states in the sequence z1,...,x, which belong to A, we
prove that the chain Xp, is irreducible.
Fix a function f : V — R. Clearly,

Dy, i1
: /0 F(X0)dt = ZZ / F(X0) dt 1{Xp, =}

ZEAJ 0

For # € A, let K{ = min{j > 0 : Xp, = x}, K*/; = min{j > K¥ : Xp, = 2}, n > 1, and let
Ly = #{j < k: Xp, = z}. With this notation, we can rewrite the previous sum as

Dicz 41 x DKTl
P [ s ar “z/ Ears

Dk

By the irreducibility of the chain Xp,, for each © € A, L} /k converges a.s. as k T oo to p(z). Moreover,
for each x, the variables f[DKm Dics11) f(Xy)dt, n > 1, are independent and identically distributed.
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Hence, since Lj, 1 0o, by the law of large numbers, P,-almost surely,

2

lim Ezk/DKw fX)dt = B,

n=1"Dxg

D

f(X0)dt) .

0

The lemma follows from the two previous convergences. [l

Proposition 4.2. The unique stationary state p of the discrete-time Markov chain {Xp, : k > 0}
satisfies
M/_l
I/(x)v(x) X —- (4.1)
>, () v(y) Wy

p(z) = v(z)v(z) W E,[D1] =

Moreover, for every g : V — R,

Dy
Z v(x)v(z) W, E, {/0 g(Xy) dt} = Z g(z)v(z) . (4.2)

T€EA z€eV

Proof. Applying Lemma 4.1 to f = 1, we obtain that P,-almost surely

Dy
lim 28 = lim %/ dt = E,[Dy] . (4.3)
0

k—oo k k—oco

By Lemma 4.1 with f(y) = 1{y = =}, we get that P,-almost surely

1 Dy, D1
lim f/ X, ==a}dt = p(x)E, {/ {X; = x} dt}
k—oo k 0 0
because starting from y # x, the process does not visit x before time D;. In particular, all terms on the
right-hand side in the statement of Lemma 4.1, but the one z = x, vanish. On the other hand, dividing
and multiplying the expression on the left-hand side of the previous equation by Dy, we obtain by the
ergodic theorem and by (4.3) that

Dy
E,[Di]v(z) = p(x) Ex[/o 1{X, =z} dt] . (4.4)

The time spent at x before D; is the time spent at x before U which is a geometric sum of independent
exponential times. The success probability of the geometric is v(z) and the mean of the exponential
distributions is W,. Hence, the right-hand side of the previous formula is equal to p(x)W, /v(x). This
proves the first identity in (4.1). To derive the second identity, note that E,[D;] does not depend on z,
and it is therefore only a normalizing constant to make p into a probability distribution.

By the ergodic theorem, for every g : V — R,

zeV

To conclude the proof of the proposition, it remains to show that the left hand side of this expression is
equal to the left-hand side of (4.2). To this end, we will use the previous lemma.
For a function g : V' — R, by Lemma 4.1 for f = g and (4.3), we get

lim — Xp)dt = lim —— X,)dt = E, | Xy) dt].
tim e [ axoa = im g [T g0 a = g [ [ a0
To conclude the proof of the proposition, it suffices to use (4.1). O

Corollary 4.3. We have that

_ Ep[Wa/v(x)]
B =Ty

Furthermore, for any function g: V — R,

Ep[/ODlg(Xt)dt} = Ey[g|E,[Dy] .
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Proof. We can write

E,[Di] E,,[/ODl dt} - EP{/ODI 1{X, € A}dt} +Ep[/OD1 1{X, ¢ A}dt| .

By the same reasoning as below (4.4), we conclude that the first expectation in the sum above equals
E,[W,/v(z)]. To evaluate the second expectation, we use Proposition 4.2 with g = 1{V'\ A} to conclude
that

EP[/ODl (X, ¢ A}di| = B,[Di]v(V\ ).

Putting together the above equations, we conclude the proof of the first assertion of the corollary.
The second claim follows from the first identity in (4.1) and from (4.2). O

5. ON THE TOPOLOGY OF CONVERGENCE IN MEASURE

Fix T > 0 and let us denote by 9t the space of measurable functions f : [0,7] — R. We consider
the interval [0, 7] equipped with the Lebesgue measure, which will be denoted by A. As usual, we say
two functions f, g € 9 are equal if they differ on a set of zero Lebesgue measure on [0,7]. Let B([0,T])
denote the set of Borel subsets of [0, 1.

We introduce the following distance in 9t:

dr(f,g)= inf — Glloo,ac + A(A)}, 5.1
r(f.9) = _inf AIS = glecac + AA)} (5.1)
where || f — g|lco,a- stands for the supremum of f — g on the set A°.

Lemma 5.1. The distance dr metrizes the topology of convergence in measure in 9. Moreover, the
space M is complete and separable under this distance.

Proof. Let us recall the definition of the Ky Fan distance in 9 as
dxr(f,g) = inf {e > 0;A(|f — g > €) < ¢}

It is well-known that the Ky Fan distance metrizes the topology of convergence in measure [14], and
that the space 9 is complete and separable under this metric. Therefore, it is enough to show that the
distances dr and dgg are equivalent. First we notice that we can assume that the sets A in the definition
of dp are of the form {|f — g| > €}. In fact, if a set A is not of this form, let us write € = || f — g oo, 4c-
We can take out the points of A such that |f — g| < e without changing the supremum, and this lowers
the value of A(A). This procedure transforms the set A into {|f — g| > €}. Therefore,

dr(f,9) = inf {e+ A(f — o] > )}, (5.2)

which looks very close to the Ky Fan distance. Let us prove the aforementioned equivalence starting
from (5.2). In one hand, if dxr(f, g) = € then there exists a sequence §,, } 0 such that

A(f—gl>e+dn) < e+ 0n.
Therefore,
dr(f,9) < e+ 6+ A(lf — gl > €+ 0n) < 2(e+n),

which shows that dr(f,g) < 2dkr(f,g). In the other hand, if dr(f,g) = a then there exist sequences
0n 1 0 and €, > 0 such that

a+ 6, =€, +A(f —g| > €n).
In particular, €, < a + J,,. Therefore,
Alf—gl>a+0,) <A(f—g| >€) =a+ 06, — €, < a+ 0y,
from where we conclude that dxr(f,g) < dr(f,9). O

Now we define the set of locally constant functions as a subset of the space 9. Let B(t,d) be the ball
of radius § centered at ¢. For any function f : [0,7] — R and any point ¢ € [0,T], we say that f is locally
constant at t if there exists § > 0 such that f is (A-almost surely) constant in B(t, ). Define the set

C(f)={t€10,T); f is locally constant in ¢},
and notice that C(f) is open. Let D(f) be the closed set D(f) = C(f)c. Let My be the set
My = {f eMm; A(D(f)) =0}.
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We call My the set of locally constant functions. Let f € M. Notice that the value of f in D(f) is not
relevant, since A(D(f)) = 0, and that the space of locally constant functions 9 is not closed. In fact,
the closure of My is the whole space M.

Let f € 9My. From the point of view of the topological properties of 9 the values of f on D(f) are not
relevant. However, since f is locally constant, it has a modification which is continuous A-a.e. Therefore,
it makes sense to fix a representative of f. A simple way to do this is the following. We say that = € Co(f)
if there exists 6 > 0 such that f(y) = f(z) A-a.e. in B(z, ). We will write Do(f) = Co(f)°. Notice that
A(C(f)\ Co(f)) = 0. Now let f:[0,T] — R be given by

~ 1
f@®) = f{ liminf f(s) + limsup f(s)} . (5.3)
2 s—t s—t
s€Co(f) s€Co(f)

When liminf,_,; ;ee,s) f(s) = —oo and Hmsup, ¢ seey () f(s) = 400, we set f(t) = 0. Clearly, f = f

on Cy(f) so that Dy(f) C Do(f), where inclusion may be strict.
Lemma 5.2. Fiz f, g € My. We have that
limsup f(s) = limsupg(s)
s—t s—t
s€Co(f) $€€Co(9)
whenever f = g A-a.e., with a similar identity if we replace limsup by liminf. In particular, fz g if
f =g A-a.e. and equation (5.3) distinguishes a unique representative for each equivalence class of My.

Proof. Consider two functions f, g such that f = g A-a.e. It is enough to show that

limsup f(s) < limsupg(s) and liminf f(s) > liminf g(s) .
s—t s—t st st
s€Co(f) s€Co(g) s€Co(f) s€Co(g)

We prove the first inequality, the derivation of the second one being similar. There exists a sequence
{s; : j > 1} such that s; € Co(f), lim; s; =1,

limsup f(s) = lim f(s;) .
s—t J—roo
5€Co(f)
Since s; belongs to Co(f), f is A-a.e. constant in an interval (s; — €, s; + €) and therefore in the interval
I =(sj—€s;+€) N(s; —(1/7),s; + (1/4)). Of course, I; C C(f). As Dy(g) has Lebesgue measure
0, Co(g) N I; # @. Take an element s’ of this latter set. Since I; is contained in C(f), s belongs to
Co(f) M Co(g) so that g(s}) = f(s). Moreover, since f is A-a.e. constant in I; and s;, s belong to I,

f(sj) = f(s}). On the other hand, lim; s’ = ¢ because s; converges to t and [s} — s;| < (1/j). Hence,

lim f(s;) = lim g(s}) < limsupg(s),
j—roo j—oo st
s€Co(9)

which proves the lemma. Il

From now on when considering a function in 9y, we always refer to the representative defined by
(5.3). For example, if we say that f is continuous at z, we actually mean that f is continuous at x.

Let us introduce the following modulus of continuity in 9. For a measurable function f:[0,7] — R
and 6 > 0, let

ws(f) = A(B(D(f),9)) -

The modulus of continuity ws(f) converges to 0 as 6 — 0 if and only if f belongs to 9y. We extend this
definition to the space M. Notice that D(f) € D(f). Therefore, the modulus of continuity of f goes
to 0 at least as fast as the modulus of continuity of f. Following the convention made above, when we

write ws(f) we really mean ws(f):
ws(f) = A(B(D(f),9)) .
With this convention, Lemma 5.2 ensures that the modulus of continuity is well defined, i.e., that
ws(f) = ws(g) if f = g A-a.e. The main motivation for the introduction of the modulus of continuity
ws(f) will be a comparison criterion between the topology in 9y induced by dr and the one induced
by Skorohod’s M5 topology. We postpone the discussion of this criterion to Lemma 5.4, and we present
here another motivation which we consider to be of independent interest.
11



Proposition 5.3. A subset F C My is sequentially precompact with respect to dr if

sup [|[fllee < o0 and limsupws(f) = 0. (5.4)
feF 020 feg

Proof. For f € F, define E?(t) = dist(¢, B(D(f),d)°). Since 8‘} is 1-Lipschitz for any f € 9y and any
0 > 0, the family {é‘}, f € F} is equicontinuous. Fix a sequence f, in F and a sequence {d,, : m > 1}
of positive numbers such that lim,, §,, = 0. Since supscs |||l < 00, by a standard Cantor diagonal
argument, we can extract a subsequence, still denoted by f,,, for which, as n 1 oo, K‘sf’: converges uniformly
to some function £~ for every m, and for which f,, (t) converges to some limit F(¢) for any rational ¢ in
[0, 7).

Let €, = limsup,,_, . ws,, (fn). By (5.4), lim,, e, = 0. Since E‘sf’: converges uniformly to £°» and
since {E‘}’: 40} = B(D(fn), m),

A(P #£0) < liririsotip A(ﬂ‘};ﬁ #0) = ligsolip ws, (fn) = €m . (5.5)

We claim that for every ¢ € [0,T] such that ¢~ () = 0 for some m > 1, there exist a neighborhood
N(t) of t and an integer ng > 1 for which F is constant on N(t) N Q and f,(t) is constant on N(t) for
n > ng. We postpone the proof of this claim.

As lim,, €, = 0, by (5.5) lim,,, A(£> # 0) = 0. There exists therefore a subsequence {m(j) : j > 1}
such that > A(£Pm6) £ 0) < 0o. Let A = N1 Ujsg, {€9m6) #£ 0} so that A(A) = 0. If ¢ belongs to the
set A°, which has full measure, £9=G)(t) = 0 for some j. By the conclusions of the previous paragraph,
there exist a neighborhood N(t) of ¢ and an integer ng > 1 for which F' is constant on N(t) N Q and
fu(t) is constant on N (t) for n > ny.

In view of the previous result we may define a function F [0,7] — R which vanishes on the set A,
and which on each element ¢ of the set A€ is locally constant with value given by the value of F' on a
rational point close to ¢. In particular, A° C G(F ) which ensures that a belongs to 9My. Moreover, it
follows from the convergence of f, to F on the rationals that f,(¢) converges to F(t). Since the set A
has Lebesgue measure 0, f, converges almost surely to F. Therefore, by Egoroff theorem, f,, converges
to F' with respect to the metric dr.

