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MEAN FIELD LIMIT FOR DISORDERED DIFFUSIONS WITH

SINGULAR INTERACTIONS

By Eric Luçon˚,:,; and Wilhelm Stannat˚,:,;

Technische Universität, Berlin: and Bernstein Center for Computational Neuroscience;

Motivated by considerations from neuroscience (macroscopic be-
havior of large ensembles of interacting neurons), we consider a pop-
ulation of mean field interacting diffusions in R

m in the presence of
a random environment and with spatial extension: each diffusion is
attached to one site of the lattice Z

d and the interaction between
two diffusions is attenuated by a spatial weight that depends on their
positions. For a general class of singular weights (including the case
already considered in the physical literature when interactions obey
to a power-law of parameter 0 ă α ă d), we address the convergence
as N Ñ 8 of the empirical measure of the diffusions to the solution of
a deterministic McKean-Vlasov equation and prove well-posedness of
this equation, even in the degenerate case without noise. We provide
also precise estimates of the speed of this convergence, in terms of an
appropriate weighted Wasserstein distance, exhibiting in particular
nontrivial fluctuations in the power-law case when d

2
6 α ă d. Our

framework covers the case of polynomially bounded monotone dy-
namics that are especially encountered in the main models of neural
oscillators.

1. Introduction. The purpose of this paper is to provide a general convergence result
for the empirical distribution of spatially extended networks of mean field coupled diffu-
sions in a random environment. The main novelty of the paper is to consider a family of
interacting diffusions indexed by the box ΛN :“ J´N, . . . ,NKd of volume |ΛN | :“ p2N`1qd
in the d-dimensional lattice Zd (d > 1) where the interaction between two diffusions in ΛN

depends on their relative positions. We are in particular interested in diffusions model-
ing the spiking activity of neurons in a noisy environment. To motivate the mathematical
model we want to work with, let us consider, as a particular example, a family of stochastic
FitzHugh-Nagumo neurons (see [2, 14] and references therein for further neurophysiologi-
cal insights on the model)

(1.1)

$

&

%

dViptq “
´

Viptq ´ Viptq3

3
´ wiptq ` I

¯

dt` σV dBV
i ptq,

dwiptq “
´

aipbiViptq ´ wiptqq
¯

dt` σw dBw
i ptq,

for i P ΛN , with exterior input current I. The variable Viptq denotes the voltage activity
of the neuron and wiptq plays the role of a recovery variable.

`

BV
i ptq, Bw

i ptq
˘

are indepen-
dent Brownian motions modeling exterior stochastic forces. Depending on the parameters
pai, biq P R2, the neurons exhibit an oscillatory, excitable or inhibitory behavior. Suppose
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2 ERIC LUÇON AND WILHELM STANNAT

that the precise values of ωi “ pai, biq are unknown, which will always be the case in a
real-world applications, but rather are given as independent and identically distributed
random variables. From a point of view from statistical physics, this additional random-
ness in (1.1) may be considered as a disorder. For simplicity we suppose that the ωi are
independent of the time t. Equation (1.1) can be written as

(1.2) dθiptq “ cpθi, ωiqdt` σ ¨ dBiptq, t > 0, i P ΛN ,

using the shorthand notations θ “ pV,wq, ω “ pa, bq, cpθ, ωq “
´

V ´ V 3

3
´w`I, apbV ´wq

¯

,

B “
`

BV , Bw
˘

and σ “
ˆ

σV 0
0 σw

˙

. We suppose that the individual neurons are coupled

with the help of a possibly nonlinear and random coupling term Γ pθi, ωi, θj, ωjq, (i, j P ΛN )
modeling electrical synapses between the neurons. The coupling intensity between neurons
i and j will depend in addition on some weight ΨN pi, jq (ΨN may be thought as a function
of the distance, but not necessarily), so that the resulting system gets the following type:

(1.3) dθiptq “ cpθiptq, ωiqdt

` 1

|ΛN |
ÿ

jPΛN

Γ pθiptq, ωi, θjptq, ωjqΨN pi, jqdt` σ ¨ dBiptq, t > 0, i P ΛN .

The purpose of the paper is to address the behavior of the system (1.3) in large populations
(N Ñ 8), under general assumptions on the dynamics c, the coupling Γ and the spatial
constraint ΨN .

