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Abstract. Our main result is a local limit law for the empirical spectral
distribution of the anticommutator of independent Wigner matrices, modeled
on the local semicircle law. Our approach is to adapt some techniques from
recent papers of Erdös-Yau-Yin. We also use an algebraic description of the law
of the anticommutator of free semicircular variables due to Nica-Speicher, the
linearization trick due to Haagerup-Schultz-Thorbjørnsen in a self-adjointness-
preserving variant and the Schwinger-Dyson equation. A byproduct of our work
is a relatively simple deterministic version of the local semicircle law.
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1. Introduction and formulation of the main result

Our main result is a local limit law for the anticommutator of independent
Wigner matrices, modeled on the local semicircle law. The latter has emerged from
the recent great progress in universality for Wigner matrices. Concerning univer-
sality, without attempting to be comprehensive, we mention [6], [7], [8], [9], [20],
[21] and [24]. The paper [9] has especially influenced us. We obtain our results by
using on the one hand techniques derived from [9] and on the other hand techniques
derived from [11] and [12], most notably the linearization trick.
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The self-adjointness-preserving variant of the linearization trick used here was
introduced in [1]. (See also [2] and [4] for slicker treatments.) It turns out to mesh
well with “self-improving” estimates of the type characteristic of the paper [9].

1.1. Setup for the main result. We formulate our main result forthwith. See §2
below for a table of notation.

1.1.1. Random matrices. Fix constants α0 > 0 and α1 ≥ 1. Let N ≥ 2 be a integer.
Let U, V ∈ MatN be random hermitian matrices with the following properties:

sup
p∈[2,∞)

p−α0




N∨

i,j=1

‖U(i, j)‖p ∨
N∨

i,j=1

‖V (i, j)‖p


 ≤

√
α1

N
.(1)

The family {U(i, j), V (i, j)}1≤i≤j≤N is independent.(2)

All entries of U and V have mean zero.(3)

‖U(i, j)‖2 = ‖V (i, j)‖2 =
1√
N

for distinct i, j = 1, . . . , N .(4)

(Here U(i, j) is the (i, j)-entry of U and ‖U(i, j)‖p = (E|U(i, j)|p)1/p. Also we

write x ∨ y (resp., x ∧ y) for the maximum (resp., minimum) of x and y.) This is a
class of Wigner matrices similar to that considered in [9]. Condition (1) is merely a
technically convenient way of imposing uniformly a tail bound of exponential type.
(See Proposition 8.3 below for the equivalence.)

1.1.2. Apparatus from free probability. (For background see [3, Chap. 5], [16], [22].)
Let u and v be freely independent semicircular noncommutative random variables.
Let µ{uv} denote the law of {uv} = uv + vu and let

(5) m{uv}(z) =

∫
µ{uv}(dt)

t− z
for z ∈ h = {z ∈ C | ℑz > 0}

denote the Stieltjes transform of that law. Context permitting (most of the time)
we will write briefly m = m{uv}(z). Although m depends on z the notation does
not show it. It was shown in [15, Eq. (1.15)] as part of a general discussion of
commutators of free random variables that m satisfies the equation

(6) zm3 −m2 − zm− 1 = 0.

(Caution: Our sign convention for the Stieltjes transform is opposed to that of [15].)
From (6) it follows that the support of µ{uv} is the interval [−ζ, ζ] where

(7) ζ =

√
11 + 5

√
5

2

∼
= 3.33.

More precisely, it was shown in [15] that µ{uv} has a density with respect to
Lebesgue measure, this density was calculated explicitly, and the support [−ζ, ζ]
was thus verified. (See [15, Eq. (1.17)].) The density will not be needed here.

See [5] for a recent discussion and application of the law µ{uv} in another context.
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1.1.3. The function h. For z ∈ h let

(8) h = |z + ζ| ∧ |z − ζ| ∧ 1.

The number 0 < h ≤ 1 depends on z but the notation does not show it.
Here is our main result.

Theorem 1.2. Notation and assumptions are as above. (Also see §2 for general
notation.) There exists a random variable K ≥ 1 with the following two properties.

On the event [[[U ]] ∨ [[V ]] ≤ 4] one has(9)
N∨

i=1

∣∣∣({UV } − zIN )
−1

(i, i)−m{uv}(z)
∣∣∣ ≤ K√

Nhℑz
for z ∈ h such that |ℜz| ∨ ℑz ≤ 64 and K2/N ≤ h2ℑz.
For every t > 0 one has Pr(K > t2α0+1) ≤ β0N

β1 exp(−β2t),(10)

for positive constants β0 and β2 depending only on α0 and α1

and a positive absolute constant β1.

(In particular, β0, β1 and β2 are independent of N .) The theorem is not so sharp
as the sharpest available concerning the local semicircle law. The novelty here,
rather, is to have made inroads on the general problem of proving local limit laws
for polynomials in Wigner matrices. Looking forward, we have given some of our
arguments in a general setting when this could be done without making the paper
significantly longer. (See §4 and §6 below.) But some arguments are quite ad hoc (see
§5 below) and implicitly pose the problem of finding conceptual general arguments
with which to replace them.

One has delocalization of eigenvectors in our setup in the following sense.

Corollary 1.3. Evaluate {UV } and K at a sample point of the event
[[[U ]] ∨ [[V ]] ≤ 4]. We still write {UV } and K for these evaluations, respectively.
Let λ be an eigenvalue of {UV } and let v be a corresponding unit-length (right)
eigenvector. Let ρ = K2/N and for simplicity assume that ρ < 1. Let σ ∈ [ρ, ρ1/3]
be defined by the equation ρ = h2ℑz|z=λ+iσ. Then we have

(11)

N∨

i=1

|v(i)| ≤
√
2σ.

This result is roughly comparable to [9, Cor. 3.2]. Figure 1 shows σ as a function
of λ for ρ = 0.2, 0.02, 0.002, 0.0002. Note that in the bulk one simply has ρ = σ.
However, the bound (11) is not optimal near the edge of the spectrum and it is an
open problem to optimize it.

Proof. Let 32 ≥ λ1 ≥ · · · ≥ λN ≥ −32 be the eigenvalues of {UV } and let
v1, . . . , vN be corresponding unit-length eigenvectors. We have for i = 1, . . . , N
and z ∈ h the standard formula

ℑ({UV } − zIN )−1(i, i)

ℑz =

N∑

j=1

|vj(i)|2
|z − λj |2
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which we will apply presently. We may assume that λ = λi0 and v = vi0 for a
suitable index i0. Let z0 = λ+ iσ and h0 = h|z=z0 , noting that

|λ| ∨ σ = |ℜz0| ∨ ℑz0 ≤ 64 and
K√

Nh0ℑz0
=
√
h0 ≤ 1

by our assumption that [[U ]]∨ [[V ]] ≤ 4 and simplifying assumption that ρ < 1. Thus
we have

2 ≥ 1 +
K√

Nh0ℑz0
≥ ℑ({UV } − z0IN )−1(i, i)

=

N∑

j=1

σ|vj(i)|2
(λj − λi0)

2 + σ2
≥ |v(i)|2

σ

by Theorem 1.2 and the uniform bound |m| < 1 from Proposition 5.2 below. �

Figure 1. Closest permissible approach σ to the real axis as a
function of λ for ρ = 0.2, 0.02, 0.002, 0.0002

1.4. Decay of Pr([[U ]] ∨ [[V ]] > 4). The conditioning on the event [[[U ]] ∨ [[V ]] ≤ 4]
taking place in Theorem 1.2 is not costly. In the setup of the theorem, one has

Pr([[U ]] ∨ [[V ]] > 4) ≤ c0 exp(−c1N c2)

for some positive constants c0, c1 and c2 depending only on α0 and α1. See, e.g., the
argument presented immediately after [3, Lemma 2.1.23]. The lemma in question
is a combinatorial lemma somewhat weaker than the classical result of [10] and
weaker still than the more refined results of [23]. We will not deal further here with
the rate of decay of Pr([[U ]] ∨ [[V ]] > 4) as N → ∞.

Our proof of Theorem 1.2 is structured overall by the following trivial remark.
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Proposition 1.5. Let f1, f2, f3 : X → [0,∞) be continuous functions on a con-
nected topological space X . Make the following assumptions.

f1(x0) < f2(x0) for some x0 ∈ X .(12)

f1(x) ≤ f2(x) ⇒ f1(x) ≤ f3(x) for all x ∈ X .(13)

f3(x) < f2(x) for all x ∈ X .(14)

Then we have

(15) f1(x) ≤ f3(x) for all x ∈ X .

The proposition is a less technically demanding way to think about estimates in
the self-improving style of [9].

Proof. We have ∅ 6= {f1 < f2} ⊂ {f1 ≤ f3} ⊂ {f1 < f2} by hypotheses (12),
(13) and (14), respectively. Since {f1 ≤ f3} is open, closed and nonempty, in fact
{f1 ≤ f3} = X by connectedness of X . �

1.6. Further comments on methods of proofs.

1.6.1. An explicit if somewhat involved description of the random variable K will
be given later. Given this description, the proof of property (10) turns out to be an
exercise involving methods from the toolbox of [9]. Under more restrictive hypothe-
ses it is likely one could obtain stronger results using the Hanson-Wright inequality.
For an illuminating modern treatment of the latter see the recent preprint [17].

1.6.2. The main technical result of the paper by which means we prove (9) is a
deterministic statement of a form perhaps not seen before in connection with lo-
cal limit laws. (See Theorem 7.1 below.) Its proof is a reworking of the idea of
a self-improving estimate—rather than marching by short steps toward the real
axis, updating estimates at each step as in [9], we get our result at once by using
Proposition 1.5.

1.6.3. We employ here generalized resolvent techniques from [1]. But we do so with
significant simplifications, e.g., we do not use two-variable generalized resolvents
and Stieltjes transforms—rather, we just use the classical parameter z.

1.7. The deterministic local semicircle law. To facilitate comparison of our
results to the literature on the local semicircle law, as well as to rehearse main ideas
in a simplified context, we include an appendix in which we state and prove a semi-
circular analogue of Theorem 7.1, which we call the deterministic local semicircle
law. (See Theorem 9.2 below.)