To conclude the proof of the proposition, it remains to verify the assertion assumed in the beginning
of the argument. Fix ¢ € [0,7] and suppose that (9= (t) = 0 for some m > 1. In this case, since
é‘}’: (t) converges to £om(t) = 0, lim,, dist(¢, B(D(fn),dm)¢) = 0. Take a point t, in the compact set
B(D(fn),0m)¢ realizing this distance to conclude that there exists a sequence t, converging to t for
which E‘sf:f (tn,) = 0. As E‘}T (tn) = 0, f, is constant in the interval (tn, — Om,tn + 0m). Therefore, the
functions fn are constant in a neighborhood N(t) of ¢ for n large enough. Since fn converges on the
rationals to F', we conclude, as claimed, that F' is constant in N(¢) N Q. (I

Another topology which can be defined in the space 9y corresponds to the projection of the Skorohod’s
M> topology, which is generated by the Hausdorff distance between the graphs of the functions. For
f,9 € My, define the distance dg?)(ﬁ g) by

where f, § are the representatives of f, g defined in (5.3),

ry= |J {tx [lim inf f(S),hI?j?p f)1,
t€[0,T

and dg is the Hausdorff distance.
Recall the definition of the modulus of continuity ws(f) and note that ws(f) > 26 unless f is constant.

Denote by B(f;r), B®(f;r) the ball of center f and radius r with respect to the metric dr, dg?),
respectively.

Lemma 5.4. For any f € My and any § > 0,

B3 (f;8) C B(f;0 4 was(f)) -
12



Proof. Fix f € My, § > 0 and g € BA)(f;§). By definition of dr,
dr(g,f) = dr (@, ) < If =9l po)2s + AMBOD(f),20))
= If =9l B(n(f)26): T w2s(f) -

In order to evaluate the first term above, fix ¢t ¢ B(D(f),20) so that f is constant in B(t,26). In
particular, I € ¥ = [0, — 25] x RU[0,7] x {f(£)} U[t + 26, 7] x R. Since di) (3, f) = di (g, f) < 4,
by definition of the Hausdorff distance,

& > dist((t,4(1), T5) > dist((t,3(t), B) = 26 A[f(t) = §(t)] -
This implies that |f(t) — §(t)| < 6 for every ¢ ¢ B(D(f),26), which finishes the proof of the lemma. [

Consider a sequence {Y,, : 1 < n < oo} of real-valued stochastic processes defined on some probability
space (Q,F, P). Assume that the trajectories of each Y,, 1 < n < oo, belong to 9, P-almost surely.
This is the case, for instance, of continuous-time Markov chains taking values on a countable subset of
R.

Theorem 5.5. Fix T > 0. If dg?) (Y,,Ys) converges to 0 in probability as n 1 oo, then dp(Ya, Yeo)
converges to 0 in probability as n 1 oco.

Proof. Tt is enough to show that for each € > 0, lim,,_,o, Pldr(Ys,Yoo) > 2¢] = 0. Fix § < € so that the
previous probability is bounded by P[dr (Y, Ys) > €+ 6]. This latter probability is in turn less than or
equal to

Pldr(Yn,Yoo) > €+ 6, was(Yoo) < €] + Plwas(Yoo) > €]
Since Y has trajectories in 9y P-almost surely, the second term vanishes as 6 | 0. The first one

is bounded by Pldr(Y,,Ye) > § + was(Yoo)] which by the previous lemma is less than or equal to
P[dg? )(Yn, Ys) > ¢]. By assumption, this term vanishes as n 1 co. O

Assume that in the probability space (2, F, P) introduced before the statement of the previous theorem
is also defined a sequence {X,, : 1 <n < 0o} of real-valued stochastic processes whose trajectories belong
to My P-almost surely.

Corollary 5.6. Fiz T > 0. If both dr(X,,Y,) and dg,?)(Yn, Yoo ) converge to zero in probability asn 1 oo,
then dp(X,,Ys) also converges to zero in probability as n 1 co.

Remark 5.7. We would like to justify the introduction of the topology of convergence in measure. In
particular, we explain why we did not choose one of the Skorohod topologies which are canonically used
to define convergence of cadlag processes. For this, let us present some shortcomings of the Skorohod
topologies in this context.

In [20], the authors introduce a compactification of N = {0,1,...} U {00}, induced by the isometry
# : N — R which sends n to 1/n and oo to zero. The Skorohod’s Jy topology induced by this metric in
D(R,N) is used in [20] when developing a criterion for convergence towards the K-process. However,
this choice is not convenient in the current context, as we explain below.

Consider a sequence of graphs in which the escape probabilities vy do not converge to one (for instance
the torus case in Proposition 9.2, or the Erdés-Rényi in Theorem 11.10). In such examples the random
walk will perform small excursions around a deep trap x before escaping from the ball B(x,¢). Due to
the acceleration factor By, these excursions will last shorter and shorter times as we increase N and
should be neglected in the scaling limit. However, this is not the case for any of the Skorohod topologies.
For evample, the sequence of functions fn(t) = lii<i<141/n) does not converge in any of the Skorohod
topologies to f(t) = 0.

There is a simple solution for the above problem, based on the fact that the excursions around x before
escaping from B(x,{) vanish in the supremum norm for the Euclidean metric of the torus. There is
however a different shortcoming in this case. Consider for instance the discrete torus ']Tﬁlv embedded
in the continuous torus T?. As we said above, this naturally introduces a metric on T4 for which the
small excursions around a deep trap x do not pose any problems in the Skorohod’s Ji topology since they
stay close to x in the supremum norm. In this case, the problem arises when an excursion exits the
neighborhood B(z,¢x). In this situation, the random walk typically performs a very short and “dense”
excursion around the torus before finding the next deep trap to settle. Again, this phenomenon prevents
convergence in any of the associated Skorohod topologies. Actually not even the limiting process belongs
to the Skorohod topology of T? as its trajectories are not right continuous.
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The topology of convergence in measure deals with these two obstructions, as it ignores what happens
in vanishing time intervals. Due to its variational character, it turns out that our metric dr is extremely
well suited for computations, when compared with the equivalent Ky Fan metric dgp.

6. MAIN RESULT

We prove in this section that under certain assumptions the continuous time Markov process X}V,
introduced in Section 2, is close, in an appropriate time scale and with respect to the topology introduced
in Section 5, to a simple random walk Y,V which only visits the set Ay of the deepest traps and which
has identically distributed jump probabilities: py(z,y) = pn(y), 2, y € An. For such result we need,
roughly speaking, the set of deepest traps Ay

to support most of the stationary measure v.

to consist of well separated points,

to be unlikely to be hit in a short time,

to have comparable escape probabilities from each of its points.

The main result presented below holds in a more general context than the one described in Section 2.
We suppose throughout this section that {Gy : N > 1} is a sequence of finite, connected, vertex-weighted
graphs, where {W2 : x € Vy} represents the positive weights. The vertices of Vi are enumerated in
decreasing order of weights, Viy = {z¥V, ... ’xIJ}[/NI}’ WQ’ > Wé\jfﬂ, 1<j<|Vn|—1.

Denote by XN the Markov process on Vy with generator given by (1.2). We do not assume that the
depths WY are chosen according to (1.1), but we impose some conditions presented below in (A0)—(A3).

We write in this section Jy 1 oo to represent a non-decreasing sequence of natural numbers {Jy :
N > 1} such that limy_,~ Jy = co. To keep notation simple, we sometimes omit the dependence on N
of states, measures and sets.

Recall that v = vy, defined in (2.1), is the stationary measure of the random walk X}¥. Assume
that v/(B§,) vanishes asymptotically for any sequence of subsets By = {z{,..., 2z } C Vi such that
JN T Q!

lim vy(By) = 0. (A0)
N—o00

We now fix sequences My 1 oo and {x 1 oo (My < |Vn|). The sequence My represents the number
of deep traps selected, and ¢y a lower bound on the minimal distance among these deepest traps. We
formulate three assumptions on these sequences. Let Ay = {aV,... ,xﬁN} be the set of the deepest
traps. We first require the deepest traps to be well separated:

d@),2))>20y +1, 1<i#j<My (A1)

70
for all N large enough. This condition, which is analogous to condition (B1), ensures that any path
{2N =20,21,...,2m = xﬁv} from z to wjv has a state z; which belongs to R(An, ¢n).

The second assumption is somehow related to (B3) and requires, as explained below, the different
escape probabilities v,, x € Ay, to have similar order of magnitude. For a subset B of Vi, let vg be
the measure v conditioned on B:

_ WY deg(x)

Yyep Wy deg(y)

Expectation with respect to vp is denoted by E, .
We suppose that there exists a sequence {8y : N > 1} such that for any sequence of subsets By =

rEeB.

VB(J?)

{al,..., 2 } € Ay such that |By| = Jy 1 o0
wWN 1 By ve(x)
limsupFE, . |—2%—| < oo, limsu E, < 00 . A2
N—>oop ? {ﬂN Ue(ﬂf)} N—>oop |Bn| B[ Wi ] (42)

This hypothesis postulates essentially a law of large numbers for deg(x;) v¢(z;) and a bound for the sum
of (V[/'gﬁ\j)2 deg(z;)/ve(x;).

In analogy with (B2), we will also assume that the hitting time of Ay is much larger than the mixing
time of the discrete-time random walk on Gn. For L > 1 let

= k(L,Mn,ly) = PY[H, < LtY._]. 6.1
KN H( N N) zneli)fv Zggl(?;ﬁjv) z [ € IIIIX] ( )

Assume that for some sequence Ly 1 oo,

lim M3 ky = 0, Jim MZ 27k = 0. (A3)
—00

N—o0
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Remark 6.1. Consider three sequences My 1 00, Iy T 0o and Ly T 0o satisfying (A0)—(A2) and such
that

N —o0

Then, there exists a sequence My 1 0o, My < My, for which the three sequence My, {n, Ly satisfy
(A0)-(A3).

Indeed, it follows from (6.2) and the fact that Ly 1 oo that there exists a sequence K 1 oo such
that impy 0o K% 275V = 0, limy 00 K3 6(Ly, My, £yx) = 0. Define a new sequence My by My =
min{ My, Ky} and define A)y accordingly. Since Ay C An and &)y < Ky, (A0)-(A3) hold for the
sequences My, £y, L.

Hence, in applications, if one is able to prove (6.2), one can redefine the sequence My to obtain (A3)
which is the condition assumed in the main result of this section. Moreover, if a sequence My satisfies
conditions (A1), (A2), (6.2), then any sequence My, 1 oo which increases to infinity with N at a slower
pace than My, M} < My, also satisfies these three conditions. The same observation holds for the
sequence L. Hence, in the applications, both sequences shall increase very slowly to infinity, in a way
that (A3) is fulfilled, and all the problem rests on the identification of a convenient space scale £, large
for the process to mix before returning to a state, as required in condition (6.2), but not too large, to
permit a good description of a ball of radius £y and a good estimate of the escape probability vs(x).

Let pn be the probability measure on the set Ax given by

N deg(z;) ve(x;)
pn(e)) = ZlgigMN deg(@;) ve(z:) ’ (6.3)

where vp(z;) = vé\]fv (x;) is the escape probability introduced in (3.1). By (2.1), py can also be written as

v(x;)ve(a;)W, !

D1<i<My v(wi)ve(z:)Wa,"

pn () (6.4)

which corresponds to (4.1) with U = Hp(ay ¢x)-

For each N > 1, consider the continuous-time Markov process {V; : ¢t > 0} on Ay defined as follows.
While at € Ay the process waits a mean W2 /v,(z) exponential time at the end of which it jumps
to y € Ay with probability pn(y). Note that the jump distribution is independent of the current state
and that the process may jump to its current state since we did not impose y to be different from .
Moreover, the probability measure v~ (z)/v™Y (Ay) is the (reversible) stationary state of the Markov
chain {Y,V : ¢ > 0}.

We are now in a position to state the main result of this paper, from which we will deduce Theorems 2.1
and 2.2.

Theorem 6.2. Suppose that conditions (A0)—(A3) are in force. Then, for every N > 1, there exists a
coupling Qn between the stationary, continuous-time Markov chain {Yé}fvt it > 0} described above, and

the Markov chain { X}, : t > 0} such that Qn[X{¥ =YY =y] = p(y), y € An, and
Jim Qn [dr(X3,., Y5y ) > 6] = 0
for every T > 0 and 6 > 0, where dp stands for the distance introduced in (5.1).

Theorem 6.2 follows from Lemmas 6.3, 6.4 and Proposition 6.5 below. Theorem 6.2 asserts that the
process ngt is close to the process Yﬁjyvt which jumps at rate Syuve(z)/W2X. If this latter expression

is not of order one, the asymptotic behavior of Yﬁlyv , will not be meaningful and our approximation of
X é\ﬁv . by Yﬂ% . devoid of interest. Hence, in the applications we expect

N
wh

ve(z;)

BN =~
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Lemma 6.3. Assume that hypotheses (A0)—(A3) are in force. Then, there exists a subset By =
{aV, ..., } € An such that,

. —L Bn _
P | ve(x)
lim v(By) = 0, (6.6)
N —o00
lim sup BVA;N v(AY) p(By) = 0. (6.7)
N —o00 Ep W(zm)}

Proof. We start proving (6.5). By definition of the probability measure py this expression is equal to

1 B ve(x)
My Wi
This term vanishes as N 1 co in view of (A3) and (A2) with By = Ap.

By (AO0), v(A%) vanishes as N 1 oco. There exists, therefore, a sequence Ky 1 oo such that
limy oo Knv(A%) = 0. Let By = {z}',...2% }, where Jy = min{My, Ky} so that |By|v(A%) — 0.
The second assertion of the lemma follows from assumption (A0) because Jy 1 oco. Moreover, as

MR (275 + My kn) EVA[ ] , recall (6.4).