1.1. Empirical measure and mean-field limit. All the statistical information of the neu-
ral ensemble is contained in its empirical distribution of the diffusions θj (with disorder

ωj and with renormalized position xj :“ 1
2N

P
“

´ 1
2
, 1
2

‰d
):

(1.4) ν
pNq
t pdθ, dω, dxq :“ 1

|ΛN |
ÿ

jPΛN

δpθiptq,ωi,xjqpdθ, dω, dxq, t > 0

that can be seen as a random probability measure.

Remark 1.1. The renormalization of the positions by 1
2N

maps ΛN “ J´N, . . . ,NKd

to a discrete subset of
“

´ 1
2
, 1
2

‰d
. The necessity of this renormalization will become clear

in the discussion on the spatial constraints below in this introduction.

Since we are interested in the collective behavior of a large numbers of neurons, as it is

the case for neural ensembles in the brain, understanding the asymptotic behavior of ν
pNq
t

as N Ñ 8 is important.

Under the assumption that

(1.5) ΨN pi, jq “ Ψ

ˆ

i

2N
,
j

2N

˙

for a general class of functions Ψ defined on
“

´ 1
2
, 1
2

‰d ˆ
“

´ 1
2
, 1
2

‰d
, we prove, as part of

our main results in this paper (see Theorems 2.13 and 2.18), that ν
pNq
t converges to a
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deterministic measure νtpdθ, dω, dxq “ qtpθ, ω, xqdθµpdωqdx where qt is a weak solution
of the McKean-Vlasov equation
(1.6)

Btqt“ 1

2
divθ

`

σσT∇θqt
˘

´divθ

ˆ

qt

"

cpθ, ωq`
ż

Γpθ, ω, θ̄, ω̄qΨpx, x̄qqtpθ̄, ω̄, x̄qdθ̄ dµpω̄qdx̄
*̇

.

For a formal derivation of this equation, we refer to the end of § 2.4 below. The measure νt
is called the mean field limit of the system (1.3). Through Theorems 2.13 and 2.18, we not

only prove the convergence ν
pNq
t towards νt, but we also provide some explicit estimates

on the speed of convergence in terms of an appropriate weighted Wasserstein distance.

1.2. Existing literature and motivations.

1.2.1. The non-spatial case: ΨN ” 1. Of course, since there is no spatial interaction
in this case, indexing the diffusions by a subset of Zd is not relevant. Systems of type
(1.3) are called mean field models (or weakly interacting diffusions) in statistical physics
and have attracted much attention in the past years (see e.g. [26, 15, 28, 35, 10]), since
they are capable of modeling complex dynamical behavior of various types of real-world
models from physics to biology, like e.g. synchronization of large populations of individuals,
collective behavior of social insects, emergence of synchrony in neural networks ([2, 37, 11]),
and providing particle approximations for various nonlinear PDEs appearing in physics
([7, 6, 4, 24, 5]).

The most prominent example of such models is the Kuramoto model which has been
widely considered in the literature as the main prototype for synchronization phenomena
(see e.g. [1, 23, 3, 18, 34]):

(1.7) dθiptq “ ωi dt` K

N

N
ÿ

j“1

sin pθj ´ θiq dt` σ dBiptq, t > 0, i “ 1, . . . , N.

where K > 0 is the intensity of interaction and θi P S :“ R{2π.
In the context of weighted interactions, a notable attempt to go beyond pure mean field

interactions has been to consider moderately interacting diffusions (see [29, 27, 21]).

1.2.2. The spatial case. The motivation of going beyond pure mean-field interaction
comes from the biological observation that neurons do not interact in a mean-field way (see
e.g. [39] and references therein) and a vast literature exists in physics about synchronization
on general networks. In particular, several papers have already considered the model (1.3)
(in dimension d “ 1) for different choices of spatial weight Ψ defined in (1.5). In this paper,
we will be more particularly interested in two classes of spatial weights:

1. The P -nearest neighbor model: this model (see [30, 31]) concerns the case where
each diffusion θi P ΛN only interacts with its neighbors within a box ΛP Ď ΛN , where
P is smaller than N :

(1.8) dθiptq “ cpθi, ωiqdt` 1

|ΛP |
ÿ

jPΛP
j‰i

Γ pθi, ωi, θj , ωjq dt` σ ¨ dBiptq, i P ΛN .
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We are concerned in this work with the case where P is proportional to N , that is

(1.9) P “ RN,

for a fixed proportion R P p0, 1s.