1.8. Outline of the paper. In §2 we provide a table of notation. In §3 we intro-
duce the generalized resolvent formalism for anticommutators and we prove several
identities and inequalities. In §4 we review the general Schwinger-Dyson equation
and present key examples of solutions. (See Propositions 4.2 and 4.3.) Then we an-
alyze stability of a general nondegenerate solution. (See Proposition 4.4.) In §5 we
prove Proposition 4.3 and in passing pose a general problem for the free probability
theorists. (See §5.3 below.) In §6 we analyze a general matrix-valued version of the
self-consistent equation [9, Lemma 4.3]. (See Proposition 6.2 below.) In §7 we do
the main work of proving (9). (See Theorem 7.1 below.) In §8 we finish the proof
of Theorem 1.2 using methods of the type discussed in [9, Appendix B]. Finally, in
the appendix provided in §9, we present the deterministic local semicircle law.
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2. Table of notation

2.1. Basic notation. Let {xy} = xy + yx denote the anticommutator of x and y.
We write i =

√
−1 (roman typeface). For real numbers x and y, let x∨y (resp., x∧y)

denote the maximum (resp., minimum) of x and y. For x ≥ 0, let x• = x∨1. Let ℜz
andℑz denote the real and imaginary parts of a complex number z, respectively, and
let z∗ denote the complex conjugate of z. Let h = {z ∈ C | ℑz > 0} denote the upper
half-plane. For a C-valued random variable Z and p ∈ [1,∞), let ‖Z‖p = (E|Z|p)1/p
and furthermore, let ‖Z‖∞ denote the essential supremum of |Z|.

2.2. Matrix notation. Let Matk×ℓ denote the space of k-by-ℓ matrices with en-
tries in C. Let MatN = MatN×N . Let IN ∈ MatN denote the N -by-N identity
matrix. Context permitting, we may write 1 instead of IN . Given A ∈ Matk×ℓ,
let [[A]] denote the largest singular value of A and let A∗ ∈ Matℓ×k denote the

transpose conjugate of A. For A ∈ MatN , let ℜA = A+A∗

2 and ℑA = A−A∗

2i . For
A ∈ MatN , we write A > 0 (resp., A ≥ 0) if A is hermitian and positive definite
(resp., positive semidefinite). Given for ν = 1, 2 a matrix A(ν) ∈ Matkν×ℓν , recall
that the Kronecker product A(1) ⊗A(2) ∈ Matk1k2×ℓ1ℓ2 is defined by the rule

A(1) ⊗A(2) =




...

. . . A(1)(i, j)A(2) . . .
...


 .

2.3. The matrix norms [[·]]p. Given a matrix A ∈ Matk×ℓ with singular values

µ1 ≥ µ2 ≥ · · · and p ∈ [1,∞), let [[A]]p = (
∑

i µ
p
i )

1/p
. Also let [[A]] = [[A]]∞.

Standard properties of the matrix norms [[·]]p are taken for granted, e.g., [[A]]
2
2 =∑

i,j |A(i, j)|2 = trAA∗. Of particular importance is the Hölder inequality which

asserts that [[AB]]r ≤ [[A]]p[[B]]q whenever 1
r ≤ 1

p +
1
q and the matrix product AB is

defined. See [14] or [19] for background. Actually only p = 1, 2,∞ will be important.

2.4. Stieltjes transforms. In general, given a probability measure µ on the real

line, we define its Stieltjes transform by the formula Sµ(z) =
∫ µ(dt)

t−z for z ∈ h. Note

that with this sign convention we have ℑSµ(z) > 0 for ℑz > 0. We also have a
uniform bound |S(z)| ≤ 1/ℑz.

2.5. Banach spaces. Banach spaces always have complex scalars. The norm in a
Banach space V is denoted by [[·]]V or simply by [[·]] when (usually) context permits.
A unital Banach algebra A is one equipped with a unit 1A satisfying [[1A]] = 1.
Other notation may be used for the unit, e.g., In = 1Matn or 1 = 1A. We invariably
equip Matn with unital Banach algebra structure by means of the largest-singular-
value norm. Let B(V) denote the space of bounded linear maps from V to itself
normed by the rule [[T ]]B(V) = supv∈BallV(0,1) [[T (v)]]V . Given v0 ∈ V and ǫ ≥ 0, let

BallV(v0, ǫ) = {v ∈ V | [[v − v0]]V ≤ ǫ} (a closed ball).

2.6. Inexplicit constants. These may be denoted by c, C, etc. and their values
may change from context to context and even from line to line. When recalling a
previously defined constant we sometimes do so by referencing as a subscript the
theorem, proposition, corollary, or lemma in which the constant was defined, e.g.,
c4.3 denotes the constant c from Proposition 4.3.
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3. The generalized resolvent formalism for anticommutators

We enumerate the main objects of study and work out several relations among
them. Our viewpoint and methods are deterministic except in §3.6, where we pause
to discuss the probabilistic motivations.

3.1. The main objects of study.

3.1.1. Data. Arbitrarily fix hermitian matrices U, V ∈ MatN where N ≥ 2 and a
point z ∈ h. These data remain fixed throughout §3 and throughout calculations
later to be undertaken in §7. We take (U, V, z) to be deterministic here and in §7,
except in §3.6 where we temporarily identify U and V with the random matrices fig-
uring in Theorem 1.2. The emphasis in §3 and §7 will be on deterministic estimates
with constants independent of N , U , V and z.

3.1.2. The generalized resolvent R. Let

Λ =



z 0 0
0 −1 0
0 0 1


 ∈ Mat3,(16)

X =




0 U−V√
2

−U−V√
2

U−V√
2

0 0
−U−V√

2
0 0


 ∈ Mat3N and(17)

W =




IN 0 0
−U+V√

2
IN 0

−U−V√
2

0 IN


 ∈ Mat3N .(18)

Note that Λ depends on z although the notation does not show it. Note that X is
hermitian. Note that both X and W depend on U and V although the notation
does not show it. Note that

(19) 1 ≤ [[W ]] =
[[
W−1

]]
= [[W ∗]] =

[[
(W ∗)−1

]]
and [[X ]]∨[[W ]] ≤ 8([[U ]]∨[[V ]]∨1).

We have a factorization

(20) W ∗(X − Λ⊗ IN )W =



UV + V U − zIN 0 0

0 IN 0
0 0 −IN


 .

It follows that X − Λ⊗ IN is invertible. Let

(21) R = (X − Λ⊗ IN )−1 =W




({UV } − zIN )−1 0 0
0 IN 0
0 0 −IN


W ∗,

which we call the generalized resolvent for anticommutators. The matrix R depends
on (U, V, z) but the notation does not show it. Clearly, the dependence of R on
(U, V, z) is continuous. Crucially, the resolvent of {UV } = UV +V U appears as the
upper left N -by-N block of R. For discussion of the self-adjoint linearization trick
by which means generalized resolvents such as R are contrived, see [1], [2] or [4].
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3.1.3. The matrix M . With m = m{uv}(z) as on line (5) above, let

(22) M =



m 0 0
0 − 1

m−1 0

0 0 − 1
m+1


 ∈ Mat3.

Since ℑm > 0, in fact M is well-defined and moreover invertible. Although M
depends on z, the notation does not show it. We remark that the function h defined
on line (8) will be used often in conjunction with M .

3.1.4. The linear map Φ. Let Φ ∈ B(Mat3) be the (constant) linear map defined
by the formula

(23) Φ(A) = (e12 + e21)A(e12 + e21) + (e13 + e31)A(e13 + e31)

where {eij}3i,j=1 is the standard basis for Mat3 consisting of elementary matrices.

A straightforward calculation shows that the definition (23) can be rewritten

(24) Φ





x1 x4 x6
x5 x2 x8
x7 x9 x3




 =



x2 + x3 x5 x7
x4 x1 0
x6 0 x1


 .

The peculiar numbering of matrix entries will be useful later. See §3.6 for proba-
bilistic motivation for the definition of Φ.

3.1.5. Specialized matrix notation. For i = 1, . . . , N , let ei ∈ Mat1×N denote the
ith row of IN , let ei = I3 ⊗ ei ∈ Mat3×3N , let êi ∈ Mat(N−1)×N denote IN with the

ith row deleted and let êi = I3 ⊗ êi ∈ Mat3(N−1)×3N .

3.1.6. Further objects associated with R. For i = 1, . . . , N let

Gi = eiRe
∗
i ∈ Mat3, G =

1

N

N∑

i=1

Gi ∈ Mat3,

Ri = (êiX ê∗i − Λ⊗ IN−1)
−1 ∈ Mat3(N−1),

Ĝi =
1

N

N∑

j=1

ej ê
∗
iRiêie

∗
j ∈ Mat3,

Qi = eiX ê∗iRiêiXe∗i − eiXe∗i − Φ(Ĝi) ∈ Mat3,

Ki = 1 ∨ [[Qi]]

1√
N

(
1 ∨ [[Ri]]2√

N

) ∈ [1,∞) and K =
N∨

i=1

Ki.

All these objects depend on (U, V, z) but the notation does not show it. Clearly,
dependence on (U, V, z) is continuous. All of these objects have counterparts in the
study of single Wigner matrices, as we explain in an appendix. (See §9 below.)
Theorem 7.1 below will explain the role of the most complicated object, namely K.
Ultimately we will define the random variable K in Theorem 1.2 in terms of K.

3.2. Basic relations.

3.2.1. The Schwinger-Dyson equation. In §5.4.1 below it is proved that

(25) I3 +M(Λ + Φ(M)) = 0.

This solution of the Schwinger-Dyson equation will be studied in §5 in great detail.
The general equation will be studied in §4 and §6.
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3.2.2. The linearization bound. The relation deserving emphasis as the starting
point for the proof of Theorem 1.2 is the bound

(26) |({UV } − zIN )−1(i, i)−m| ≤ [[Gi −M ]] for i = 1, . . . , N .

The latter holds because firstly, the resolvent of the anticommutator {UV } appears
as the upper left N -by-N block of the generalized resolvent R and secondly, we
have m =M(1, 1) by definition of M .