WX -1 BN ve()
[ o) = B

/BN P 'U[(.T) p( N) — B WQJ;V

by (A2) and by definition of the set By, we have that
lim sup /B‘]/IV/N v(AY) p(By) < Cylimsup|By|v(AYy) = 0 (6.8)
N—oo [ x N—o00

14 [’ug(z):|

for some finite constant. This concludes the proof of the lemma. O

Lemma 6.4. Assume that conditions (A2), (A3), (6.5)—(6.7) are in force. Then, there exists a sequence
{Kn : N > 1} such that

lim Ky My2° 5% =0, lim KyMbky =0, (6.9)
N—oo N—oo
. KN I/(VN\AN) WN
1 E L = 1
Nooso By v(AN) p[vg(x)} 0, (6.10)
. Ky whN _
K32 v(Vn \ An) wN
li N E,|—= By) = 12
Nlim KN V(VN\AN)p(BN) = 0, (613)
—00
. Ky whN
| —F L = . 14
Jim S B [las] = e (614)

Proof. In view of (A3), there exists a sequence 1 1 oo such that ¢y M% 27~ ¢)x M3 ki vanish as
N 1 co. We may choose this sequence ¢ so that the limits in (6.5) and (6.6) still hold when multiplied
by ¥y, as well as the one in (6.7) when multiplied by ¢%. Given this sequence vy, let

3
Ky = M = wNﬁNEuA[“jV(?}.

Conditions (6.9) follow the definition of 1 and from (6.5), while condition (6.10) follows from (6.6)
since By C Ay. To verify (6.11), it is enough to remember that p(z)WNv,(z)~1 = v(x) and to recall
(6.6). Condition (6.12) follows from assumptions (6.7), (6.6) and the definition of K. Condition (6.13)
follows from (6.7) and the definition of K. Finally, condition (6.14) requires 1y to diverge. d

Proposition 6.5. Suppose that conditions (A1), (A2), (6.9)—(6.14) are in force. Then, for every N > 1,
there exists a coupling QN between the stationary, continuous-time Markov chain {Yﬁly\]t :t >0} on Ay
16



with mean WX /Bnve(x) exponential waiting times and uniform jump probabilities py(z,y) = pn(y), T,
y € Ay, and the Markov chain {X} , :t > 0} such that Qn[X§ =Y =yl = p(y), y € An, and

: N N
J\}gnoo QN [dT(XBN"YBN') > 6] =0
for every T > 0 and 6 > 0, where dp stands for the distance introduced in (5.1).

Proof. Recall the definition of the sequence of stopping times {Dj : k > 0} introduced in Section 4
with U = Hp(ay,ex)- Since by (A1) R(An,{n) # @ and since the state space is finite and irreducible,
E,[U] < oo for all z € A. It also follows from assumption (A1) that P,[H 4\ ;3 > U] =1 for all z € A.
Therefore, by Lemma 4.1 and Proposition 4.2, the discrete-time Markov chain X gk is irreducible and its
unique stationary state is the measure p defined in (6.3).

We start the construction of the measure Qx by coupling the discrete skeleton of the chain YV} with
the chain X gk, and by coupling the waiting times of the chain Y,V with the times spent by X/ at each
site of Ay. It follows from Lemma 3.2, which presents an estimate of the distance between the measure
p and the measure p( -, A), from Lemma 3.1 and from the strong Markov property at time Hp(4 ) that

sup [Py (X5, =] = p()lgy < My +1) (275 + My sy) = ax . (6.15)
ye

Let 09 = 0 and denote by {o; : i > 1} the jump times of the chain Y,"V, including among these
jumps the ones to the same site. We couple the initial state X' and Y7 so that Qn[X{ = Y{'] = 1,
QNIXEY =] = p(z), z € A. As Y)Y is distributed according to p, by (6.15) we can couple X}y and Y
in a way that they coincide with probability at least 1 — ay. Moreover, conditioned on X gi =z, the
number of visits of XtN to the point  between times D; and D, is a geometric random variable with

success probability ve(z), so that
/ XN =g} dt
[Di,Dit1)

is an exponential random variable with expectation W, /vs(x). This is also the distribution of the time
that Y,V spends in x. Proceeding by induction and using the strong Markov property at times D; (for
XN) and o; (for Y,V), we obtain a coupling Qx between XV and Y, such that

XN =YN, [ YXN = XN Ydt =011 — 0
for every 0 <i < Ky

(N ’ } > 1-Kyan,
where K is the sequence introduced in Lemma 6.4. Denote the event appearing in the previous formula
by G. By (6.9),

Jim Qn[g) = 0. (6.16)

We claim that the coupling @y defined above satisfies the statement of the theorem. To estimate
the distance between the processes X}¥ and YV, we introduce a third process X{¥ close to X}V in the
distance d7. Following [2], consider the process X}V defined by

XN =XNsup{s <t: XN € An}). (6.17)

The (non-Markovian) process X}V indicates the last site in Ay visited by X2 before time ¢. We adopt
for X}V the same convention agreed for the process Y;¥ and consider that the process XV jumped from
y € Ay to y at time ¢’ if the process X}V being at y at time s < #', reached R(Ay,¢) and then returned
to y at time ¢’ before hitting another site z € Ay \ {y}. With this convention, the jump times of the
process X}V are exactly the stopping times {D; : 4 > 1}.

We assert that for every T'> 0 and 6 > 0,

Jim P, [dr(X5,., X5.)>46] =0. (6.18)
Fix T > 0 and 6§ > 0. By definition of the process X%,
_ 1 BNT
dr(X5,, X)) < 6—/ XN ¢ Ax}dt. (6.19)
N Jo

Therefore,

P, [dr(X),. X}, ) > 6] < 7Ep[/0 X} & An}dt] + P,[Diy < BNT].

17



Let us define
DKN
AN ::/ l{XtN ¢ AN}dt = DKN —OKy -
0

This quantity will appear a couple of times in the computations below. By (6.22), P [DKN < BNT]

vanishes as N 1 oo because ox, < Df,. On the other hand, by definition of the process XV and by
stationarity,

1 Ky

An] = -

Bva AN = 5

By Corollary 4.3, the previous expression equals

EP[/ODI 1{x¥ ¢AN}dt} .

K KNI/N(VN\AN) Wiv
Ky B[],
Bno Bnvn(An)s ve()
By (6.10), this expression vanishes as N 1 oo. This proves (6.18).

Now we turn into the estimation of the distance between XN and Y. On the event G, the first Ky
jumps of the processes XN and Y}V are the same, and the process Y,V is always “ahead of” X,fv_ in the
sense that X} spends more time at each site than Y;V. We need to show that the delay between X}V and
YN is small. Let By = {a¥V,... ,a:AN41,V} C Ap be the set introduced in Lemma 6.3 and which satisfies

conditions (6.11) and (6.12), and let 9 be the number of times the process Y visits By before o,
Ny = #{j <Ky:Y, € By},

(VN \AN)E,[Dy] = (6.20)

Denote by Gy the event § N {0k, > BnT}. Since we have that dr(XJ Y4 ) < Ba' ﬂNT XN +
YN}dt, on the set Gi, dr(XJ Y4 .) < By [TV H{X{Y # Y,N}dt. Therefore, on the set 91,

Kn o,
_ 1 J _
dr (X3, Y5y) < Bn E / YN # XNy dt

1
< —
BN

We claim that each integral in the second term of the previous sum is bounded by Apy. Indeed, the total
delay of the process X}V with respect to the process Y,V in the interval [0, 0] is Diy — 0y = An. On
the other hand, either the length of time interval [o;_1, 0;] is bounded by Ay, in which case the claim is
trivial, or the length is greater than Ay. In this latter situation, since the total delay between Y and X
in the interval [0, 0k, ] is An, Dj—1—0j—1 < Ay for 1 < j < Ky. Hence, in the interval [0;_1+An, 0;)
we have that X; = Y;. This proves our assertion. In conclusion, if one recalls the definition of 9%y, on
the set G,

(o2 Ky o
K ]_ J _
/ Nl{YtN¢BN}dt+ﬁ—Z/ YN e By, YN # XNVt .
0 N % o
Jg=1v7%i-1

dr(X5,.Y5) < ﬁiN/o o 1{yN ¢ By}dt + BLNAN*JIN.
In conclusion,
Qn [dr(XE,.,Y5)) > 6]
< Qulss] + 5 2w / TN ¢ Buyde] + QAN > (1/2)08y] -

The first term vanishes as N 1 oo by (6.16) and (6.22). By Tchebyshev and Cauchy-Schwarz inequalities,
P[ZW > 6] = P[VZW > /8] < (6 'E[Z]E[W])'/? for any pair of nonnegative random variables Z, .
Therefore, the sum of the second and third terms is bounded by

26 (W3 ] + \/zQN[AN]QN[mN}

(6.21)

Ano P Lug(x) 0 BN
Since Qn[Mn] = Knp(Bny), by (6.20) this expression is less than or equal to

2Ky o, [Wév ¢BN}} N \/QKIQV v(VN\ An) E,,{WN} o(By) .

Bnd " Lug(z) Bnd v(An) ve ()

By assumptions (6.11) and (6.12), this expression vanishes as N 1 co.
To conclude the proof of the theorem it remains to show that

lim Qnloxy <BNT] = 0. (6.22)
N —o00
18



For any random variable Z and any T > 0 such that F[Z] > 2T, by Tchebycheff inequality we have that

Pz <T) < ‘% .
Note that o .
Qnloky] = KNEP[W;)] , Varg, (0ky) < QKNEPKWJ;)) } )

and that, by assumption (6.14), KnE,[W.}Y /vi(x)] > 2B8nT for N sufficiently large. By the previous

elementary inequality,
N\ 2 N2
QN[UKN < ﬂNT} < 8Ep|:<%) J < 86N EP[(’KI)J)V } . (6.23)
KnEy|uis|  EnE [ier] B[]

By assumption (6.14), the first term of this expression vanishes as N 1 co. The second one is equal to

N
el
Bnve(x)
By (A2) this expression is bounded uniformly in N. This concludes the proof of (6.22) and the one of
Proposition 6.5. (]

Instead of starting from the stationary measure py, we may also start from any state z.

Corollary 6.6. Assume that
liH]lvinf vn(x) > 0 for everyi > 1. (6.24)

Under the assumptions of Proposition 6.5, for every ¢ > 1, N > 1, there exists a coupling QQ between
the stationary, continuous-time Markov chains {Yé}fvt it >0} and {XéVNt it >0} such that Qi [X{ =
Y = 2N =1, and
: * N N
Jim Qv [dr(X5,.,Ysy ) >8] = 0
for every T'> 0 and 6 > 0.

Proof. The coupling is constructed as in Proposition 6.5, with the condition Q% [X{ = Y{¥ = 2] =1
replacing the analogous condition there. Consider the sequence K introduced in Lemma 6.4 and recall
the definition of the set § introduced just before (6.16).

Since v is the stationary state of the process X%, for every § > 0,

P [/Tﬁ XY & Ax}dt > 6] < < 1 g [/TﬁN LX) ¢ Avydi] < Tv(Ay)
=N Y < .
"Ly " M= By ovl) Ly Ce sv(l)
Hence, in view of (6.19), P, ~[dr (X5 ., X3 ) > 6] vanishes by (6.24) and assumption (AO).

Let By be the set introduced in Lemma 6.3. Since v4 is the stationary measure for the process Y3,
for the same reasons,

1 [Py Tv(BS)
E[—/ WYY ¢ Bylat] < 210
zN BN 0 { t g N} = l/(l‘fv)

The distribution of the jump times {o; — o1 : j > 1} of the process Y constructed in this corollary is the
same as the distribution of the jump times {o; : j > 0} of Proposition 6.5. In particular, by (6.23),

N 8 wh
QN [okyx+1 S BNT] < Qnloky <BNT] < o " [v &)}
KNE”[W(JJC)] ‘
Let
BNT
AN = / XN ¢ Ax)dt .
0
As in the proof of Proposition 6.5, on the set §5 =GN {oxy+1 > BNT],
TBN _ Kn U]+1/\ﬂNT _
|uE vy vy enya =y [ XY £V, YN € Byt
0 j=079iABNT
Kn

IN

S Y)Y € By} Ay = (1+0R)AY
j=0
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where Ny == #{1 < j < Ky : Yajj € By} has the same distribution as 91y. Therefore, on the set G,

B dr(Xay., Yay.) < OTﬁN VYN & By}dt + (1 +9%)A%. In view of the argument below (6.21) and
the previous estimates,

V@) 5u(a)

O [dn (Ko Vo) > 8] < ankn + 2TVBR) | ¢<> 4 K p(Ba)] .

where ay is given by (6.15). By (6.24), (6.13), and as in Proposition 6.5, this expression vanishes as
N 1 oc. O

The following remark will be important when proving Theorem 2.2

Remark 6.7. Assumption (AO) has only been used in Lemma 6.3 to prove the existence of a sequence
of subsets By satisfying (6.6), (6.7). In particular, Theorem 6.2 remains in force if hypothesis (AO) is
replaced by the existence of a sequence In < My, In 1 0o, for which By = {z, .. a:]I\jV} satisfies (6.6)
and such that

lim |By|vn(AY) = 0, see (6.8). (6.25)
N —o0

7. K-PROCESSES

We introduce in this section K-processes, a class of strong Markov processes on N = N U {oco} with
one fictitious state. We refer to [20] for historical remarks and to [31] for a detailed presentation and the
proofs omitted here. The main result of this section presents sufficient conditions for the convergence of
a sequence of finite-state Markov processes to a K-process.