Remark 1.2. The case of R “ 1 corresponds to the mean field case. Understanding
the behavior of the system (1.8) in the case of a pure local interaction (that is when
P ! N) does not enter into the scope of this work. In particular, we will not address
the question of P of order smaller than N (e.g. P “ RNα for some α ă 1), whose
behavior as N Ñ 8 seems to be quite different.

Under the assumption (1.9), the P -nearest-neighbor model (1.8) enters into the
framework of (1.3) for the following choice of Ψ in (1.5):

(1.10) @x, y P
”

´ 1

2
,
1

2

ıd

, Ψpx, yq :“ χRpx ´ yq :“ 1

p2Rqd1r´R,Rsd px´ yq .

2. The power-law model: this model also considered in the physical literature (see
[9, 19, 25, 33]) corresponds to the case where Ψ in (1.5) is given by:

(1.11) @x, y P
”

´ 1

2
,
1

2

ıd

, Ψpx, yq :“ 1

}x´ y }α ,

for some parameter α > 0, that is
(1.12)

dθiptq “ cpθi, ωiqdt` 1

|ΛN |
ÿ

jPΛN
j‰i

Γ pθi, ωi, θj, ωjq
›

›

›

›

i ´ j

2N

›

›

›

›

´α

dt` σ ¨ dBiptq, i P ΛN .

Note that the pure mean field case corresponds again to α “ 0. As observed in the
articles mentioned above on the basis of numerical simulations, it appears that the
behavior of the system is strongly dependent on the value of the parameter α. The
situation which is considered in this paper corresponds to the subcritical case where
the parameter is smaller than the dimension:

(1.13) α ă d.

The case of α > d is much more delicate and will be the object of future work. We
refer to Remark 2.7 below for further explanations on this case.
It is easy to see that in the case of (1.13) the renormalization of the positions
by a factor 1

2N
in (1.12) is necessary: by standard arguments, the diverging series

ř

jPΛN ,j‰i } i´ j }´α is of order Nd´α. Consequently, 1
|ΛN |

ř

jPΛN
j‰i

›

›

›

i´j
2N

›

›

›

´α

is of order

Nα

|ΛN |N
d´α “ Op1q, so that we should expect a nontrivial limit in (1.12), as N Ñ 8.
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1.3. Main lines of proof and organization of the paper. The strategy usually used in the
literature on mean-field models (see [15, 21, 23, 28]) for the convergence of the empirical
measure (1.4) is the following: first prove tightness of pνpNqqN > 1 in the set of measure-
valued continuous processes and second, prove uniqueness of any possible limit points,
that is, uniqueness in the McKean-Vlasov equation (1.6).

In our context, a priori uniqueness in (1.6) appears unclear, due the fact that our model
includes singular spatial weights (discontinuous in (1.10) and singular in (1.11)) and also
a class of dynamics with no global-Lipschitz continuity and polynomial growth (recall the
FitzHugh-Nagumo case (1.1)). Note that we are also concerned with the case where σ is
degenerate (even equally zero) for which uniqueness in (1.6) is also not clear.

To bypass this difficulty, we adopt a converse strategy: we first prove existence of a
solution to the mean-field limit (1.6) (through an ad-hoc fixed point argument, using ideas
from Sznitman [36]). Secondly, via a propagator method (see [12] for related ideas) we prove
the convergence (with respect to a Wasserstein-like distance adapted to the singularities
of the interaction) of the empirical measure to any solution to (1.6). In particular, easy
byproducts of this method are uniqueness of any solution to (1.6) as well as explicit rates
of convergence to the McKean-Vlasov limit. In that sense, one of the main conclusions of
the paper is to exhibit a phase transition in the size of the fluctuations in the power-law
case (see Theorem 2.18). An actual Central Limit Theorem in this case is of course a
natural perspective and is currently under investigation.