3.2.3. Finer relations between R and the resolvent of {UV } = UV + V U . Let

r =




({UV } − zIN)−1 0 0
0 0 0
0 0 0


 ∈ Mat3N ,(27)

which is just the resolvent of {UV } bordered by some zeros. Let

(28) Λ0 = lim
z→0

Λ =




0 0 0
0 −1 0
0 0 1


 ∈ Mat3.

Recall that by definition ℑA = A−A∗

2i for A ∈ Matn. We have

(29) R+ Λ0 ⊗ IN =WrW ∗,
dR

dz
=Wr2W ∗ and

ℑR
ℑz =Wrr∗W ∗ =Wr∗rW ∗

as one can straightforwardly deduce from (21).

3.2.4. A finer a priori bound for Gi. We have

(30)
N∨

i=1

[[Gi + Λ0]] ≤
[[W ]]

2

ℑz ≤ 26([[U ]] ∨ [[V ]] ∨ 1)2

ℑz

by combining (19), (29) and the standard resolvent bound [[r]] ≤ 1/ℑz.
We will apply the following well-known facts concerning Schur complements to

derive further relations among the objects associated with R.

Proposition 3.3. Let {1, . . . , n} = I
∐
J be a disjoint union decomposition. Let e

(resp., ê) be the result of striking rows indexed by J (resp., I) from In. Let A ∈ Matn
be a matrix such that both A and êAê∗ are invertible. Then eA−1e∗ is invertible
and we have relations

(eA−1e∗)−1 = eAe∗ − eAê∗(êAê∗)−1êAe∗,(31)

A−1 = ê∗(êAê∗)−1ê+A−1e∗(eA−1e∗)−1eA−1.(32)

Proof. Write
[

e

ê

]
A
[
e∗ ê∗

]
=

[
a b
c d

]
and

[
e

ê

]
A−1

[
e∗ ê∗

]
=

[
p q
r s

]
,

noting that

[
e

ê

]
is a permutation matrix. By hypothesis

[
a b
c d

]
and d are

invertible. Thus we have a factorization
[
a b
c d

]
=

[
1 bd−1

0 1

] [
a− bd−1c 0

0 d

] [
1 0

d−1c 1

]
,
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hence the Schur complement a− bd−1c is also invertible and we have
[
a b
c d

]−1

=

[
0 0
0 d−1

]
+

[
1

−d−1c

]
(a− bd−1c)−1

[
1 −bd−1

]
.

This already proves invertibility of eA−1e∗ and identity (31). It follows that
[
p q
r s

]
=

[
0 0
0 d−1

]
+

[
p
r

]
p−1

[
p q

]
.

The latter identity after conjugation by
[
e∗ ê∗

]
on both sides becomes (32). �

3.4. Further relations. We have seen that X−Λ⊗IN is invertible and for similar
reasons ê∗i (X − Λ⊗ IN )êi is also invertible. Thus by Proposition 3.3 we have that

(33) Gi is invertible for i = 1, . . . , N .

Moreover, the identities (31) and (32) specialize in the present case to

−Qi = G−1
i + Λ+ Φ(Ĝi) and(34)

R = ê∗iRiêi +Re∗iG
−1
i eiR,(35)

respectively. From the latter identity we deduce a bound

(36) N
[[
G− Ĝi

]]
≤ N

[[
G− Ĝi

]]
1
≤ [[R − ê∗iRiêi]]1 ≤

[[
G−1

i

]]
[[Re∗i ]]2[[eiR]]2

via the matrix Hölder inequality and the following lemma.

Lemma 3.5. For A ∈ Mat3N one has
∑N

i=1 [[eiAe
∗
i ]]1 ≤ [[A]]1.

Proof. It is well-known that [[A]]1 = sup
∑N

i=1 |viAw∗
i | where the supremum is ex-

tended over orthonormal bases {vi}Ni=1 and {wi}Ni=1 for Mat1×N . A suitable choice
of {vi} and {wi} gives the desired inequality. �

3.6. Motivation for the definition of Φ. Suppose for the moment that U and
V are random and satisfy (1), (2), (3) and (4). We claim that the random matrix
X has the following properties:

sup
p∈[2,∞)

p−α0

N∨

i,j=1

‖[[eiXej]]‖p < α2(37)

for a constant α2 depending only on α0 and α1.

The family {eiXej}1≤i≤j≤N is independent.(38)

EX = 0.(39)

EeiXe∗jAe
∗
kXei = δjkΦ(A)(40)

for i, j, k = 1, . . . , N s.t. i 6∈ {j, k} and A ∈ Mat3.

The first three claims are clear. We just prove the last. We have in any case

eiXe∗j =

(
U − V√

2
(i, j)

)
(e12 + e21) +

(−U − V√
2

(i, j)

)
(e13 + e31)

by direct appeal to the definitions. Now by assumptions (2), (3) and (4), for any
fixed distinct indices i, j = 1, . . . , N , the two C-valued random variables U−V√

2
(i, j)
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and −U−V√
2

(i, j) form an orthonormal system. Formula (40) then follows by the

definition of Φ. The claims are proved. It follows for i = 1, . . . , N that

σ(êiX ê∗i ) and σ(eiX) are independent,(41)

Ri and Ĝi are σ(êiX ê∗i )-measurable and(42)

E(Qi|êiX ê∗i ) = 0 a.s..(43)

The system of relations (37)—(43) exhibits X as a Wigner-matrix-like array of
3-by-3 blocks and opens the way toward an analysis of R by methods analogous
to those used to study the resolvent of a Wigner matrix, especially those of [9]. In
particular, the motivation for the definition Φ is now clear: to achieve (40) and thus
also (43) we are forced to define Φ as we have.

We will consider the generalized resolvent formalism again in §7, after a long
digression to consider the Schwinger-Dyson equation from several angles.

4. Stability of a general form of the Schwinger-Dyson equation

For background see e.g. [1], [2], [3, Chap. 5], [13] or [16].

4.1. Basic definitions.

4.1.1. The Schwinger-Dyson equation. Let S be a finite-dimensional unital Banach
algebra. A triple

(Λ,M,Φ) ∈ S × S ×B(S)
is said to satisfy the Schwinger-Dyson equation if

(44) 1S + (Λ + Φ(M))M = 0,

in which case M is necessarily invertible. (In a finite-dimensional unital algebra
existence of a left inverse implies existence of a two-sided inverse.) We emphasize
that in our (somewhat eccentric) usage, a solution of the Schwinger-Dyson equation
is not a function; rather, it is just a point in the space S × S ×B(S).

4.1.2. Nondegeneracy. Now let (Λ,M,Φ) ∈ S × S × B(S) be any solution of the
Schwinger-Dyson equation. If the linear map

(45)
(
x 7→M−1x− Φ(x)M

)
∈ B(S)

is invertible we say that (Λ,M,Φ) is nondegenerate in which case we let

κ = κΛ,M,Φ

denote the inverse of the linear map (45) and we also say with slight abuse of
terminology that the quadruple

(Λ,M,Φ, κ) ∈ S × S ×B(S)×B(S)

is a nondegenerate solution of the Schwinger-Dyson equation. If we need to empha-
size the role of S we say that (Λ,M,Φ, κ) is a solution defined over S but we omit
the epithet when (usually) context permits.
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4.1.3. The stability radius. Recall our notation x• = 1 ∨ x. Given a nondegenerate
solution of the Schwinger-Dyson equation (Λ,M,Φ, κ) as above, we call the quantity

1
8[[κ]]

•
[[Φ]]

•

the stability radius of (Λ,M,Φ, κ). The meaning of the stability radius will

be explained by Proposition 4.4 below.
The next proposition describes the class of nondegenerate solutions of the

Schwinger-Dyson equation connected with the (local) semicircle law.

Proposition 4.2. Fix z ∈ h and let m = 1
2π

∫ 2

−2

√
4−t2 dt
t−z . (i) One has

(46) ℑm > 0, z = −m−m−1 and |m| ≤ 1 ∧ 1

ℑz .

(ii) The quadruple

(47) (z,m, 1, (m−1 −m)−1)

is a nondegenerate solution of the Schwinger-Dyson equation defined over C.
(iii) The stability radius of the solution (47) satisfies the lower bound

(48)
1

8|(m−1 −m)−1|•|1|•
≥
√
1 ∧ |z − 2| ∧ |z + 2|

c

where c is an absolute constant.

One could, say, take c4.2 = 8. But we prefer the inexplicit notation c4.2 for being
more informative.

Proof. (i) Well-known. (ii) Taking S = C = B(S) in the general definition, it is
clear that (z,m, 1) is a solution of the Schwinger-Dyson equation. Since the linear
map (45) in the case of (z,m, 1) becomes multiplication by m−1−m and the latter
is not zero, we have κz,m,1 = (m−1 −m)−1 as claimed. (iii) The estimate follows
straightforwardly from the algebraic identity (m−1 −m)2 = z2 − 4. �

For our study of anticommutators the following more exotic examples of nonde-
generate solutions of the Schwinger-Dyson equation will be needed.

Proposition 4.3. For each z ∈ h the triple (Λ,M,Φ) defined in (16), (22) and
(23), respectively, is a nondegenerate solution of the Schwinger-Dyson equation de-
fined over Mat3. (Recall that the matrices Λ and M depend on z but the notation
does not show it.) Furthermore, we have bounds

(49) [[Λ]] ≤ 1 + |z|, [[Φ]] ≤ 8, [[M ]] ≤ 2 and
[[
M + Λ0

]]
≤ 2

(
1 ∧ 1

ℑz

)

where Λ0 is as defined on line (28). Let κ = κΛ,M,Φ ∈ B(Mat3). (As do Λ and
M , the linear map κ depends on z but the notation does not show it.) Finally, the
nondegenerate solution (Λ,M,Φ, κ) of the Schwinger-Dyson equation has stability
radius satisfying the lower bound

(50)
1

8[[κ]]•[[Φ]]•
≥

√
h

c

where h is as defined on line (8) above and c ≥ 1 is an absolute constant.

The elementary but long and computationally intensive proof is postponed to §5.
The constant c4.3 has a crucial role to play in the proof of Theorem 1.2.