Throughout this section we fix two sequences of positive real numbers {uy : k € N} and {Z : k € N}.
The first sequence represents the ‘entrance measure’ and the second one the ‘hopping times’ of the
K-process. The only assumption we make over these sequences is that

Z g < 00. (71)
keN

However, the process will be more interesting in the case

Z U = 00 . (7.2)

keN

If this sum is finite, the K-process associated to the sequences up and Zj corresponds to a Markov
process on N with no fictitious state.

Consider the set N of non-negative integers with an extra point denoted by co. We endow this set
with the metric induced by the isometry ¢ : N — R which sends n € N to 1/n and oo to 0. This makes
the set N into a compact metric space. We use the notation dist(z,y) = |#(y) — ¢(x)| for this metric.

For each k € N, define independent Poisson process {Ntk : t > 0} with jump rate given by wu.
Denote by o¥, i > 1, the time of the i-th jump performed by the process NF. Independently from the
Poisson processes, let {7, Ti’“; k € N,i > 1} be a collection of mean one independent exponential random
variables.

Let Z,, = 0 and for y € N consider the process

NP
TY(t) = Z,To + Z Z Z Tk
keN =1

Define the K-process with parameter (Z, uy), starting from y as follows

Yy ifo<t< ZyT(),
XY(t) =<k ifIY(cF—) <t <T¥(oF) for some i > 1 and (7.3)

oo otherwise.

Note that X¥(0) = y almost surely if y € N, and even in the case y = oo if (7.2) holds. We summarize
in the next result the main properties of the process X}. Its proof can be found in [31] or adapted from
[20] where the case in which u; = 1 for all £ > 1 is examined. Recall that we denote by H 4 the hitting
time of a set A and that Z,, = 0.
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Theorem 7.1. For any y € N, the process {XY(t) : t > 0} is a strong Markov process on N with
right-continuous paths with left limits. Being at k € N, the process waits a mean Zj, exponential time at
the end of which it jumps to co. For any finite subset A of N, H 4 is a.s. finite and
W
P[XY(Ha)=j] = —2—, jeA.
[ ] DieA Ui
We investigate in this section the convergence of a sequence of Markov processes in finite state spaces

towards the process X¥(t). Let {My : N > 1} be a sequence of integers such that My 1 oo, and consider
the sequences of positive real numbers

uy . ZN, 1<k<My, N>1. (7.4)
In analogy with (7.3), we define processes X% (¢) with ‘entrance measure’ given by ufcv and ‘hopping

times’ given by Z,JCV. For N > 1, let T}, TiN’k, NtN’k and O'lNJC, 1 <k < Mpy,i>1, be defined as above
and write

My N
T4 () =2V T +> 20 > TV for 1<y < My
k=1 i=1
and
XU(1) = y if0<t<Z)NTy, (7.5)
N ko if DY (o F =) <t < TY% (") for some i > 1. ’
One can easily see that the process X¥; is a continuous-time cadlag, Markov chain over {1,..., My}.

The order in which the points {1,..., My} are visited by X3, after the starting position, is given by
the order of the times o, . From this fact we can conclude that the law of X¥ is characterized by the
following properties:

e The state space is {1,..., My} and the process starts from y almost surely,
e The process X¥ remains at any site k an exponential time with mean Z}, after which it jumps
to a site j with probability u} />, ;<5 ul .

7

Remark 7.2. Note that the dynamics of the process X3 does not change if one replaces the vector
{ul 11 <k < My} by the vector {yyul : 1 <k < My} for some yy > 0. In particular, when applying
the theorem below we may multiply the sequence ulY by a constant yn to ensure the convergence of Ynul
to ug.

The main result of this section is stated below. Recall from [17], (5.2) the definition of the Skorohod’s
J1 topology.

Theorem 7.3. Assume that for every k € N
lim (2, uy) = (Zg, ur) (7.6)
N—o00

and that

My
lim limsup g Z,vauév =0.
m—r 00 N—o00 Py
=m

Then, for any given y € N, X%, converges weakly, as N 1 oo, towards XY in the Skorohod’s Jy topology.

Proof. The proof is a modification of the one of Lemma 3.11 in [20]. We first couple the Poisson point
processes used to define I'{; and I'Y. In some probability space (©2,A,Q) we construct a collection
{N* : k € N} of Poisson point processes in R, x R, with respect to the Lebesgue measure. Let N*(u,t)
be the number of points falling in the rectangle [0,] x [0,u]. For fixed ¥ € N and u > 0, N¥(u, -)
is distributed as a Poisson counting process with rate u. Define I'V and T'%; as before, but using these
coupled arrival processes, with corresponding intensities ux and uff . Moreover, we also use the same
jump clocks {TF : k € N, i > 1} in their constructions.

Fix an integer m € N and denote by {S™ : i > 1} the arrival times of the process N1(uq, -) +
N2(ug, - )+ -+ + N"™(tp, - ), with S§* = 0. Fix T > 0 and let

LT =inf{i > 1;T%(S") > T for every N > 1}.

Since (Z{¥,ud) converges to (Zi,u;) and since I'{(s) > ZlgiSNl(u{V,s) ZNTL, by the law of large
numbers the above infimum is finite.
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Since the sequence {uy : k € N} is not summable, there exists a random integer m’ large enough so
that almost surely

N (ur, 57, )

i Zy Y, Tf>0, i=0,... L}, (7.7)

k=m+1  j=Nk(uy,57")

where f(s—) stands for the left limit at s of a cadlag function f.

Since ulY converges to uy, almost surely there exists N(m) such that

Nk(u]kvat) - N (ukv ) (78)

foralll1 <k<m,0<t< SE”?, and all N > N(m). By possibly increasing N(m) we can also assume
that,
Nk(uk 7S«m, ) )

inf Z zZN Y T >0, i=0,... L}, (7.9)
NzN(m k=m-1 ] Nk(ukN,S;")

It follows from (7.8) that the arrival times S!™ are the same for the process X¥ and X3;. Furthermore,
by (7.7), (7.9), on each interval (S, S ,) there is at least one arrival of a Poisson process N*(uy,-)
for some k > m and one arrival for a Poisson process N k(uév ,+) for some k > m. In particular, in the
time interval [T'Y(S]"),TY(S/,—)) (resp. [[%(S]"),T%(S71—))), 0 < i < L7, the process XV (resp.
X73;) performs an excursion in the set {1,...,m}¢, while on each time interval [I'V(S;—),T'Y(S;)) (resp.
% (Si—), T%(S:))), 1 <@ < L7, the processes X¥ and X3, sit on the same site of {1,...,m}.

For N > N(m), define the time changes A% : [0, FEJ’V(SJ’-}T”)} — R, by

m Z
ARH(E) = Z}’Vt for 0<t<Z)T,.
For 0 <¢ < LP —1, let

[Y(Si, —) = T¥(S")

AR =TS s o) - TR )

K3

[t =T (5]

if TR (S/) <t <TR (S

K2

™ —) and let

V(Si,) —TY(S7.—)

AN(t) = TSt —) + [t =T (ST -)]
N i F?\Z(Sﬁl) - FJyV(SZLi-l_) o+
if DY (ST —) <t < TR(ST)-
In view of our previous discussion,
dist(XY(NR (1), X% (1) < (1 +m) ™!, for every t < T. (7.10)

Indeed, whenever X¥(A%(t)) differs from X3 (¢), they are both above m, and the diameter of the set
{m+1,m+2,...} under dist(-,-) is given by (m + 1)1
We claim that A’ is close to the identity: for any § > 0,

lim lim sup Q{ bup [N () —t] > 6| =0. (7.11)
m N 0<t<

To prove this claim, fix m > 1 and note that

< m _ < Yy my _ 1Y m Yy m_\ _ 1Y m_ .
S 0 1) < mae, {ITV(SP) T4 (57| v IN/(S77 ) = Th(7 )1}

By construction, the right hand side is bounded above by
N*(uy'S7m)

ZY -z, Ty + > |z -z > TF
k=1 j=1

k e N (7.12)
o N (uk,SZ?) My N7 (uy, ,S’L"ay})
DD/ D DRV D DI/ D DI
k=m+1 Jj=1 k=m+1 j=1
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For each fixed m, the first two terms vanish almost surely as N goes to infinity. To estimate the other
two terms note that L7 > L?“, that SZTLll < SFT and that N*, {TJIC : j > 1} are independent of SZLT
for k > m. In particular, for £ > m and u > 0,

Nk(uasflgz)
Eq| Y. Tf] = uEq[Siy] < uEq[s}].

j=1
Last expectation is bounded because Sil is defined through a Poisson process. Therefore, as Zjuy
T

is summable in k, the third term in (7.12), which does not depend on N, has finite expectation and
converges to zero almost surely and in L'(Q) as m tends to infinity. Similarly,

k N
My N (uk 7321?)

N k N, N
&ﬂZ@ X:Q%;ZQW%QQ
k=m+1 j=1 k>m+1
By assumption, this expression vanishes as N 1 oo and then m 1 co. This proves that (7.11) holds in
fact in L1(Q).
As a consequence of (7.11), one can extract a sequence my growing slowly enough such that
sup |AYN — t| converges to zero in probability as N 1 oo .

0<t<T
This, together with (7.10) provides the two conditions of Proposition 5.3 (c) in [17]. Hence, X¥, converges
in probability to X¥ in the Skorohod’s J; topology as N tends to infinity. (]

8. SCALING LIMIT OF TRAP MODELS

In this section we join the results of the last three sections to establish the asymptotic behaviour of
random walks on vertex-weighted graphs.

Throughout this section, we restrict our attention to weights given by an i.i.d. sequence of random
variables in the basin of attraction of an a-stable distribution, as in (1.1). Let us first collect some con-
sequences of this choice of random variables. In particular we obtain the convergence of the environment
to a limiting distribution.

Recall that o € (0,1) is the parameter of the stable distribution. Let A be the measure on R x (0, 00)
given by A = aw~ 1+ dz dw. Denote by {(z;,1;) € R x (0,00) : i > 1} the marks of a Poisson point
process of intensity A independent of the sequence of graphs {Gx : N > 1} and defined on a probability
space (2,3, P). Define the random measure ¢ on R by

¢ = ., (8.1)
i>1
and let ¢; = ¢((0,t]), t > 0, be the (-measure of the interval (0,¢]. Let F': [0,00) — [0, 00) be defined by
PGt >F@)] = PWYN >¢t], t>0.
The function F' is non-decreasing and right-continuous. Denote its right-continuous generalized inverse
by F~! and let
N = FTY(VY Gy — Camnyw]) s 1<i< V. (8.2)
Denote by 7V, 1 < i < V, the sequence 77 in decreasing order: 7V N
{1,...,V}and 7N > 77Y,.
By [18, Proposition 3.1], {# : 1 <i < V} has the same distribution as {W2 : z € Vy}. Therefore,

(7{,...,7’) has the same distribution as (W/%,...,WZX). Moreover, since Vy = |Viy| = oo P-almost
1 v

= To() for some permutation o of

surely, the same result implies that (P x P)-almost surely,

. N .
Jim Y ey —w;| =0, (8:3)
j>1
where W = {w; : i > 1} represents the weights in decreasing order of the measure ( restricted to [0, 1]:
wy = max{w; : z; € [0,1]},
- . ) (8.4)
wjp1 = max{w; : z; € [0,1], w; € {wr,...,w;}}, j>1,
and {ci : k > 1} is the sequence defined by (2.8).
Recall the definition of the function Wy introduced just before the statement of Theorem 2.1.
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Theorem 8.1. Let Gy = (Vy, En) be a sequence of finite vertez-weighted graphs fulfilling assumptions
(A0)-(A2) for some sequences My, {n. Assume, furthermore, that there exist sequences Ly 1T oo,
{Bn: N >1} and {yy : N > 1} such that

lim KJ(LN,MN,KN) =0 5 (85)
N —oc0
and such that
WN
; % . ) — g S
ngI})o (BN'UZ(:L']') y TN UZ(:L']) deg(xj)) (Zjauj) ) fOT’ all J =z 1 )

lim limsup — % N Ve(x;) deg(xz;) = 0.

M—00 N_yn0 ggr:n ﬁN’Ug(l'j) v ( J) g( J)
Suppose, finally, that W (XQ) converges weakly to k € N. Then, for every T > 0, the Markov chain
{\I!N(Xé\:vt) 10 <t < T} converges to the K-process with parameters (Z;,u;) starting from k, in the
topology introduced in Section 5.

Proof. Repeating the arguments presented below (6.2), we obtain a new sequence M}, for which (A3)
holds, as well as (8.6) with M}, instead of My. Denote this new sequence by My. Under assumptions
(A0)-(A3), Theorem 6.2 furnishes a coupling between the random walk X é\; , and a Markov process Yé}’v "
on {1,..., My} whose dr-distance converges to 0 in probability. In view of Remark 7.2 and by Theorem
7.3, under conditions (8.6), the Markov process Yéyv , converges to the K-process with parameters (Z;, u;)
in the Skorohod’s J; topology. By Skorohod’s representation theorem, there exists a probability space
in which this convergence take place almost surely. It remains to apply Corollary 5.6. (I

In view of Remark 6.7, we may replace condition (A0) by assumptions (6.6) and (6.25).

Theorem 8.2. Let Gy = (Vi, En) be a sequence of finite vertex-weighted graphs fulfilling assumptions
(A1)-(A3) for some sequences My, {n, Ly. Assume that there exists a sequence of subsets By =
{2V, ... ,x%v}, Iy < My, In 1T o0, satisfying (6.6), (6.25). Suppose, furthermore, that condition (8.6)
is in force and that Uy (XQ) converges weakly to k € N. Then, for every T > 0, the Markov chain
{\I/N(Xé\fvt) 10 <t < T} converges to the K-process with parameters (Z;,u;) starting from k, in the
topology introduced in Section 5.

Proof. By Remark 6.7, there exists a coupling between the random walk X gv , and a Markov process
Yéyv con{l,..., My} whose dp-distance converges to 0 in probability. By Theorem 7.3, under conditions
(8.6), the Markov process Y,BJXH*, converges to the K-process with parameters (Z;, u;) in the Skorohod’s J;
topology. By Skorohod representation theorem, there exists a probability space in which this convergence
take place almost surely. It remains to apply Corollary 5.6. (|

9. PSEUDO-TRANSITIVE GRAPHS

We prove in this section Theorem 2.1, inspired by Theorem 8.2, and we apply this result to some
pseudo-transitive graphs. The assumptions (A1)-(A3), (6.6), (6.25), (8.6) simplify in this context
because the degree and the escape probability from the deep traps do not depend on the specific vertex.

Proof of Theorem 2.1. Fix an increasing sequence £ and a sequence of pseudo-transitive graphs G
with respect to the sequence ¢x. We first derive some consequences of assumptions (B0)-(B2) and
(2.7).

It follows from these hypotheses that there exists an increasing sequence My 1 oo such that

: 2 o[ [B{ 20n))|
N My ]E[ V

lim M5E[ sup Py [H, < Lytmic } — 0, lim M32° Iy — 0.
N—oo N y€B(x,ln) y[ t ] N— oo N

| =0, lim MyP[( B(r.0n)) £ (0, By, £n))] = 0.
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Let Z?V, 1 <7 <3 be the events

Sv= [ {B@Y.tn)nB@EY,tn) =2},
1<i#j<Mn
My

S = N{@)BaY, i) = @), Ba) i)}
j=1
3 = {Ml?{[ max sup Py [H:E;v < LNtmix] < M{,l} .

In the places where the vertices of the graph appear, as in the definition of the set Z}W the sequence
My obtained above has to be replaced by min{My,Vx}, where Vy stands for the number of vertices
of the random graph Gy . It is easy to see that all three events have probability asymptotically equal to
one. We prove this assertion for ¥} and leave to the reader the proof for the other two. By definition,
P[(X)¢] is bounded above by

> P[B(z),tn) N B}, ty) # @] < MIP[B(xy, in)N Bz Iy) # 2]
1<i#j<My

because 21V, ... ,x{,v is uniformly distributed. By this same reason, conditioning on xV, we obtain that
the right-hand side is equal to

|B(af',2¢n)] - 1
Vn -1 } ’
which vanishes as N 1 oo in view of the definition of the sequence My .

Let Ay = {2}, ... ,xﬁN}. By hypothesis (BO), vx(A%) converges to 0 in P-probability. In particular,
there exists a deterministic sequence Iy 1 0o, In < My, such that Invy(AS) converges to 0 in P-
probability. Let By = {z',.. .TJ%V} Since Iy 1T oo, by hypothesis (BO), vn(B$%) converges to 0 in
P-probability. Therefore, there exists a sequence ey | 0 for which

lim P[VN(BJCV)-FINVN(A?V) ZeN:| =0.
N— 00

M?V]E[

Let EA}V = {I/N(B}:V) + INVN(A?\[) < EN}.

We turn now into the proof of the theorem which relies on Theorem 8.2. Recall the definition of the
random weights %JN, 1 < j < Vy, introduced at the beginning of Section 8. Since {@N :1<j<Vy}has
the same distribution as {WjN : 1 < j < N}, we may replace the latter random weights by the former
and assume that the random walk X}V evolves among random traps with depth TjN instead of Wé\][ .

To show that the pair (cy7™, U (X7} )) converges weakly to (w, K;), it is enough to show that any
subsequence {N; : j > 1} possesses a sub-subsequence n such that (c,7", Wy (X5 )) converges to (w, Ki).
Fix, therefore, a subsequence IN;.

By (8.3), the ordered sequence (cy; Tle yoe s CN T{,Vj) converges almost surely in L} (N) tow = (wy, wa,...).

This proves the weak convergence of the first coordinate. Let Yy, = mlSkS4E§Vj- There exists a sub-
subsequence, denoted by n, for which
IP[ U N zn] = 1.

np>1n>ng

We affirm that all assumptions of Theorem 8.2 hold on the set Un,>1 NMu>ny 2n- Indeed, recall that
Ba' = cqvp (21). Condition (A1) follows from the definition of the set X}. On the set X2, the escape
probabilities vy(z}}) and the degrees deg(z}) are all the same for 1 < j < M,. In particular, by definition
of the sequence 3,, condition (A2) becomes
. 23121 Cn(T;‘1 )? .
limsup —=—F——— < oo, limsup —57——

n—00 Zj;l TJ'." n—00 Zjll cn'r]'f‘
for all sequences J,, such that Jy, < My, Jy T co. Since the sequence 7' is decreasing in j, the first
ratio is bounded by ¢,7{', and these bounds are a consequence of (8.3). Condition (A3) follows from
the definition of the sequence My and from the definition of the set ¥3. Conditions (6.6), (6.25) follow
from the definition of the set ¥:. Finally, on the set %2, ve(x}) deg(z}), 1 < j < My, is constant and
the hypotheses (8.6) with v, = [ve(2?) deg(2})]™! and (Z;,u;) = (wj, 1) follow from (8.3). This proves
the affirmation.

< 0.
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We may now apply Theorem 8.2 to conclude that the Markov chain ‘I/n(Xgnt) converges to the K-
process with parameters (wj, 1) starting from &, in the topology introduced in Section 5. This concludes
the proof of Theorem 2.1. O

We conclude this section with some examples of graphs satisfying the assumptions of Theorem 2.1.

9.1. Hypercube. We prove in this subsection the convergence of the trap model on the n-dimensional
hypercube towards the K-process associated to constant entrance measure. This result has been estab-
lished in [19] under the stronger Skorohod’s J; topology with a different approach. Here we give a proof
as an application of Theorem 2.1.

Let N =2" n > 1, and let Gy be the n-dimensional hypercube {0,1}" with edges connecting any
two points that differ by only one coordinate. By estimate (6.15) in [27], Y, < n?.

Proposition 9.1. The assumptions of Theorem 2.1 are in force for the hypercube Gy with £y =
log,(N)/10 = n/10.

Proof. Since the graph is transitive, condition (2.7) is satisfied and (BO) follows from (8.3). To estimate
the ratio in (B1) note that |B(0,2¢y)|/V is equal to the probability that the sum of n Bernoulli(1/2)
independent random variables is less than or equal to 205y = n/5. By the law of large numbers, this
probability vanishes as n 1 oco.

To show that (B2) is in force, we could compare the distance d(0, X;) with an Ehrenfest’s urn, see
[27, Section 2.3], and proceed with a calculation based on a birth and death chain. For simplicity, we
give instead a reference implying the result. By Lemmas 3.6 (i) and 3.2 (i) of [11], with m(N) = N? and
a = 1, there exists a finite constant Cy independent of n such that

n
sup P,[Hy <n?] < Cy(n?/N+ < > n'/?log(n
yE€B(0,0x) y[ 0 ] 0( / n/10 ( ))

< Oy (n2 N + (10)~/105,1/2 1og(n)) ,
which vanishes as n 1 0o, proving (B2). O

To complete the description of the asymptotic behavior of the trap model on the hypercube, it re-
mains to determine the time scale Sy. By a computation based on a birth-and-death chain, the escape
probability converges to 1 as N 1 oo, and therefore limy Sy cny = 1.

9.2. Discrete torus for d > 2. In this subsection the graph Gy stands for the d-dimensional discrete
torus T4 = (Z/NZ)¢, d > 2, endowed with nearest neighbors edges. By [27, Theorem 5.5],

tN_ < CyN? (9.1)

mix
for some Cy = Cy(d). This constant may change from line to line, but will only depend on d.
We proved in [24] that in this context the trap model converges to the K-process. The next proposition
shows that this result follows from Theorem 2.1.

Proposition 9.2. The assumptions of Theorem 2.1 are in force for the d-dimensional torus Gy with

{N1/2 d>3, {1og2N d>3,
In = -

e 4=2, log'/*N d=2.

Proof. Since the graph is transitive, condition (2.7) is satisfied and (BO) follows from (8.3). On the
other hand, assumption (B1) is clearly in force by definition of ¢;. It remains to check hypothesis (B2).
Recall the definition of the sequence Ly. The case d > 3 follows directly from Lemma 3.1 of [33], and we
focus on the case d = 2. Fix x € T¢, and z € B(x, £x). If II stands for the canonical projection from Z2
to T3 and P, for the probability corresponding to the symmetric nearest neighbor discrete time random
walk on Z?2,
P.[H, < Lyt)] = P.[Hp-1(p) < Lyth,] .
We may bound the previous probability by
PHp(, niogt/4 nye < Lvthid + Y Po[He, < Lythg], (9.2)
where the sum is performed over all sites x; in the pre-image of = which belong to the ball B(z, N logl/4 N).
The first term can be bounded using the estimate (9.1) for the mixing time and an exponential Doob

inequality since each component of the random walk is a martingale. This argument shows that the first
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term is bounded by élexp{—alogl/4 N} for some a > 0. Since there are no more than Cyv/log N terms

in the sum, the second expression in the previous decomposition is bounded above

Co\/@TO[Hz < LNtrer;IX] )

where z is a site at distance ¢ from the origin. Decomposing this probability according to whether the
random walk reached the boundary of the ball with radius N logl/ * N before time CyN?2 logl/ 4 N or not,
and recalling the argument employed to bound the first term in (9.2), we conclude that the previous
expression is bounded by

_alogl/4
Coy/log Ne™*¢ " N 1 Cyy/log N Po[H, < Hp (g n10g1/4 ne]

for some finite constant C; and some positive a. By [25, Proposition 1.6.7] and the reversibility of the
random walk, the second term is less than or equal to

log {n Co —1/4
Cov/10 N(lf n )gCIO N,
oV log(N log!/4 N) log® N 0708
which proves condition (B2). O

To complete the description of the asymptotic behavior of the trap model on the discrete torus T?V,
it remains to determine the time scale Sy. Let vg, d > 3, be the escape probability of a simple random
walk on Z%, and let

5 {ca,%v (27/17r)log(N) d=2,
Cird | Vd d>3.
In view of the definition of By and of [25, Theorem 1.6.6], imy_,oc Bn /By = 1.

9.3. Random d-regular graphs. In this subsection we consider a sequence of graphs Gy with N
vertices satisfying the following three assumptions.
(G1) Gy is d-regular for some d > 3;
(G2) There is a constant « > 0 such that for any vertex = of Vi, the ball B(z,alog N) contains at
most one cycle;
(G3) The spectral gap Ay of the continuous time random walk on Gy is bounded below by some
positive constant: Ay >~y > 0 for all N > 1.

It follows from [12, Remark 1.4] that these three hypotheses hold, with probability approaching 1 as
N 1 oo, for a sequence of random d-regular graphs on IV vertices. They are also satisfied by the so-called
Lubotzky-Phillips-Sarnak graphs [28].

By [32] p. 328, under conditions (G1) and (G3), the mixing time ¢Y; is bounded above by Cplog N
for some finite constant Cj.

Proposition 9.3. Let {Gy : N > 1} be a sequence of random graphs defined on some probability
space (Q,F,P) satisfying the assumptions (G1)—(G3) with a P-probability converging to 1 as N 1 oo.
Then, the conditions of Theorem 2.1 are fulfilled with Ly = log N and £y = o'log N for some o <
min{a, [2log(d — 1)]71}, where « is the constant appearing in condition (G2).