The main result of this section is the following.
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Proposition 4.4. Let S be a finite-dimensional unital Banach algebra. Let

(Λ0,M0,Φ0, κ0)

be a nondegenerate solution of the Schwinger-Dyson equation defined over S. Fix
G0 ∈ S and let

E0 = 1S + (Λ0 +Φ0(G0))G0 ∈ S.
We then have

(51) [[G0 −M0]] ≤
1

8[[κ0]]•[[Φ0]]•
⇒ [[G0 −M0]] ≤ 20[[κ0]]•[[Φ0]]•[[M0]]

2
•[[E0]].

The proof takes up the rest of this section. Statement (51) provides the promised
interpretation of the stability radius. The proof is by a routine deployment of the
Banach fixed point theorem, with care taken over making the constants explicit.
Our estimates are relatively crude; doubtless our approach could be refined.

4.5. Abbreviated terminology for the proof of Proposition 4.4. Until the
end of the proof the linear map Φ0 ∈ B(S) is fixed. Accordingly, we drop reference
to Φ0 in the terminology, saying, e.g., that the triple (Λ1,M1, κ1) is a nondegenerate
solution of the Schwinger-Dyson equation if the quadruple (Λ1,M1,Φ0, κ1) is.

4.6. The deformation equation associated to a nondegenerate solution of

the Schwinger-Dyson equation. As in the statement of Proposition 4.4, let

(Λ0,M0, κ0) ∈ S × S ×B(S)
be a nondegenerate solution of the Schwinger-Dyson equation. We say that a
pair (Θ, H) ∈ S × S satisfies the deformation equation associated with the triple
(Λ0,M0, κ0) if

(52) H = κ0 (ΘM0 +ΘH +Φ0(H)H) .

Lemma 4.7. As in the statement of Proposition 4.4, let (Λ0,M0, κ0) be a non-
degenerate solution of the Schwinger-Dyson equation. Fix (Λ1,M1) ∈ S × S and
write (Θ, H) = (Λ1 − Λ0,M1 −M0). Then the pair (Λ1,M1) is a solution of the
Schwinger-Dyson equation if and only if the pair (Θ, H) is a solution of the defor-
mation equation (52) associated with the triple (Λ0,M0, κ0).

Proof. We first prove the implication (⇒). We have

0 = 1 + (Λ1 +Φ0(M1))M1 = 1 + (Λ0 +Θ+Φ0(M0 +H))(M0 +H)

= 1 + (Λ0 +Φ0(M0))M0 + (Θ + Φ0(H))H

+(Θ + Φ0(H))M0 + (Λ0 +Φ0(M0))H

= ΘH +ΘM0 +Φ0(H)H +Φ0(H)M0 −M−1
0 H

and hence
M−1

0 H − Φ0(H)M0 = ΘM0 +ΘH +Φ0(H)H.

Thus the deformation equation (52) holds. The steps of the preceding argument are
reversible. Thus the converse (⇐) also holds. �

Lemma 4.8. Again, as in the statement of Proposition 4.4, let (Λ0,M0, κ0) be
a nondegenerate solution of the Schwinger-Dyson equation. Fix constants ǫ and δ
such that

0 ≤ ǫ ≤ 1

4[[κ0]]•[[Φ0]]•
and 0 ≤ δ ≤ ǫ

4[[κ0]]•[[M0]]•
.
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Fix Λ ∈ BallS(Λ0, δ). (For the latter notation see §2.5.) Then there exists unique
M ∈ BallS(M0, ǫ) such that the pair (Λ,M) is a solution of the Schwinger-Dyson
equation.

Proof. Let

Θ = Λ− Λ0 ∈ BallS(0, δ)

and consider the quadratic mapping

Q := (x 7→ κ0 (ΘM0 +Θx+Φ0(x)x)) : S → S.
By Lemma 4.7, an element M ∈ S has the property that the pair (Λ,M) is a
solution of the Schwinger-Dyson equation if and only if the difference M −M0 is a
fixed point of Q. Thus our task is transformed to that of proving the existence of
a unique fixed point of Q in BallS(0, ǫ). For achieving the latter goal the Banach
fixed point theorem is the natural tool.

We turn now to the analysis of Q restricted to BallS(0, ǫ). For x ∈ BallS(0, ǫ) we
have

[[Q(x)]] = [[κ0 (ΘM0 +Θx+Φ0(x)x)]]

≤ [[κ0]][[M0]]δ + [[κ0]]δǫ + [[κ0]][[Φ0]]ǫ
2 ≤ ǫ

4
+
ǫ

4
+
ǫ

4
≤ ǫ.

Thus we have

(53) Q (BallS(0, ǫ)) ⊂ BallS(0, ǫ).

For x1, x2 ∈ BallS(0, ǫ) we have

[[Q(x1)−Q(x2)]]

= [[κ0 (ΘM0 +Θx1 +Φ0(x1)x1)− κ0 (ΘM0 +Θx2 +Φ0(x2)x2)]]

≤ [[κ0]][[Θ(x1 − x2) + Φ0(x1 − x2)x1 +Φ0(x2)(x1 − x2)]]

≤ ([[κ0]]δ + [[κ0]][[Φ0]]ǫ+ [[κ0]][[Φ0]]ǫ) [[x1 − x2]]

≤
(
1

4
+

1

4
+

1

4

)
[[x1 − x2]] =

3

4
[[x1 − x2]].

Thus we have

(54) x1, x2 ∈ BallS(0, ǫ) ⇒ [[Q(x1)−Q(x2)]] ≤
3

4
[[x1 − x2]].

By (53) and (54) the map Q induces a contraction mapping of the complete metric
space BallS(0, ǫ) to itself. By the Banach fixed point theorem Q indeed has a unique
fixed point in BallS(0, ǫ). �

4.9. Proof of Proposition 4.4. We may assume that

[[E0]] ≤ 1

64[[κ0]]
2
•[[M0]]

2
•[[Φ0]]

2
•
,(55)

since otherwise (51) already holds and there is nothing to prove. Now by the hy-
pothesis of (51) we have [[G0]] ≤ 2[[M0]]• and furthermore by (55) we have [[E0]] ≤ 1

2 .
Thus Λ0 +Φ0(G0) is invertible and its inverse satisfies the bound

(56)
[[
(Λ0 +Φ0(G0))

−1
]]
≤ 2[[G0]] ≤ 4[[M0]]•.

Let

M = −(Λ0 +Φ0(G0))
−1 and Λ = Λ0 +Φ0(G0 −M).
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The pair (Λ,M) is a solution of the Schwinger-Dyson equation because

1 + (Λ + Φ0(M))M = 1 + (Λ0 +Φ0(G0 −M) + Φ0(M))M

= 1 + (Λ0 +Φ0(G0))M = 1− 1 = 0.

By (56) and the definitions we have

[[G0 −M ]] =
[[
G0 + (Λ0 +Φ0(G0))

−1
]]

(57)

=
[[
(Λ + Φ0(G0))

−1E0

]]
≤ 4[[M0]]•[[E0]].

By hypothesis of (51) along with (55) and (57) we have

[[M −M0]] ≤ [[G0 −M ]] + [[G0 −M0]]

≤ 4[[M0]]•[[E0]] +
1

8[[κ0]]•[[Φ0]]•
≤ 1

4[[κ0]]•[[Φ0]]•
.

By (55) and (57) we also have

(58) [[Λ− Λ0]] = [[Φ0(G0 −M)]] ≤ 4[[Φ0]]•[[M0]]•[[E0]] ≤
1

16[[κ0]]
2
•[[M0]]•[[Φ0]]•

.

Applying Lemma 4.8 in the case

(δ, ǫ) =

(
1

16[[κ0]]
2
•[[M0]]•[[Φ0]]•

,
1

4[[κ0]]•[[Φ0]]•

)
,

we conclude that M is the unique element of BallS
(
M0,

1
4[[κ0]]•[[Φ0]]•

)
such that

(Λ,M) is a solution of the Schwinger-Dyson equation. By applying Lemma 4.8
again in the case

(δ, ǫ) = ([[Λ− Λ0]], 4[[κ0]]•[[M0]]•[[Λ− Λ0]])

we find that in fact

[[M −M0]] ≤ 4[[κ0]]•[[M0]]•[[Λ − Λ0]].

Thus by (57) and (58) we have

[[G0 −M0]] ≤ [[G0 −M ]] + [[M −M0]]

≤ 4[[M0]]•[[E0]] + (4[[κ0]]•[[M0]]•)(4[[M0]]•[[Φ0]]•)[[E0]],

which suffices to prove (51). �

5. Proof of Proposition 4.3

The plan of proof is as follows. We first state a result about equation (6). (See
Proposition 5.2 below.) We then use this result to derive Proposition 4.3. Finally
we prove Proposition 5.2. The only tool we use here is high school algebra.

5.1. Key estimates involving equation (6). Let

(59) ω =

√√
5− 2

∼
= 0.4858682712,

which is the unique positive root of the polynomial

(60) m4 + 4m2 − 1 = (m− ω)(m+ ω)(m− i/ω)(m+ i/ω).
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Repeating (7) for the reader’s convenience, let

(61) ζ =

√
11 + 5

√
5

2

∼
= 3.330190676,

which is the unique positive root of the polynomial

(62) z4 − 11z2 − 1 = (z − ζ)(z + ζ)(z − i/ζ)(z + i/ζ).

It can be shown that the system of equations

(63)
zm3 −m2 − zm− 1 = 0

∂
∂m

(
zm3 −m2 − zm− 1

)
= 0

has exactly four complex solutions, namely

(64) (z,m) = (−ζ, ω), (ζ,−ω), (−i/ζ, i/ω), (i/ζ,−i/ω).

(We omit the proof of this fact since we do not actually use it in the sequel.) These
four points in C2 are where the Implicit Function Theorem fails to yield locally a
solution m = m(z) of (6) depending analytically on z. Thus the numbers ζ and ω
are not pulled out of thin air; rather, they naturally call attention to themselves in
connection with the geometry of the plane algebraic curve (6).

Our main technical result in this section, by means of which we will prove Propo-
sition 4.3, is the following.

Proposition 5.2. If z ∈ h and m = m{uv}(z), then

|m| ≤ 1 ∧ 1

ℑz ,(65)

|ℜm| ≤ ω <
1

2
and(66)

|m2 − ω2| ≥
√
h

c
,(67)

where c ≥ 1 is an absolute constant and h is the quantity on line (8).

The proof of the proposition takes up the rest of this section after we have made
the application to the proof of Proposition 4.3.

5.3. Remark. The recent paper [18] sheds light on the more delicate properties
of the laws of self-adjoint polynomials in free semicircular variables, including lack
of atoms and algebraicity of Stieltjes transforms. It is an open problem to refine
this theory to yield a general analogue of Proposition 4.3. Such an analogue would
make it possible to prove a local limit law for self-adjoint polynomials in Wigner
matrices. We consciously overkill the proofs of Propositions 4.3 and 5.2 here in
the hope that some among the details could provide clues for the theory (partly
algebraic geometry and partly operator theory) we would like to have.

5.4. Proof of Proposition 4.3 with Proposition 5.2 granted. We break the
proof down into several steps.
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5.4.1. Proof that (Λ,M,Φ) solves the Schwinger-Dyson equation. Sincem = m{uv}(z)
the pair (z,m) satisfies (6). Note that equation (6) can be rewritten as

(68) z =
m2 + 1

m3 −m
=

1

m− 1
+

1

m+ 1
− 1

m
.

Recall that

Λ =



z 0 0
0 −1 0
0 0 1


 and M =



m 0 0
0 − 1

m−1 0

0 0 − 1
m+1


 .

Using (24) to calculate the action of Φ and also exploiting (68), we have

Φ(M) =




− 1
m−1 − 1

m+1 0 0

0 m 0
0 0 m


 and

Λ + Φ(M) =




− 1
m 0 0
0 m− 1 0
0 0 m+ 1


 = −M−1.

Thus (Λ,M,Φ) is indeed a solution of the Schwinger-Dyson equation.

5.4.2. Proof of the bounds (49). The first bound is clear. The second bound is
proved as follows:

[[Φ(A)]] ≤ ([[e12 + e21]]
2
+ [[e13 + e31]]

2
)[[A]] ≤ 8[[A]].

The third and fourth bounds are equivalent to the statements

|m| ∨
∣∣∣∣

1

m− 1

∣∣∣∣ ∨
∣∣∣∣

1

m− 1

∣∣∣∣ ≤ 2 and |m| ∨
∣∣∣∣

m

m− 1

∣∣∣∣ ∨
∣∣∣∣

m

m+ 1

∣∣∣∣ ≤ 2

(
1 ∧ 1

ℑz

)
,

respectively. Both bounds follow easily from (65) and (66).

5.4.3. Proof of nondegeneracy. Abusing notation since we haven’t yet proved in-
vertibility, let κ−1 denote the linear map (45). Then, making use of formula (24)
again, we have

κ−1





x1 x4 x6
x5 x2 x8
x7 x9 x3




 =




1/m 0 0
0 −(m− 1) 0
0 0 −(m+ 1)





x1 x4 x6
x5 x2 x8
x7 x9 x3




−



x2 + x3 x5 x7
x4 x1 0
x6 0 x1





m 0 0
0 − 1

m−1 0

0 0 − 1
m+1


 .

With respect to the basis for Mat3 dual to the peculiar numbering of matrix entries
in (24), the matrix for κ−1 is block diagonal with diagonal blocks




1/m −m −m
1

m−1 −(m− 1) 0
1

m+1 0 −(m+ 1)


 ,

[
1/m 1

m−1

−m −(m− 1)

]
,(69)

[
1/m 1

m+1

−m −(m+ 1)

]
,

[
−(m− 1) 0

0 −(m+ 1)

]
,
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respectively. The determinants of these blocks are

(70) − m4 + 4m2 − 1

m(m− 1)(m+ 1)
,

2m− 1

m(m− 1)
, − 2m+ 1

m(m+ 1)
, (m− 1)(m+ 1),

respectively. By (65) and (66) and the lower bound ℑm > 0, the determinants on
the list (70) are finite and nonzero. It follows that (Λ,M,Φ) is nondegenerate and
hence κ is well-defined.

5.4.4. Proof of the bound (50). The inverses of the diagonal blocks on the list (69)
are 


−(m2 − 1)2m m2(m2 − 1)(m+ 1) m2(m2 − 1)(m− 1)
−(m+ 1)2m (2m+ 1)(m− 1) m2(m+ 1)
−(m− 1)2m m2(m− 1) −(2m− 1)(m+ 1)




(m4 + 4m2 − 1)
,

[
−(m− 1)2m −m
m2(m− 1) m− 1

]

2m− 1
,

[
(m+ 1)2m m
−m2(m+ 1) −(m+ 1)

]

2m+ 1
,

[ − 1
m−1 0

0 − 1
m+1

]
,

respectively. By (65) and (66) along with the factorization (60), the entries of the
matrices above are bounded in absolute value by c1/|m2−ω2|. It follows by Proposi-
tion 5.5 appearing immediately after this proof that [[κ]] ≤ c2/|m2−ω2|. Finally, the
bound (50) follows via (67). The proof of Proposition 4.3 is now complete modulo
Propositions 5.2 and 5.5. �

Proposition 5.5. Let ψ ∈ B(Matn) be any linear map. Let {eij}ni,j=1 be the stan-
dard basis of Matn consisting of elementary matrices. Write

ψ(ei2j2) =
∑

i1,j1

ψ(i1, j1, i2, j2)ei1j1

for scalars ψ(i1, j1, i2, j2). Then

[[ψ]] ≤ √
n

∑

i1,j1,i2,j2

|ψ(i1, j1, i2, j2)|.

We omit the routine proof.

5.6. Algebraic identities. We prepare for the proof of Proposition 5.2 by deriving
a certain algebraic identity. Let a and t be independent (commuting) algebraic
variables. The following polynomial congruences hold modulo a4+4a2−1 and were
derived with the help of a computer algebra system:

t4 − 11t2 − 1

∣∣∣∣
t= 3a3+13a

2

≡ 0,(71)

(
3a3 + 13a

2

)(
a3 + a

2

)
≡ 1,(72)

(t3 − t)±
(
a3 + a

2

)
(t2 + 1) ≡

(
t± a3 + 5a

2

)
(t∓ a)2.(73)
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In particular, the numerical identities

ζ =
3ω3 + 13ω

2
and

1

ζ
=
ω3 + ω

2

follow from (71) and (72), respectively. Let

ρ =
ω3 + 5ω

2

∼
= 1.272019648.

Now let z ∈ h and m = m{uv}(z) as in Proposition 5.2, then substitute (t, a) =
(m,ω) in (73) and finally take the product over the two choices of signs. We thus
obtain the identity

(1− z2/ζ2)(m3 −m)2 = (m2 − ρ2)(m2 − ω2)2.

Taking absolute values on both sides and then square roots we obtain the relation

(74)
1

|m2 − ω2| =
|m2 − ρ2|1/2
|m2 − 1|

1

|m|
ζ

|z2 − ζ2|1/2
after some rearrangement.

5.7. The quadrant-lifting diagram. We continue preparation for the proof of
Proposition 5.2. We introduce a visual aid to explain the geometry of equation (6).
Let m = u+ iv with u and v real. Then for m3 −m 6= 0 we have formulas

ℜ m2 + 1

m3 −m
=

u((u2 + v2)2 − 4v2 − 1)

|m3 −m|2 ,(75)

ℑ m2 + 1

m3 −m
= −v((u

2 + v2)2 + 4u2 − 1)

|m3 −m|2 .(76)

It follows that {
m ∈ C \ {−1, 0, 1}

∣∣∣∣ℜ
m2 + 1

m3 −m
= 0

}
∪ {−1, 1}(77)

=

{
±
(√√

1 + 4t2 − t2 + it

) ∣∣∣∣|t| ≤
1

ω

}
∪ iR,

{
m ∈ C \ {−1, 0, 1}

∣∣∣∣ℑ
m2 + 1

m3 −m
= 0

}
∪ {0}(78)

=

{
±
(
t+ i

√√
1− 4t2 − t2

) ∣∣∣∣|t| ≤ ω

}
∪ R.

By plotting the sets (77) and (78) in the complex plane and also keeping track of

the signs of ℜ m2+1
m3−m and ℑ m2+1

m3−m we obtain Figure 2 in which each of the twelve
regions is labeled by the quadrant of the complex plane to which it is sent by

the map m 7→ m2+1
m3−m . Accordingly, we call this figure the quadrant lifting diagram

associated with equation (6).

5.8. Proof of Proposition 5.2. Since z,m ∈ h and (z,m) satisfies (6), a glance
at the quadrant lifting diagram reveals that m belongs to the set in the complex
plane bounded below by the interval [−ω, ω] and above by the contour

t 7→ t+ i

√√
1− 4t2 − t2 for |t| ≤ ω.

This observation overkills the proof that |m| ≤ 1 and |ℜm| ≤ ω. We already have
|m| ≤ 1/ℑz because m is the value at z of a Stieltjes transform. Thus the bounds
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Figure 2. The quadrant lifting diagram
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(65) and (66) hold. It remains only to prove the bound (67). Bounding the right
side of (74) by means of (65) and (66) we find that

1

|m2 − ω2| ≤
c1

|m|
√
|z2 − ζ2|

.

Using (65), (66) and (68) we deduce a bound

1

|m| ≤ |z|+ 2

1− ω
≤ c2(1 + |z|).

We have finally a bound

1 + |z|√
|z2 − ζ2|

≤ c3√
1 ∧ |z − ζ| ∧ |z + ζ|

.

Combining displayed lines above we obtain the desired bound (67). The proof of
Proposition 5.2 is complete. (Thus also the proof of Proposition 4.3 is complete.) �

6. A general matrix-valued self-consistent equation

We prove a technical result similar in intent to [9, Lemma 4.3] if superficially
different in form. (See Proposition 6.2 below.) The result is an elaboration and
refinement of Proposition 4.4. Our methods here are deterministic and algebraic.