Proof. Condition (BO) follows from assumption (G1) and (8.3). The rest of the proof is based on
estimates obtained in [12].

By [12, Lemma 6.1] with A = £, the probability that a ball B(x,{y) is not a tree is bounded by
(d — 1)~ (@)1 N [et 3y be the event

Yy = {B(z},¢x) and B(z},{y) are disjoint trees} . (9.3)

We claim that P[Xy] converges to 1 as N 1 co. Indeed, if ¥y stands for the event that B(zd,ly),
B(xd ) are trees, in view of the estimate of the previous paragraph, P[iﬁ\,} is bounded by 2(d —
1)~ (a=a)log N which vanishes as N 1 co. On the other hand, since |B(z1,7)| < 4(d — 1)" for any ball in
a d-regular graph and since z{¥, Y are uniformly distributed,

(d— 1)~
P[B(a1, ) N Blas, by) # 8] < 43—
As o < [2log(d—1)]71, this expression vanishes as N 1 co. This proves the claim and assumption (2.7),

which clearly follows from the claim. Condition (B1) is also in force because |B(z1,2¢x)| < 4(d —1)%~.
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It remains to examine the escape probability appearing in condition (B2). It follows from the bound
for the mixing time presented just before the statement of the proposition and from our choice of the
sequence Ly that

P.[H, < Lytl,] < P.[H, < Co(logN)?] .
By [12, Lemma 3.3] with » = 0 and s = o’ log N, the previous expression for z ¢ B(z,{y), is bounded
by CoN~¢ for some finite constant Cy and some positive a > 0. This concludes the proof of the
proposition. [l

We conclude this section computing the scaling factor Sy in the context of graphs satisfying assump-
tions (G1)—(G3). On the event (9.3), which has asymptotic probability equal to one, B(x1,ly) is a
d-regular tree so that

d—2 1
ve (1) = 5 (1 - 1)—€N) '

In particular, limy o Snveny = (d—1)/(d — 2).

10. GRAPHS WITH ASYMPTOTICALLY RANDOM CONDUCTANCES

We prove in this section Theorem 2.2. The proof follows the one of Theorem 2.1. However, the
absence of regularity of the graph requires some extra effort in establishing (A2).

Recall the coupling Qn defined in (B3) between the random graph Gy and the sequence of i.i.d.
random vectors {(Dj, E;) : j > 1}. We extend this coupling Qn to a coupling Q between all random
graphs Gn and the sequence of i.i.d. random vectors {(D;, E;) : j > 1} using Qn as the conditional
probability:

Q[Gn =G{(D;, Ej) : j 2 1}] = Qv[Gn = G{(D;, E) : j > 1}],
with the further condition that the graphs G, N > 1, are conditionally independent, given {(D;, Ej;) :
j > 1}. Include in the probability space just defined the random measure ¢ introduced in (8.1) which
is associated to the marks of a Poisson point process independent from the variables (D;, E;) and from
the random graphs G . The probability measure on this new space is still denoted by Q.

Recall the definition of the random weights %]N , 1 < j <V, introduced in Section 2. Since {%]N :
1 < j < Vy} has the same distribution as {WJN : 1 < j < |Vn|}, we may replace the latter random
weights by the former and assume that the random walk XY evolves among random traps with depth
TJN instead of Wg .

Since w; is a.s. summable, since by (B3) D;/FE; has finite Q-expectation and since the sequences
{w;} and {(Dy, E;)} are independent,

D
Z oy ij is Q-almost surely finite . (10.1)

J>1 J

By the strong law of large numbers, almost surely
1 n
- > D;/E; < G (10.2)
j=1

for all large enough n, where C1 = 2Eq[D1/E4].
By hypotheses (B1)—(B3), there exists an increasing sequence My 1 oo such that

. 2 ‘B(F:%N)q _ . 3 o—Ln __
Jim M o[ ] =0, a2t =0,
. A= ol -2 _
Jim 0 |l = 57 > M) = 0,
Mx

Jim | J{deg(r;) # Dj}] =0,
j=1

lim M Eo| sup Py[H < Lytwi | = 0.
N=oo y#B(r.Ln)
As before, in the places where the vertices of the graph appear, as in the definition of the set X%, the
sequence My obtained above has to be replaced by min{ My, Vx}, where Vy stands for the number of
vertices of the random graph Gy.
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Let Z?V, 1 <7 <4 be the events

Sv= () {B@Y.tn)nB@EY,iy) =2},
1<i#j<Mpn
2 N —1 —1 -2
Xy = {1<r§131}v{1N| ve(ef )] — By < My }’

= ﬂ{deg(xﬁ-v) =D;},
=1

Sh = {ME max s Py[Hx < Lyt < Mz'}.
LSTSMN o2 ox) 5
Similarly to what was done in the proof of Theorem 2.1, we can show that these events have probability
asymptotically equal to one.

By (8.3), we may replace the sequence My by a possibly random increasing sequence My, < min{My,Vy},
M}y 1 oo Q-a.s., still denoted by My, for which all the previous estimates hold and such that for all
N>1,

D levrY —wil < MyE. (10.3)
j>1
By hypothesis (B0), even though the sequence My is random, the expectation Elvy ({z]', ..., 237 }°)]
vanishes as N 1 oo. Let Ay = {aV,... ,x%N}. As in the proof of Theorem 2.1, presented in the
previous sections, using again hypothesis (BO) we construct a set By = {z1V, ..., a:JI\IIV}, |By| = Iy, and
a sequence €y J. 0 for which
lim Q{VN(BfV) + INI/N(A}:V) > EN} =0.

N—o0

Let E?V = {Z/N(B]CV) + INVN(Af\r) < €N}

To show that the pair (cy7?, \IIN(X%N)) converges weakly to (w, K;), it is enough to show that any
subsequence {N; : j > 1} possesses a sub-subsequence n such that (ca7", Wy (X[}, )) converges to (w, Kz).
Fix, therefore, a subsequence N;. By (8.3), the ordered sequence (cy; 7'1N yo 5 CN; 7'<,V 7) converges almost
surely in L'(N) to w = (wy,ws,...). This proves the weak convergence of the first coordinate. Let
XN, = ﬂlgkgﬁlﬂfvj. There exists a sub-subsequence, denoted by n, for which

Q[U ﬂzn}:L

nop>1ln>ng

We affirm that all assumptions of Theorem 8.2 hold on the event Uy,>1 Na>n, 2n intersected with
the ones in (10.1), (10.2) and (10.3). Indeed, condition (A1) follows from the definition of the set ..
Similarly to the proof of Theorem 2.1, condition (A3) follows from the definitions of the sequence M,
and the set ¥t. Conditions (6.6), (6.25) follow from the definition of the set 3.

We turn to condition (A2). Recall that 3, = ¢, !. Fix a sequence J, 1 oo such that J, < M,, and
let By = {zf,...,27 }. Since we replaced the Welghts W by 7;', the first expectation appearing in this

hypothesis can be rewritten as
deg(z})
El<g<J“ [cn 7j }2 e (@) n) .
Zl<j<J caT) deg(a})

By definition of the set ¥3 we may replace deg(z ) by D;. Since 7] is decreasing, by definition of the
set ¥%; the numerator is bounded by

y Cl‘lTl
CaTl g cuTJ'»‘F + E ent) Dj

The second term divided by the denominator in (10.4) is less than or equal to ¢, 7 M, 2 which goes to
0 as n — oo in view of (10.3). Also, by (10.3), the first term is bounded by

J
o D 1 D,
CaTy' g W, CaTy' max —- .
L= R, ' M, 1<j<J. E;
Jj=

(10.4)
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Since the denominator in (10.4) is bounded below by ¢, 71 D1 > ¢, 71, the first condition in (A2) follows
from (10.1), (10.2).
The second condition of assumption (A2) can be written as

LZKJSJ., vp() deg(z}) '
Jn El<j<] CnT]ndeg(x?)

By definition of the set ¥2 we may replace deg(z ) by D;. The sum in the denominator is bounded
below by cqm'D1 > cn7f', which is uniformly bounded Smce the escape probability is bounded by one
and since by (B3) Ej is bounded by one, the numerator is less than or equal to Zl<j<']“ (D;/Ej), whose
average by (10.2) is bounded. o

It remains to establish (8.6) with vy =1, Z; = w;/E; and u; = E;D;. The convergence of the first
term follows from (10.3), the definition of £2 and X2 and the fact that the variables E; are bounded by
one. The second part of (8.6) amounts to estimate

1
chT deg(z Z enT; Dy < ij D;/E;) max (D;/E;),

M2 1<5< My

where the identity follows from the definition of 33 and the inequality from (10.3) and the boundedness
of E;. The first term on the right hand side vanishes in view of (10.1) and the second one by (10.2).
This concludes the proof of the Theorem.

11. SUPERCRITICAL ERDOS-RENYI RANDOM GRAPHS

We show in this section that super-critical Erdos-Rény random graphs satisfy the assumptions of
Theorem 2.2. Let ¥ be the set of vertices ¥n = {1,...,N}. For A > 1 fixed, let {{;, : =,y € N}
be i.i.d. Bernoulli(A/N) random variables constructed in a probability space (€, A,P). The Erdés-
Rényi random graph is defined as ¥y = (¥, 8nN), where &y is the random set of edges given by
{{z,y}; &,y = 1}. Throughout this section, ¢;, Cj, j > 0, represent positive constants depending on X
and sometimes on further parameters, the first ones being tipically small and the last ones large. Next
result can be found in [16, Theorem 2.3.2].

Theorem 11.1. There is a constant ¢y such that with P-probability converging to one as N tends to
infinity, there is a unique component Cpar in (Y, EN) with |Cpas| > colog N. Moreover, there exists
0 < vy <1 such that

lim P

N—o00

5l -nl -

for all e > 0.

We will be interested in analyzing the trap model in Cp,,x, providing another interesting example for
which our theory can be applied. For the sake of simplicity we shall assume that the common distribution
of the traps {WN j > 1} is a-stable. More precisely, recall the definition of the variables 7V, 1 <i <V,
introduced in (8.2) with V= N and F(t) = t. We assume in this section that WN =+ 1 § i < N.

Let Viy = Cpax be the random set of vertices and let En = {{z,y} C Cmax : {z,y} € &En} be the
random set of edges of the random graph Gy. In contrast with the previous examples presented in
Section 9, the number of vertices of the random graph Gy is also random. The weights are distributed
as follows. Given Vy, re-enumerate the weights WN 1< < |VN| in decreasing order and denote by

WN the new sequence, so that WN > WJIYH, 1<j<|Wn, W 0(3)

Vx. Randomly enumerate the vertices of Vi, obtaining a vector (z1', ... ,xlj}f/Nl), and set W1, = WJN .
J

WjN for some permutation o of

Given this random vertex-weighted graph, we examine the continuous-time random walk sz on Gy
with generator given by (1.2).
Note that to define the random weights WN = ]N we divided the interval [0, 1] in N sub-intervals in-

stead of dividing it in |V | intervals. In partlcular, in contrast with the examples of Section 9, N~/ O‘Wﬁ\,
1

does not converge to a Fréchet distribution, but so does 0;1/ N1/ O‘Ww]\,{,, where v is given by Theorem
11.1. '
In the rest of this section, we prove that the assumptions of Theorem 2.2 are fulfilled. By Theorem
11.1, the number of vertices converges in probability to +0o0. To establish (B0), fix a sequence Jy 1T 0o
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and denote by #V,.. .,V/J\J,V the sequence WiV, .. .,WJ]VV enumerated in decreasing order. Note that
WN >WN, 1< j<|Vy|. By (8.3) and (2.8), for every € > 0,

lim P[STINTVesN —wyl > ] = 0.

N —o0 -
Jj=21

Since ZjZJN w; vanishes almost surely as N 1 oo, if X%, stands for the event ZJ'ZJN N*I/a”//jN <1,

lim P[Z}] = 1.

N —oc0

Denote by X4 the event {|Vy — v AN| < eN} for some 0 < € < min{vy,1 — v5}. By Theorem 11.1,
P[>%] — 1. In conclusion, to prove (B0) we need to show that

. c 0 1 _
ngnOOEI:VN({.Tl,...7"Emin{JN7|VN|}} JH{ZXY NERY =
By definition of vy, and since all vertices in Vy have degree at least equal to one,

o 0 W deg(a;)
N({z1, o Ty v ) < T WM :
z1

Since ”//jN > WJN, 1 <5< VN,
V| VN N
> Wldeg(e;) < Y #Vdeg(ay) < Y N deg(ay)
j=Jn+1 j=Jn+1 j=Jn+1
if Z|vy|41,- .., TN represents a random enumeration of the vertices of ¥y which do not belong to the
largest component. On the set E}V, sz\lf > Maxi<k<cyN W,ﬁv7 where ¢y = v, — €. This latter variable as
well as the variables V/jN depend only on the Poisson point process defined at the beginning of Section

8. Hence if we denote by 2J the o-algebra generated by this process and let E?\’,l = ¥ N Xk, we obtain
that

S a1 5N deg(x;)

ZJN JN+1W deg(x]) 0,1 o1
E[ WA 1{=Y }] < E[ ST 1{=% }]
1{x% N | X
= E[maxl<k<CAN W Z W deg(wj) XN} |Qﬂ] } .

j=JNn+1

We first estimate the conditional expectation and then the remaining expression. Since the law
of the graph ¥y is independent of the o-algebra 2, the previous conditional expectation is equal to
E[deg(z;) 1{EZN }]. By construction if j < |Vy|, deg(x;) has the same distribution as deg(z) for 1 <
k < |Vn|, with a similar fact if j > |Vy|. Therefore, for a fixed j, the previous expectation is bounded

by
S E[uvil =0 5y O deaty)] + ZE[H\VM—W > deg(y)]

1<j—1 ’l/ FA%N; yeVN

where the sum is carried over all ¢ such that [£ — v\ N| < eN . Estimating the denominators by the worst
case, we get that the sum is less than or equal to

1 1Y
min{m\ —6,1—6—0)\}]E|:Nyz;deg(y)} '

This expectation is equal to .
It remains to estimate the expectation involving the weights. On the set X%, >° JN+1<j<N ”‘//jN <

N« On the other hand, using the notation introduced in (8.1), maxj<x<q, v N ~V/2WY > w(\), where
w(A) = max; W;, and where the maximum is carried over all indices i such that z; < c¢). Hence,

1{=% 1
et e 3 ] < Blgg]
max1<k<c>\N Pt
Since w' = w()\)/ci\/a has a Fréchet distribution, P(w’ < t) = exp{—1/t*}, this expectation is finite,
which proves condition (BO).
31



The results of this section should still hold if we require the variables WjN to belong to the domain of

attraction of an a-stable law and to satisfy the bound
lim supE[(cN sup Wl-N)fl] < 400,
N—oo 1<i<N

where ¢ has been introduced in (2.8).

To understand the asymptotic law of the escape probabilities, we need to introduce a related branching
process. Let T be the random tree obtained by the Galton-Watson process with offspring distribution
Poisson(A) and denote its law by P. Since A is assumed to be greater than one, the event that 7 is
infinite has positive P-probability, [16, Theorem 2.1.4]. We denote by & the root of T.

We first show that the neighborhood of a random point in the Erdos-Rényi graph looks like the
neighborhood of @ in 7. This is made precise as follows. We write (z,G) for a graph with a marked
vertex x. We say that (z, G) is isometric to (z/, G’) if there exists an isometry between G and G’, sending
z to 2’. As an abuse of notation, we consider A C ¥,y both as a set of vertices and as the corresponding
induced subgraph of ¥y .

Proposition 11.2. Let 0 < v < (3log\)~1. There exist constants C; and No = No(\,7v) such that
giwven a random point z € ¥, we can find a coupling QN between the random graph ¥y under P and the
Galton-Watson tree T under P such that for all N > Ny,

QN[(Z,B(Z,'ylogN)) is isometric to (Q,B(@,’ylogN))] >1— (O N3vlosA—1

Proof. We follow an argument similar to the one in [16, Section 2.2]. Assume, without loss of generality,
that z = 1 and define an exploration of the cluster C; containing 1 in the following way. Let Sy =
{2,3,...,N}, Iy = {1} and Ry = @. These sets represent respectively the ‘susceptible’, the ‘infected’
and the ‘removed’ sites. Define a discrete time evolution by

Rt+1 - Rt ) It7
Iy ={y € S;&s,, =1 for some z € I, },
Sty1 =S¢\ Iy1.

Note that the cluster C; is given by U2, I; and that B(1,r) = Uj_,I;.
In order to couple the above exploration process with a Galton-Watson branching process, we introduce
a new set of independent Bernoulli(A/N) random variables (;’y, t>1,z>1,1<y<N. Let Zp =1

and
N+Z,—|I;| N

Zt+1 = Z gm,y + Z Ciy + Z ZCi,y . (111)

z€l, = z=N+1 y=1
YyES: yEVN\St

The first term in the above sum can be written as |I;y1| + Ciy1, where Ci4; represents the number of
‘collisions’ occurring in the exploration process, that is, individuals in I;;; connected to more than one
individual in I;. The second term stands for the ‘immigrants’ introduced to compensate the fact that
|S¢] < N, and the third term for children of individuals that are not in I;.

It is easy to check that the process {Z; : t > 0} is a branching process with offspring distribution
Binomial(N,A/N). Let 7’ be the random tree associated with Z;. More precisely, if = is the i-th
individual in the ¢-th generation of 77, the number of offsprings of z will be given by

{Zyest gx,y + Zye"i/N\St Ci,y lfl § |It‘>

Z;V:l Gy otherwise.
It is immediate to check that Z; is the size of the t-th generation of 77 and that Z; > |I].
On the event Z5 = |I4|, 1 < s < ¢, there were no collisions and no immigrants. Therefore, in this

event the subgraph (1, B(1,t)) of ¥y is isometric to the subgraph (@, B(d,t)) of 7. Hence, by [16,
Theorem 2.2.2] with ¢t = ylog N, there exist a constant C; < oo and a coupling @’ between ¥y and T’
such that with probability at least 1 — CyN278A=1 (1 B(1,t)) is isometric to (&, B(@,1)).
Claim A: Let 0 < v < (3logA)~!. There exist ng and a coupling Q" between the tree T’ with
Binomial(N, A/N) offsprings and the tree T with Poisson()\) offsprings, such that, with probability at
least 1 — C; N3 2~1 (& B(@,vlog N)) (in T7) is isometric to (@, B(@,vlog N)) (in T) for N > ng.

It is well known that a Poisson(A) random variable Y can be coupled with a Binomial(N, A\/N)
random variable Y, in a way that

PY =Y'] > 1-2\*N"1, (11.2)
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see for instance [15, Chapter 2.6] or [26, Theorem 1] for a bound on the total variation distance and [27,
Chapter 4] for a connection between total variation distance and coupling. On the other hand, by [1,
Theorem 4], there exist # = #(\) > 0 and C3 such that for and any ¢, A > 0,

P[Z, > AN] = P[? P/ > 4] < 04 [0 (2] < Oyt

This bound permits to estimate the volume of the subgraph B(&,vlog N) of J. Fix v € (0,1). Since
|B(2,v1og N)| = > <i<y10g v Zt> We have that

P[|B(@,vlog N)| > N37le]

vlog N ~log N
< Z fP[Zt > N2'ylog>\] < Z T[Zt > N'ylog)\/\t]
t=0 t=0

for all N greater than some constant Ny = Ny(A,7). Therefore, applying the previous estimate, we
conclude that for every 0 < v < 1, there exist C3 < oo and Ny(A,7) < oo such that

P[|B(@,vlog N)| > N¥1°8X] < Cyexp{— N8 ). (11.3)

for all N > Nj.
Claim A follows from (11.2) and (11.3), which concludes the proof of Proposition 11.2. O

In the proof of the previous lemma we also obtained a bound on the size of a ball B(z,~log N) around
a typical point z.

Corollary 11.3. For any 0 < v < (3log\)™!, there exist a finite constant Cy and an integer Ny,
depending only on A and vy, such that for any random point z € {1,...,N},

P[|B(z,ylog N)| > N¥1198A] < (¢, N37los A1
for all N > Ny.

As required in (B3), we extend the local isometry obtained in Proposition 11.2 to various balls in the
random graph ¥y .

Corollary 11.4. Fiz positive numbers b and v such that 0 < 2b+ 6ylogA < 1. There exist constants
Co, No, depending only on X and v, and a coupling Q' = Q'y between the random graph 9x and N°
independent Galton-Watson trees T;, 1 < i < N°, such that for all N > Ny,

Q/[:@c} < CO N2b+6'ylog/\71 ,

where B is the event “The balls (z;, B(z;,vlog N)), 1 <i < N®, are disjoint and isometric to (3;, B(@;,vlog N))”,
and z1,...,zys are sites randomly chosen in {1,... N}.

Proof. Choose randomly N sites on {1,..., N}, denoted by z1,...,2xs. By Proposition 11.2, for N
large, there is a coupling @’ between independent Erdés-Rényi random graphs 4%, 1 < i < N b and
independent Galton-Watson trees T; in a way that with probability at least 1 — C; NPN3V108A=1 each
ball (zi, B(zi,’ylogN)) in ¢4 is isomorphic to (@i, B(@;,7log N)) in T;.

We construct an Erdés-Rényi-distributed graph %y which is partially determined by the above 4% ’s.
We first explore the ball B(z1,vlog N) in 4. Every edge {z,y} revealed during this exploration is open
in 9y if and only if it is open in 43. Then we proceed by exploring B(zq,7vlog N) in ¥y observing only
that we do not reassign values to edges in ¥y that were already established in the previous step. After
proceeding with this exploration for i = 1,..., N, we assign the remaining edges of ¥y independently.

It is clear from the above exploration procedure that the graph ¥y is distributed as an Erdds-Rényi
random graph. Moreover, on the event </ defined as “the balls B(z;,ylog N),i = 1,..., N®, are pairwise
disjoint in {1,...,N}”, we have that (z;, B(z;,vlog N)) in ¥y is isomorphic to the corresponding pair
in ¢};. Consequently they will be isomorphic to (;, B(@;,vlog N)) in T;. Therefore, to conclude the
proof of the corollary, it remains to estimate Q'[<7€].

Since all the vertices are indistinguishable, Q’[7¢] is bounded by

N2Q'[B(21,71og N) N B(z2,7log N) # @] = N2Q'[21 € B(2s,27log N)] .
Since z9 is independent of 21, this latter probability is bounded by

1
Ql [|B(22,2'ylogN)| > N6'ylog)\] 4 NNG’ylog)\ .
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By Corollary 11.3, for N large, the first term is bounded above by Co N671°8A=1 for some finite constant
C5. Hence,

Q/[ﬂc] < C2N2b+6'y log A—1 ,

which proves the corollary. O

It is a well known fact that
conditioned on being infinite, T is P-a.s. transient, (11.4)

see Theorem 3.5 and Corollary 5.10 in [30]. We denote by vy the probability that a simple random walk
starting at @ never returns to this site, the so called escape probability. As we will show, the distribution
of vy under P is close to that of the probability that a random walk on the giant component C,,., of the
random graph ¥y escapes from a certain neighborhood of a random vertex.

Since the isometry obtained in Corollary 11.4 is local, we need a tool to show that looking at a
neighborhood of @ € T we can obtain precise estimates on the escape probability vg. The next result
plays a central role in this respect. Denote by A;, I > 0, the points of the I-th generation of a tree:
A =B(@,))\ B(g,l-1).

For a fixed tree T, we denote by P, = Py, y € T the probability induced by the discrete-time simple
random walk on T starting from y.

Proposition 11.5. There exist constants c1, ca, depending only on X\, such that, for everyl > 1,

fP{ sup Py[Hy < 00] > exp{—c1l}| < exp{—cal}.

YyEA,;

Proof. Throughout the proof of this lemma, given a rooted tree T and a vertex y € T, we denote by Ty,
the subtree formed by the root y together with the descendants of y in 7.

The idea is to show that in the path between y and & there are many tunnels from which the random
walk can escape to infinity. In order to properly define these tunnels, we need to introduce some extra
notation. For an arbitrary tree T rooted at @, we define the tree T%! obtained by adding a vertex @’
which is connected to @ by an edge. This extra element should be regarded as the ancestor of @. In the
proof, we use the notation P to specify on which tree the random walk is defined.

For a given 6 > 0, we say that a tree T with root @ satisfies the property Q° if

PI" [Hy =00 > 6.

In other words, the property Q% is saying that a random walk on Tt has probability at least & of never
hitting the ancestor @’ of the root &.
It is clear from (11.4) that for every € > 0, there exists a § = §(e, A\) > 0 such that

P[T does not satisfy Q°] < ¢+ ¢, (11.5)

where g is the extinction probability: ¢ = P[T is finite].

If y is in the ’th generation of T, we write @ = yo, 1, ..., y; = y to denote the unique simple path
connecting @ to y. Moreover, we denote by I'(y) the number of elements yi, 0 < k < [, having at least
one descendant y;, # yr41 such that Ty, satisfies Qd.

We can now use (11.5) together with [23, Lemma 1] to conclude that there exist constants ¢z and ¢y
such that

P[Fy € A; such that T'(y) < ¢sl] < exp{—c4l} .

To conclude the proof of the lemma it remains to show that there exists ¢; > 0 for which the event
“Jy € A;such that Py[Hg < 00] > exp{—c1l}” is contained in the event “Jy € A; such that I'(y) < c3l”.

Assume that all points z in generation [ of T are such that I'(z) > ¢3l and fix a point y € A;. Recall
the definition of yo, ...,y given above and consider a subsequence k;, 1 < j < c3l, for which y, has a
descendant yjcj # Yk;+1 such that Ty satisfies Q%. These points are the entrance to the tunnels ‘J’y;cj
that we have referred to in the beginning of the proof.