6.1. Setup for the technical result. Fix a finite-dimensional unital Banach al-
gebra S. Fix a nondegenerate solution

(Λ0,M0,Φ0, κ0)

of the Schwinger-Dyson equation defined over S for which (recall) 1
8[[κ0]]•[[Φ0]]•

is by

definition the stability radius. Fix a family

{Gi, Ĝi}Ni=1
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of elements of S where all the Gi are invertible. (It is not necessary to assume that

the Ĝi are invertible.) Consider the statistic

E =

N∨

i=1

[[
G−1

i + Λ0 +Φ0(Ĝi)
]]

[[
Ĝi

]]1/2
•

∨
N∨

i=1

√√√√
[[
Ĝi − 1

N

∑N
i=1Gi

]]

[[Gi]]•
[[
G−1

i

]] ,

which is a gauge of error in this situation. The idea to emphasize the statistic E

clearly derives from [9, Lemma 4.3] and the related constellation of identities and
estimates. The following is the main result of this section.

Proposition 6.2. Notation and assumptions are as above. We have

N∨

i=1

[[Gi −M0]] ≤
1

8[[κ0]]•[[Φ0]]•
(79)

⇒
N∨

i=1

[[Gi −M0]] ≤ 214(1 + [[M0]])
7([[Φ0]]• ∨ [[Λ0]]•)

4[[κ0]]•E.

Proof. Let

G =

N∨

i=1

[[Gi]]•, G =
1

N

N∑

i=1

Gi and E = 1 + (Λ0 +Φ0(G))G.

Also to abbreviate notation let

M = 1 + [[M0]] and F = [[Φ0]]• ∨ [[Λ0]]•.

We temporarily assume that

(80) [[E]] ∨
N∨

i=1

[[Gi −G]] ≤ 28G5F3E.

Presently we will explain how to lift this assumption. By the hypothesis of (79) we
have [[G−M0]] ≤ 1

8[[κ0]]•[[Φ0]]•
and hence G ≤ M. Thus by (51) and (80) we have

N∨

i=1

[[Gi −M0]] ≤ [[G−M0]] +

N∨

i=1

[[Gi −G]] ≤ 20[[κ0]]•[[Φ0]]•[[M0]]
2
•[[E]] + 28G5F3E

≤ (25[[κ0]]•FM
2 + 1)28M5F3E ≤ 214M7F4[[κ0]]•E,

i.e., the conclusion of (79) holds.
It remains now only to prove (80). We will not need the hypothesis of (79) for

that purpose. We may assume that

(81) E2 ≤ E ≤ 1

26G3F2
≤ 1

because the left side of (80) is trivially bounded by 22G2F.
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We first bound
[[
G− Ĝi

]]
. We calculate as follows.

[[
G−1

i

]]
≤

[[
G−1

i + Λ0 +Φ0(Ĝi)
]]
+ F+ F

[[
Ĝi

]]

≤ E
[[
Ĝi

]]1/2
•

+ 2F
[[
Ĝi

]]
•
≤ 4F

[[
Ĝi

]]
•

≤ 4F[[G]]• + 4F
[[
G− Ĝi

]]
≤ 4GF+ 4FE2[[Gi]]•

[[
G−1

i

]]

≤ 4GF+ 4GFE
[[
G−1

i

]]
.

Since 4GFE ≤ 1
2 by (81) and hence

[[
G−1

i

]]
≤ 8GF we have

(82)
[[
G− Ĝi

]]
≤ E2[[Gi]]•

[[
G−1

i

]]
≤ 8G2FE.

We next bound [[E]]. We calculate as follows.

[[
G−1

i + Λ0 +Φ0(G)
]]

≤ E
[[
Ĝi

]]1/2
•

+ F
[[
G− Ĝi

]]

≤ E[[G]]
1/2
• + E

[[
G− Ĝi

]]1/2
+ F

[[
G− Ĝi

]]

≤ E[[G]]1/2• + E2 +
[[
G− Ĝi

]]
+ F

[[
G− Ĝi

]]

≤ 2G1/2E+ 2F
[[
G− Ĝi

]]

≤ 2G1/2E+ 16G2F2E ≤ 25G2F2E.

We used the arithmetic-geometric mean inequality at the third step above and (82)
at the penultimate step. We conclude that

(83) [[E]] ≤
N∨

i=1

[[1 + (Λ0 +Φ0(G))Gi]] ≤ 25G3F2E.

Finally we bound [[G−Gi]]. By (81), the left side of (83) is bounded by 1
2 . Thus

Λ0 + Φ0(G) is invertible and we have
[[
(Λ0 +Φ0(G))

−1
]]
≤ 2[[G]]. In turn we have

by (83) that
[[
(Λ0 +Φ0(G))

−1 +G
]]
∨
[[
(Λ0 +Φ0(G))

−1 +Gi

]]
≤ 26G4F2E

and hence

(84)
N∨

i=1

[[G−Gi]] ≤ 27G4F2E.

The bound (80) follows now from (83) and (84). The proof of Proposition 6.2 is
complete. �

7. Analysis of the generalized resolvent

We return to the deterministic setting of §3 exclusive of §3.6. We continue the
analysis of objects related to the generalized resolvent R.

Here is our main result in §7.
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Theorem 7.1. Notation and assumptions are as set forth in §3. Consider the
compact rectangle

(85) R =

{
z ∈ h

∣∣∣∣|ℜz| ≤ τ and
1

N
≤ ℑz ≤ τ

}

where τ ≥ 1 is an absolute constant. We write K(z) to show z-dependence, it being
understood that U and V are held fixed as z varies. Let

K = θ sup
z∈R

K(z) <∞

where θ ≥ 1 is another absolute constant. Let h be as defined on line (8). Consider
also the compact (possibly empty) set

X =

{
z ∈ R

∣∣∣∣
K2

N
≤ h2ℑz

}
.

Then we have

(86) [[U ]] ∨ [[V ]] ≤ 4 and z ∈ X ⇒
N∨

i=1

[[Gi −M ]] ≤ K√
Nhℑz

provided that τ is sufficiently large and θ is sufficiently large depending on τ .

The proof will be completed in §7.5 after some preparation.

7.2. An a priori bound. We have in general a bound

(87)
N∨

i=1

[[Gi −M ]] ≤ 27([[U ]] ∨ [[V ]] ∨ 1)2

ℑz

obtained by combining (19), (30) and (49). We emphasize that the hypothesis of
(86) is not used here. Use of the bound (87) in this paper turns out to be precisely
the technical innovation that permits us to avoid the cumbersome two-variable
resolvent apparatus of [1].

The next result meshes the self-adjoint linearization trick with the self-improving
sort of estimate exploited in [9].

Proposition 7.3. For i = 1, . . . , N we have
[[
G− Ĝi

]]
≤ 16[[W ]]

2 (ℑz)•
Nℑz [[Gi]]•

[[
G−1

i

]]
and(88)

[[
G−1

i + Λ+ Φ(Ĝi)
]]

≤ 4K[[W ]]

√
(ℑz)•
Nℑz

[[
Ĝi

]]1/2
•
.(89)

We emphasize that the hypothesis of (86) is not used here.

Proof. By (19), (29) and the matrix Hölder inequality, we have

tr
ℑGi

ℑz = tr ei
ℑR
ℑz e

∗
i = [[eiWr]]

2
2 ≥ [[eiWrW ∗]]22

[[W ∗]]2
=

[[
ei(R + Λ0 ⊗ IN )

]]2
2

[[W ]]
2

and similarly

tr
ℑGi

ℑz ≥
[[
(R + Λ0 ⊗ IN )e∗i

]]2
2

[[W ]]
2 .
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It follows that
√
2 + [[W ]]

√
tr

ℑGi

ℑz ≥ [[eiR]]2 ∨ [[Re∗i ]]2.

It follows in turn by using the convexity bound 2(x2 + y2) ≥ (x+ y)2 that

16[[W ]]
2 (ℑz)•

ℑz [[Gi]]• ≥ 4 + 2[[W ]]
2
tr

ℑGi

ℑz ≥ [[eiR]]
2
2 ∨ [[Re∗i ]]

2
2, hence(90)

16[[W ]]2
(ℑz)•
ℑz [[G]]• ≥ 4 + 2[[W ]]2tr

ℑG
ℑz ≥ [[R]]

2
2

N
, similarly

16[[W ]]
2 (ℑz)•

ℑz
[[
Ĝi

]]
•
≥ 4 + 2[[W ]]

2
tr

ℑĜi

ℑz ≥ [[Ri]]
2
2

N
and hence

4[[W ]]

√
(ℑz)•
Nℑz

[[
Ĝi

]]1/2
•

≥ 1√
N

(
1 ∨ [[Ri]]2√

N

)
.(91)

Statements (36) and (90) prove (88). Statements (34) and (91) along with the
definition of K prove (89). �

The following key result combines Propositions 4.3, 6.2 and 7.3.

Proposition 7.4. We have

(92)

N∨

i=1

[[Gi −M ]] ≤
√
h

c4.3
⇒

N∨

i=1

[[Gi −M ]] ≤ C(1 + |z|)5[[W ]]√
Nhℑz

K

where C is an absolute constant.

We emphasize that the hypothesis of (86) is not used here.

Proof. Proposition 6.2 specialized to the present setup is the assertion that

N∨

i=1

[[Gi −M ]] ≤ 1

8[[κ]]•[[Φ]]•

⇒
N∨

i=1

[[Gi −M ]] ≤ 214(1 + [[M ]])7([[Φ]]• ∨ [[Λ]]•)
4[[κ]]•E

where the quantity E satisfies

E ≤ 4K[[W ]]

√
(ℑz)•
Nℑz

by Proposition 7.3 and the definition of K. We obtain (92) after simplifying by
means of Proposition 4.3. �

7.5. Proof of Theorem 7.1. Whereas above we abstained from using the hypoth-
esis of (86), we now enforce it throughout the remainder of the argument.

7.5.1. Setup for application of Proposition 1.5. In the triple (U, V, z) we hold U and
V fixed subject to the condition [[U ]]∨ [[V ]] ≤ 4. We allow z to vary but we constrain
it to the space X ⊂ h. On the space X we consider the three continuous functions

f1 =

N∨

i=1

[[Gi −M ]], f2 =

√
h

c4.3
and f3 =

K

c4.3
√
Nhℑz

.

The rest of the proof is a matter of checking hypotheses in Proposition 1.5. The
process of checking naturally dictates choices for the absolute constants τ and θ.
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7.5.2. X is connected if not empty. Let ρ = K2

N . If ρ > τ then for z ∈ X we have

1 ≤ τ < ρ ≤ h2ℑz = ℑz, in contradiction to the definition of R, and hence X is
empty. Assume that ρ ≤ τ hereafter. Then the set X contains the top side of R,
i.e., the horizontal line segment {x + iτ | −τ ≤ x ≤ τ}. Furthermore, since the
function h2ℑz is monotone increasing on vertical line segments in R, each point of
X is connected to the top side of R by a vertical line segment contained in X . Thus
X is indeed connected if nonempty.

7.5.3. Checking hypothesis (12). Consider the statement

(93)

N∨

i=1

[[Gi −M ]]

∣∣∣∣
z=iτ

≤ 211

ℑz

∣∣∣∣
z=iτ

=
211

τ
<

1

c4.3
=

√
h

c4.3

∣∣∣∣
z=iτ

.

The first inequality holds by (87). The third inequality can be made to hold by
choosing τ large enough. So now we fix τ ≥ 1 large enough to make the statement
(93) hold. Then hypothesis (12) of Proposition 1.5 is verified.

7.5.4. Checking hypothesis (13). We next choose θ so that

θ ≥ 2c4.3C7.4(1 + 2τ)525 ≥ 2c4.3C7.4(1 + 2τ)5[[W ]],

where the second inequality holds by (19). Then by Proposition 7.4 we have

N∨

i=1

[[Gi −M ]] ≤
√
h

c4.3
⇒

N∨

i=1

[[Gi −M ]] ≤ K

2c4.3
√
Nhℑz

.

With θ thus fixed, hypothesis (13) of Proposition 1.5 is verified.

7.5.5. Checking hypothesis (14). Finally we have

K

2c4.3
√
Nhℑz

≤
√
h

2c4.3
<

√
h

c4.3

by definition of X . Thus hypothesis (14) of Proposition 1.5 is verified. The conclu-
sion (15) of Proposition 1.5 is then the same as the conclusion (86) of Theorem 7.1.
The proof of Theorem 7.1 is complete. �

The following technical result is needed in §8 for construction of the random
variable K figuring in Theorem 1.2.

Proposition 7.6. For i = 1, . . . , N and distinct z1, z2 ∈ h we have

(94) [[U ]] ∨ [[V ]] ≤ 4 and (ℑz1) ∧ (ℑz2) ≥
1

N
⇒ |Ki(z1)− Ki(z2)|

|z1 − z2|
≤ cN7/2

where c is an absolute constant.

Proof. Temporarily we write R(z), r(z), Ri(z) and Qi(z) to show z-dependence
with U and V held fixed. Consider the functions

f, g : {z ∈ h | ℑz ≥ 1/N} → [0,∞)

given by the formulas

f(z) =
√
N ∨ [[Ri(z)]]2 and g(z) = N [[Qi(z)]].

Our task is to estimate the Lipschitz constant of 1∨ g
f . It is enough to estimate the

Lipschitz constant of g
f . Let

C = 1 + [[Φ]] + [[X ]] + [[X ]]
2
+ 3[[W ]]

2
.
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By (19), under the assumption [[U ]] ∨ [[V ]] ≤ 4, the quantity C is bounded by an
absolute constant. Thus it will suffice to to bound the Lipschitz constant of g

f by a

polynomial in C times N7/2.
By the first of the identities on line (29) and the standard resolvent bound

[[r(z)]] ≤ 1/ℑz we have for ℑz ≥ 1/N that

[[R(z)]] ≤ 2 + [[W ]]
2
[[r(z)]] ≤ 3[[W ]]

2
N ≤ CN, similarly [[Ri(z)]] ≤ CN

and hence
[[Qi(z)]] ≤ ([[X ]]2 + [[Φ]])[[Ri(z)]] + [[X ]] ≤ C2N.

Thus g is bounded by C2N2. Obviously f is lower-bounded by
√
N .

By the second of the identities on line (29), for distinct z1, z2 ∈ h such that
ℑz1 ∧ ℑz2 ≥ 1/N , we have

[[R(z1)−R(z2)]]

|z1 − z2|
≤ N2[[W ]]

2 ≤ CN2 and similarly
[[Ri(z1)−Ri(z2)]]

|z1 − z2|
≤ CN2.

It follows that
[[Ri(z1)−Ri(z2)]]2

|z1 − z2|
≤ CN5/2.

It follows in turn that the Lipschitz constant of f is bounded by CN5/2. It also
follows that

[[Qi(z1)−Qi(z2)]]

|z1 − z2|
≤ ([[X ]]

2
+ [[Φ]])CN2 ≤ C2N2.

Thus the Lipschitz constant of g is bounded by C2N3.
Using the identity

g(z1)

f(z1)
− g(z2)

f(z2)
=
g(z1)− g(z2)

f(z1)
+ g(z2)

f(z2)− f(z1)

f(z1)f(z2)

we deduce that∣∣∣ g(z1)f(z1)
− g(z2)

f(z2)

∣∣∣
|z1 − z2|

≤ C2N3

√
N

+
(C2N2)(CN5/2)

N
≤ 2C3N7/2,

which finishes the proof. �

8. Proof of Theorem 1.2

8.1. Construction of K. We fix absolute constants τ ≥ 64 and θ ≥ 1 once and
for all so that the conclusion (86) of Theorem 7.1 holds. We work simultaneously
in the settings of Theorem 1.2 and Theorem 7.1. In particular, U and V are now
random. Let R be the rectangle (85). By Proposition 7.6 we know that conditioned
on [[U ]]∨ [[V ]] ≤ 4 the quantity Ki(z) depends Lipschitz-continuously on z ∈ R with
Lipschitz constant bounded by cN7/2. Recall also that Ki is by definition bounded
below by 1. Thus for suitable absolute constants β1 and β3 and a suitable net
R0 ⊂ R of at most β3N

β1−1 points we have

(95) 2
∨

z0∈R0

N∨

i=1

Ki(z0) = 2
∨

z0∈R0

K(z0) ≥ sup
z∈R

K(z)

conditioned on [[U ]]∨ [[V ]] ≤ 4. We define K to equal the left side of (95) multiplied
by θ. It follows immediately from (26) and (86) that the random variable K ≥ 1
thus defined has the desired property (9). It remains only to prove that K has
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property (10). The latter task is a matter of revisiting the topic of [9, Appendix B].
We will handle the details a bit differently than in the cited reference, basing our
proof instead on a classical result from [25].

8.2. Remark. In the proof of the local semicircle law [9, Thm. 3.1] the Lipschitz
continuity of the various functions in play is frequently invoked while marching to-
ward the real axis. It might have seemed we were trying to avoid such considerations
here by using Proposition 1.5. Certainly we have avoided their use in a dynamical
way. But ultimately our reworking of the method of [9] has merely displaced the
use of Lipschitz continuity to the phase of the argument presented here in §8 in
which we construct K.

We begin the proof that K has property (10) by recalling the relationship be-
tween moment bounds of the form (1) and exponentially light tails.

Proposition 8.3. Fix constants α, c > 0 and C ≥ 1. Let Z be a nonnegative
random variable.

(i) If sup
p∈[2,∞)

p−α‖Z‖p ≤ c, then Pr(Z > tα) ≤ exp
(
α
(
2− t

c1/αe

))
for t > 0.

(ii) If Pr(Z > tα) ≤ Ce−t/c1/α for t > 0, then sup
p∈[1,∞)

p−α‖Z‖p ≤ cC (α+ 1)
α
.

Proof. (i) In the Markov bound Pr(Z > tα) ≤ ‖Z‖p
p

tαp ≤
(

c1/αp
t

)αp
we substitute

p = t
c1/αe

if t
c1/αe

≥ 2 and simplify. (ii) For the Γ-function Γ(s) =
∫∞
0 xs−1e−x dx

one has a functional equation sΓ(s) = Γ(s + 1), a bound Γ(s) ≤ 1 for 1 ≤ s ≤ 2
and (hence) an elementary inequality Γ(1 + s) ≤ (1 + s)s for s ≥ 0. For p ≥ 1 we
then have

EZp = αp

∫ ∞

0

Pr(Z > tα) tαp−1 dt ≤ αpC

∫ ∞

0

e−t/c1/α tαp−1 dt ≤ cpC(pα+ 1)pα

and thus p−α‖Z‖p ≤ cC1/p (α+ 1/p)
α
for p ≥ 1. �

We next recall a classical result. Let Θ(s) = 2s/2√
π
Γ
(
s+1
2

)
for s ≥ 0.

Theorem 8.4 (Whittle [25]). Let Y1, . . . , Yn be independent real random variables
in L2 and of mean zero. Fix p ∈ [2,∞). Let v ∈ Rn be a real vector. Let B ∈ Matn
be a matrix with real entries. If

∨n
i=1 ‖Yi‖p <∞, then

(96)

∥∥∥∥∥

n∑

i=1

v(i)Yi

∥∥∥∥∥
p

≤ 2Θ(p)
1
p

(
n∑

i=1

v(i)2‖Yi‖2p

)1/2

.

Furthermore, if
∨n

i=1 ‖Yi‖2p <∞, then

∥∥∥∥∥∥

N∑

i,j=1

B(i, j)(YiYj −E[YiYj ])

∥∥∥∥∥∥
p

(97)

≤ 23Θ(p)
1
pΘ(2p)

1
2p




N∑

i,j=1

B(i, j)2‖Yi‖22p‖Yj‖
2
2p




1/2

.
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We hasten to point out that one has an elementary bound

(98) sup
s≥2

Θ(s)
1
s√
s

≤ 1.

Thus the estimates (96) and (97) can be simplified nicely.
From Proposition 8.3 and Theorem 8.4 we then get the following tail-bound.

Proposition 8.5. Fix constants γ0 > 0 and γ1 ≥ 1. Fix a positive integer k. Let
Y0, . . . , Y2N ∈ Matk have L2 random entries of mean zero. Assume that the family

{σ(Y0)} ∪ {σ(Yi, Yi+N )}Ni=1

of σ-fields is independent. Assume that

sup
p≥2

p−γ0

2N∨

i=0

‖[[Yi]]‖p ≤
√
γ1
N
.