Let T_ be the subtree of T with all the descendants of y,,; removed, 1 < j < c3l, with the exception of

Yk, +1 and y;fj. An argument based on flows or capacities shows that P [Hy < oo] < Pg’ [Hy < o0] <

P;rk_m [Hz < o0] where m = c3l. By the strong Markov property,

P)- [Hy < o0 < P~

oo [Hy,, <00l PY-  [Hy < od].
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Since T, satisfies Q% and since we removed all descendants of Yk, with the exception of y,;j and Y, 11,
J
Pg,;n [Hy,, =00 > (1/3>P312_m [Hy,, =oo]>d/3. Hence, the previous expression is bounded by
[1—(6/3)] Pg;m_l [Hy < o0 .

Iterating this argument m — 1 times we finally get that P} [Hy < oo] is bounded by [1 — (6/3)]%'~,
which concludes the proof of the lemma. O

Proposition 11.5 permits to approximate the inverse of the escape probability vy by a local quantity.
Fix a infinite tree T and m > 1. Let v,(gm) be the probability to escape from B(&,m), v,(gm) =Py[H >
Hp(z,m)]. Recall from [27, Chapter 9] the notion of flow and energy of a flow. Since |T| = oo, we can
define a trivial unit flow from @ to B(&, m)¢ which has energy equal to m. Hence, by Proposition 9.5
and Theorem 9.10 of [27],

o8 > (dgm) ', (11.6)

where dg is the degree of the root.

Corollary 11.6. There exist positive constants ¢y and co, depending only on X, such that
Pl1Adl < explerl} | A # 0] < expf—cal)

for every 1 > 1.

Proof. For a tree with at least [ generations, let §; be the graph obtained by identifying all points in Ay,
naming this vertex z;. All other sites are left untouched, and the number of vertices of this new graph is
|B(2,1)] — |A;| + 1. Since the stationary measure of a simple random walk is proportional to the degree
of the vertex,
Al /de = 7(21) /7 (2),

where 7 stands for the stationary measure of a simple random walk on G;. The ratio in the right hand
side of the above equation can be estimated using the escape probabilities from these two points. Let
PY, 2 € G, stand for the probability on the path space induced by a discrete-time random walk on G,
starting from x. Recall that the resistence between @ and z; is the same as the resistence between z;
and &, so that

r(s)  PYIH. < HE

(@) P%[Hs < Hi]
We may couple the random walk on §; with a random walk on the tree in such a way that Pg[Hzl <
HF] = Py[Ha, < HJ] and that PY[Hy < H] < maxyen, Py[Hy < HX]. By (11.6), Pg[Ha, <
HZ] > (dgl)~!. Putting together all previous estimates, we get that on the set A; # 0,

1AL < l;réaA)iPy[Hg <HJ] < zgé%Py[Hg < oq . (11.7)

Since there is a positive probability that a super-critical tree survives, the probability appearing in
the statement of the lemma is bounded by CoP[|4A;| < exp{cil}, A; # 0]. By (11.7), this probability is
bounded by CoP[l maxyen, Py[Hy < 00] > exp{—c;l}], which is bounded by exp{—csl} by Proposition
11.5 U

Corollary 11.7. For any 0 < v < 1, there exist positive constants co and Ny > 1, depending only on ~y
and X, such that for all N > Ny,

TU 11

>

Ve v

> dgN™

T)=o0] < N7,
where dg represents the degree of @ and vy = Po[HE > Hp(g 10g N)e)-
Proof. Fix 0 < 4 < 1 and an infinite tree T. To keep notation simple, let B = B(&,ylog N) and let 0B
be the set of points in B¢ which have a neighbor in B. By the strong Markov property,
Py[HY > Hp:] > Py[H} = 0] > Py[HS > Hp] inf P.[H} = o0 .
e

Inverting these terms, we obtain
1 1 1 ( 1

0< ——— < — —1).
T vy vy T vy \infuepp Po[Hg = o]
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By Proposition 11.5 with | = vlog N, there exists constants c;, co > 0, depending on A, such that on
a set with probability at least 1 — N~7°2 the previous infimum is bounded below 1 — N~71. Since
(1 —2)7! <1+ 2z for z € (0,1/2), there exists Ng = No(7, ) such that for N > Ng,

1 1 2 1
— <

vy vl T ONYA gy

Estimate (11.6) permits to conclude the proof of the corollary, changing the values of the exponents if
necessary. O

Corollary 11.8. Let T be a Galton-Watson tree with Poisson()\) offsprings, A > 1. Then, there exist
finite constants co, Cy and sg < oo, depending only on X, such that

Pl(ve)™" > s||T] =00] < Coexp{—cov/s}
for all s > sg.

Proof. Since 7 is super-critical, the probability appearing in the statement of the lemma is bounded by
C3P[(vz)~! > s, |T| = oo] for some finite constant C3 depending only on A. Fix an integer n > 1.
By the strong Markov property, v is bounded below by Py[Hpe < H}]inf,cpe Py[Hy = oo, where
B = B(@,n). Therefore, P[(vy)~! > s, |T| = oo] is less than or equal to

P[Poy[Hpe < HL]™' >5/2,|T| =o00] + fP[innéc P,[Hy = 0] <1/2] .

By (11.6), Py[Hpe < HJ] > (dgn)~!. The previous expression is thus bounded by
Plden >5/2] + P| sup Py[Hy < 00| >1/2] .
yeBe

Set n = /s, recall that dg has a Poisson(\) distribution. Apply an exponential Tchebychev inequality
to estimate the first term. By Proposition 11.5 with [ = /s, the second term is bounded by exp{—c2+/s}
provided s is large enough. ]

The following corollary allows us to bound the quantity ey appearing in (6.5) and (6.7). This cor-
responds to the probability of entering the neighborhood of a deep trap before Ly times the mixing
time.

Corollary 11.9. Fiz an arbitrary vertex y € {1,...,N} and 0 < v < (3log\)~!. Then, there exists
positive constants ¢y and No > 1, depending only on v and X\, such that for all N > Ny,

IP’[ sup  P.[H, <log* N] >N‘C°} < N~
z€B(y,vlog N)e
Proof. Denote by 0;A the internal boundary of a set A: ;A = {x € A :d(z,A°) = 1}. Fix 0 < v <
(3log A\)~t. By Propositions 11.2 and 11.5, there exist positive constants ¢, co and C, depending only
on A, such that

IP[ sup P.[H, < Hp] > N-Wl}
2€0;B

< OyN"° + ?[ sup P.[Hy < Hpe] > N—Wl} < OyN~° + N~
2€0;B
where ¢ = 3ylog A — 1 and B = B(y,vlog N).
Assume that sup,cy, g P.[H, < Hpe] < N77¢. We claim that in this case

sup P.[H, < log4 N] < N7 + sup P.[H, < log4N —-1]. (11.8)

zEB*° zEB¢
Iterating this estimate 10g4N times, we conclude the proof of the corollary. It is enough, therefore,
to prove (11.8). By the strong Markov property, P.[H, < log* N] is bounded by SUPees, B PuwlHy <
log* N]. If {H, < Hp:}, by the initial assumption we may bound the probability by N~7¢. This
gives the first term on the right hand side of (11.8). On the other hand, on the set {H, > Hp-},
H, = Hpe+Hyo0g,. and Hyo0g,. < log* N — 1. Hence, by the strong Markov property, for every
w € 0;B,

P,[H, <log* N, Hge < H,] < P,[Hp: < H,] sup P,[H, <log* N — 1],
zeBe®
which proves (11.8) and the corollary. O
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We conclude this section deriving the scaling limit of the random walk X}¥ on the giant component
of the super-critical Erdos-Rényi random graph.

Theorem 11.10. Consider the trap model X} on the largest component Cpay of the Erdis-Rényi random
graph with traps WY, x € Cuax, as described in the beginning of this section. Assume that W (XQV)
converges in probability to some k € N. Let By = (0 N)/*. Then,

(BJQIWN,\IJN(X%N)) converges weakly to (w, Ky) ,

where w is the sequence defined in (8.4) and where, for each fized w, Ky is a K-process starting from k
with parameter (Z,u), where Zy = wy/Ey and up, = Dy Ey. Here, (Dy, Ex), k > 1 is an i.i.d. sequence,
distributed as (dg,vg) under P| - H‘.T| = 00]. The above convergence refers to the L'-topology in the first
coordinate and drp-topology in the second.

Proof. We need to establish conditions (B0)—(B3) for the above sequence of graphs and to apply Theo-
rem 2.2. Condition (BO) has been proven in the beginning of this section. The main difficulty in checking
the remaining hypotheses comes from the fact that we are dealing with the giant component Cp, .y, which
has a random size, instead of the whole set {1,..., N} as in the above lemmas and propositions.

In order to prove (B1), let {5 = (v/2)log N with  satisfying the conditions of Corollary 11.4. Since
the term inside the expectation in (B1) is bounded by one, the expectation in (B1) is less than or equal

to
E[|el 3 |B(a;,2£1v)|]

max | ‘ emax ‘
2€Cmax

IN

4 N
P[[Cmax| < (02/2)N] + WE{;lB(l‘,Q@NH} .

By Theorem 11.1 the first term vanishes as N 1 oo, while by Proposition 11.2 and Corollary 11.3 the
second term vanishes. This proves that condition (B1) is fulfilled.

By [8, 21, 22|, with high probability the mixing time of a random walk on Cp,.x is less than or equal to
Cplog® N for some finite constant Cy. Choosing Ly = Cy 1og? N, the hypothesis (B2) becomes a direct
consequence of Corollary 11.9. It is indeed enough to condition the event appearing in the statement
of Corollary 11.9 on the set that y belongs to Cpax and to recall from Theorem 11.1 that the giant
component has a positive density with probability converging to 1.

It remains to check (B3). Let @’y be the coupling between the random graph ¥y and N? independent
Galton-Watson trees T; constructed in Corollary 11.4. We assume that these trees are the first N trees
of an infinite i.i.d. sequence of Galton-Watson trees.

Fix K > 1 and let rq,12,...,5x be the first K points z; which belongs to Cpax: 11 = 2; if 2j € Crax
and z; € Cpax for 1 < ¢ < j, and so on. It is clear that ry,...,rx is uniformly distributed among all
possible choices and that the probability of not finding K points in €., among N? points uniformly
distributed in #x converges to 0.

Let y;, 1 < j < K, be the first K indices of trees T; which are infinite and let (D;, E;) be the
degree and the escape probabilities (dg,vgy) in T,. Note that the vectors (D;, E;) are independent
and identically distributed and that Qy[(D1, E1) € A] = P[(ds,ve) € A[|T| = oo]. In particular, by
Corollary 11.8 and Schwarz inequality the last two conditions in (B3) are fulfilled.

Let Ay be the event “the graphs (r;, B(r;,7logN)), 1 < ¢ < K, are isometric to the graphs
(ni, B(mi,vlogN)), 1 < i < K”. In view of Corollary 11.7, on the set Ay, the first two condition
in (B3) are fulfilled. To conclude the proof of condition (B3) it remains to show that

A}iinOOIP’[AfV] =0. (11.9)

We define six sets X ;, 0 < j < 5, such that Np<j<5Xn,; C Ay and then prove that each of this
set has asymptotic full measure. Recall that b and  satisfy the assumptions of Corollary 11.4 and let
YN0 = & be the set introduced in that corollary. Since {(r;)X; = (y;,)K,} N % C An, it is enough to
find conditions which guarantee that r; = 9;, 1 <i < K.

Let ¥n;1 = {diam(Cmax) > vlog N}, let Xy o = {[{z1,...,21og N} N Cmax| > K} and let X 3 be
the event “every three T,;,, 1 < i < log N, with diameter greater or equal to ylog N survives”. On
Eno0NEN1NEN2NEnNg3, the graphs (r;, B(ri,7log N)), 1 < i < K, are coupled to infinite trees.

It remains to guarantee that there is no infinite tree coupled with a graph (z;, B(z;,vlog N)) whose
root z; does not belong to Chax. Let ¥ x4 be the event “Every tree T;, 1 < i < log N, with diameter
greater of equal than vlog N has at least N° elements among the first vlog N generations”, and let ¥ N5
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be the event “Every connected subset of ¥,y with more than N 9 elements is contained in Cp.y”. On
YN0 NEnaNEpns, all infinite trees T;, 1 < ¢ < log N, are coupled with graphs whose root belongs to
Crax-

Putting together the previous assertions, we get that No<;j<5Xn,; C Ay, as claimed. We next show
that each event introduced above has asymptotic full probability. By Corollary 11.4, P[ ?\/,0] vanishes,
by Theorem 11.1 and by Corollary 11.3 P[X% ], and by Theorem 11.1, P[X% ,] vanishes. By Corollary
11.6, P[X% 4] vanishes for some ¢ > 0, and by Theorem 11.1 P[Xg ;] vanishes. Finally, by Corollary
11.6, there exists 6 = §(y, A) > 0 with the following property. A tree which has diameter vlog N has at
least N9 elements at generation vlog N with probability converging to 1. Since from each element of the
generation v log N descends an independent super-critical tree which has positive probability to survive,

P[¥4 3] vanishes O
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