Let

Y =
[
Y1 . . . YN

]
∈ Matk×kN and Ŷ =

[
YN+1 . . . Y2N

]
∈ Matk×kN .

Let B ∈ MatkN be any constant matrix. Then for every t > 0 we have

Pr




[[
Y BŶ ∗ − Y0 −E(Y BŶ ∗)

]]

γ1√
N

(
1 ∨ [[B]]

2√
N

) > t2γ0+1


 ≤ γ2e

−γ3t

for constants γ2 ≥ 1 and γ3 > 0 depending only on γ0 and k.

Proof. By Proposition 8.3 it is enough to prove that

(99) sup
p≥2

p−(1+2γ0)
∥∥∥
[[
Y BŶ ∗ − Y0 −E(Y BŶ ∗)

]]∥∥∥
p
≤ γ4γ1√

N

(
1 ∨ [[B]]2√

N

)

where γ4 ≥ 1 is a constant depending only on γ0 and k. Without loss of generality
we may assume that Y0 = 0, B has real entries and that the random matrices
Yi have real entries. We may then in turn assume that k = 1. By (96) we may
assume that every diagonal entry of B vanishes. We may also obviously assume
that N ≥ 2. Now let I ⊂ {1, . . . , N} be any subset of cardinality ⌊N

2 ⌋ and let Ic

denote the complement of I. Let

BI(i, j) = B(i, j)1i∈I1j∈Ic ,

thus defining a matrix BI ∈ MatN supported on the set

I × Ic ⊂ {1, . . . , N}2.
Let

ỸI(i) =

{
Yi if i ∈ I,

Yi+N if i ∈ Ic.

Note that the entries of ỸI are independent. Note also that

Y BI Ŷ
∗ = ỸIBI Ỹ

∗
I .

Thus we have

(100) sup
p≥2

p−(1+2γ0)
∥∥∥
[[
Y BI Ŷ

∗ −E(Y BI Ŷ
∗)
]]∥∥∥

p
≤ γ1γ4

4

[[BI ]]2
N

≤ γ1γ4
4

[[B]]2
N
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by Theorem 8.4 and the upper bound (98). Now the average of BI over I equals
qB for some constant q ≥ 1

4 . Thus, averaging over I on the left side of (100) and
using Jensen’s inequality, we obtain (99). �

8.6. End of the proof. Proposition 8.5 and the summary of properties of the
random matrix X in §3.6 together provide us with constants β2 ≥ 1 and β4 > 0
depending only on α0 and α1 such that for i = 1, . . . , N and any z0 ∈ h we have a
conditional tail bound

Pr

(
2θKi(z0) > t

1
2α0+1

∣∣∣∣êiX ê∗i

)
≥ β4 exp(−β2t) a.s..

uniform in z0. The latter combined with the evident union bound over β3N
β1 events

yields (10) with β0 = β3β4. The proof of Theorem 1.2 is complete. �

9. Appendix: The deterministic local semicircle law

We state and prove the semicircular analogue of Theorem 7.1. The proof will ap-
ply Propositions 1.5, 3.3, 4.2 and 6.2 above, none of which have anything specifically
to do with anticommutators.

9.1. Setup for the result.

9.1.1. Basic data. Fix a hermitian matrix X ∈ MatN and a point z ∈ h arbitrarily.

9.1.2. Specialized matrix notation. Let ei denote the i
th row of IN and let êi denote

the result of deleting the ith row of IN .

9.1.3. Functions of z. For i = 1, . . . , N let

R = (X − zIN)−1 ∈ MatN , Gi = eiRe
∗
i = R(i, i) ∈ h,

G =
1

N
trR =

1

N

N∑

i=1

Gi,

Ri = (êiXê
∗
i − zIN−1)

−1 ∈ MatN−1, Ĝi =
1

N
trRi ∈ h,

Qi = eiXê
∗
iRiêiXe

∗
i −X(i, i)− Ĝi ∈ C,

Ki = 1 ∨ |Qi|
1√
N

(
1 ∨ [[Ri]]2√

N

) ∈ [1,∞), K =

N∨

i=1

Ki.

All these objects depend on (X, z) but the notation does not show it. We will write
K(z) to show z-dependence, it being understood that X is held fixed as z varies.
Also let

m =
1

2π

∫ 2

−2

√
4− t2 dt

t− z
∈ h and h = 1 ∧ |z + 2| ∧ |z − 2| > 0.

Both m and h depend on z but the notation does not show it.
Here then is the deterministic local semicircle law.

Theorem 9.2. Notation and assumptions are as above. Let τ ≥ 1 and θ ≥ 1 be
absolute constants. Consider the rectangle

R =

{
z ∈ h

∣∣∣∣|ℜz| ≤ τ and
1

N
≤ ℑz ≤ τ

}



30 GREG W. ANDERSON

and let

K = θ sup
z∈R

K(z) <∞.

Consider also the closed (possibly empty) set

X =

{
z ∈ R

∣∣∣∣
K2

N
≤ h2ℑz

}
.

Then we have

(101) z ∈ X ⇒
N∨

i=1

|Gi −m| ≤ K√
Nhℑz

provided that τ is large enough and θ is large enough depending on τ .

We follow the outline of the proof of Theorem 7.1, finishing up in §9.6 below. The
hypothesis of (101) is not used until §9.6.

9.3. An a priori bound. Clearly we have

(102)

N∨

i=1

|Gi −m| ≤ 2

ℑz .

Proposition 9.4. We have

|G− Ĝi| ≤ (ℑz)•
Nℑz |Gi|•|Gi|−1,(103)

|G−1
i + z + Ĝi| ≤ K

√
(ℑz)•
Nℑz |Ĝi|1/2• .(104)

Proof. Since
ℑR
ℑz = RR∗ = R∗R,

we have

ℑGi

ℑz = [[eiR]]
2
2 = [[Rei]]

2
2 and similarly(105)

ℑĜi

ℑz =
[[Ri]]

2
2

N
.(106)

By Proposition 3.3 we have

Qi = −G−1
i − z − Ĝi and(107)

R = ê∗iRiêi +Re∗iG
−1
i eiR.(108)

By (105), (108) and Cauchy-Schwarz we have

|G− Ĝi| =
1

N
|trR− trRi| ≤

[[Re∗i ]]2[[eiR]]2
N |Gi|

≤ 1

Nℑz ,

which is enough to prove (103). By (106), (107) and the definition of K we have

|G−1
i + z + Ĝi| ≤

K√
N

(
1 ∨ [[Ri]]2√

N

)
≤ K√

N


1 ∨

√
ℑĜi

ℑz


 ,

which is enough to prove (104). �
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Proposition 9.5. We have

(109)
N∨

i=1

|Gi −m| ≤
√
h

c4.2
⇒

N∨

i=1

|Gi −m| ≤ C(1 + |z|)5K√
Nhℑz

where C is an absolute constant.

Proof. Let κ = (m−1 − m)−1. By Proposition 4.2 the quadruple (z,m, 1, κ) is a
nondegenerate solution of the Schwinger-Dyson equation defined over C and fur-

thermore |m| < 1. By Proposition 9.4 we have E ≤
√

(ℑz)•
Nℑz K. Thus we have

N∨

i=1

|Gi −m| ≤ 1

8|κ|•
⇒

N∨

i=1

|Gi −m| ≤ 221|z|4•
√
(ℑz)•K√

Nℑz
|κ|•

by substituting into Proposition 6.2. We then obtain (109) via (48). �

9.6. Proof of Theorem 9.2. The hypothesis of (101) will be enforced now until
the end of the proof.

9.6.1. Setup for application of Proposition 1.5. We hold X fixed now. We allow z
to vary but constrain z to the space X ⊂ h. On the space X we consider the three
continuous functions

f1 =

N∨

i=1

|Gi −m|, f2 =

√
h

c4.2
and f3 =

K

2c4.2
√
Nhℑz

.

It remains only to check hypotheses in Proposition 1.5. The process of checking will
dictate the choices of τ and θ.

9.6.2. X is connected if nonempty. (Here one simply repeats §7.5.2 verbatim.)

9.6.3. Checking hypothesis (12). Consider the statement

(110)

N∨

i=1

|Gi −m|
∣∣∣∣
z=iτ

≤ 2

ℑz

∣∣∣∣
z=iτ

=
2

τ
<

1

c4.2
=

√
h

c4.2

∣∣∣∣
z=iτ

.

The first inequality holds by (102). The third inequality holds for τ large enough.
Now fix τ ≥ 1 to make (110) hold. Then hypothesis (12) of Proposition 1.5 holds.

9.6.4. Checking hypothesis (13). Choose θ so that

θ ≥ 2c4.2C9.5(1 + 2τ)5.

Then we have
N∨

i=1

|Gi −m| ≤
√
h

c4.2
⇒

N∨

i=1

|Gi −m| ≤ K

2c4.2
√
Nhℑz

by Proposition 9.5. Thus hypothesis (13) of Proposition 1.5 holds.

9.6.5. Checking hypothesis (14). We have

z ∈ X ⇒ K

2c4.2
√
Nhℑz

≤
√
h

2c4.2
<

√
h

c4.2

by definition of X . Thus hypothesis (14) of Proposition 1.5 holds. The conclusion
(15) of Proposition 1.5 and conclusion (101) of Theorem 9.2 are then the same. The
proof of Theorem 9.2 is complete. �
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9.7. Remark. By studying the generalized resolvent

[
−zIp X
X∗ −Iq

]−1

(X ∈ Matp×q)

one can obtain a similar deterministic local Marcenko-Pastur law.
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I: Local Semicircle Law, arXiv:1103.1919

[7] Erdös, L., Knowles, A., Yau, H.-T. and Yin, J., The local semicircle law for a general class

of random matrices. arXiv:1212.0164

[8] Erdös, L, Yau, H.-T. and Yin, J., Rigidity of Eigenvalues of Generalized Wigner Matrices

arXiv:1007.4652

[9] Erdös, L, Yau, H.-T. and Yin, J., Bulk universality for generalized Wigner matrices, Prob-
ability Theory and Related Fields 154(2012), 341–407. MR2981427 arXiv:1001.3453v8
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