The paper is organized as follows: we give in Section 2 the main assumptions on the
model and we state the main results (Theorems 2.13 and 2.18). Section 3 contains the
proof of Proposition 2.9 concerning the existence of a solution to the McKean-Vlasov
equation (1.6). Section 4 summarizes the main ideas and results concerning the propagator
method. The proofs of the laws of large numbers are provided in Section 5 for the P -nearest
case and in Section 6 for the power-law case. An additional assumption of regularity is
made from Section 4 to 6, with is is discarded in Section 7.

2. Mathematical set-up and main results.

2.1. The model. Fix N > 1, T ą 0 and let ΛN be the hypercube J´N, . . . ,NKd Ă Zd

and |ΛN | “ p2N ` 1qd be its volume. We consider |ΛN | diffusions on r0, T s with values in
the state space1 X :“ Rm for a certain m > 1.

Each diffusion θi is attached to the site i of ΛN . The local dynamics of θi is governed by
the following stochastic differential equation which is perturbed by a random environment
represented by a vector ωi P E :“ Rn (n > 1).

(2.1) dθiptq “ cpθi, ωiqdt` σ ¨ dBiptq, 0 6 t 6 T, i P ΛN .

where σ P Rmˆm is the covariance matrix, cp¨, ¨q is a function from X ˆE to X and pBiq is a
given sequence of independent Brownian motions in X . The vectors pωiqiPΛN

are supposed
to be i.i.d. realizations of a law µ and are hence seen as a random environment for the
diffusions.

1Note that it is also possible to choose X as the circle S :“ R{2πZ in the case of the Kuramoto model,
but we will stick to X :“ R

m for simplicity.
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When connected to the others, the diffusions interact in a mean field way with spatial
extension:

(2.2) dθiptq “ cpθi, ωiqdt` 1

|ΛN |
ÿ

jPΛN
j‰i

Γ pθi, ωi, θj , ωjqΨ
ˆ

i

2N
,
j

2N

˙

dt ` σ ¨ dBiptq,

0 6 t 6 T, i P ΛN ,

where Γ is a function from pX ˆ Eq2 to X , and px, yq ÞÑ Ψpx, yq is a function from
“

´ 1
2
, 1
2

‰d ˆ
“

´ 1
2
, 1
2

‰d
to r0,8q. The required assumptions for the function Ψ will be made

precise in Assumption 2.5 below. One should notice at this point that Ψpx, yq does not
need to depend on the difference x´ y.

We suppose that, at time t “ 0, the variables pθip0qq1 6 i 6 N are independent and
identically distributed according to a probability distribution ζpdθq on X .

Remark 2.1. Instead of considering diffusions on ΛN , we can also suppose periodic
boundary conditions, i.e. when ΛN is replaced by ΛN,per :“ T

d
N , where TN is the discrete

N -torus, that is J´N, . . . ,NK with ´N and N identified. The only thing that changes in

what follows in the continuous model is that one should replace
“

´ 1
2
, 1
2

‰d
by T

d where
T :“

“

´ 1
2
, 1
2

‰

{´ 1

2
„ 1

2

. Since the corresponding changes in the proofs of this paper remain

marginal, we will restrict to the non periodic case and let the interested reader make the
appropriate modifications in the periodic case.

2.2. Notations and assumptions. From now on, we will suppose that the following as-
sumptions (Assumptions 2.2, 2.4 and 2.5) are satisfied throughout the paper. In particular,
saying that Assumption 2.5 is true means that we are either in the P -nearest neighbor
case or in the power-law case (see Hypotheses (H1) and (H2) below).

Assumption 2.2 (Hypothesis on Γ and c). We make the following assumptions:

• The function pθ, ωq ÞÑ cpθ, ωq is supposed to be locally Lipschitz-continuous in θ (for
fixed ω) and satisfy a one-sided Lipschitz condition w.r.t. the two variables pθ, ωq:

(2.3) @pθ, ωq, pθ̄, ω̄q,
@

θ ´ θ̄ , cpθ, ωq ´ cpθ̄, ω̄q
D

6 L
´

›

› θ ´ θ̄
›

›

2 ` }ω ´ ω̄ }2
¯

,

for some constant L (not necessarily positive). We suppose also some polynomial
bound about the function c:

(2.4) @pθ, ωq, } cpθ, ωq } 6 ~ c~ p1 ` } θ }κ ` }ω }ιq ,

for some constant ~ c~ ą 0 and where κ > 2 and ι > 1.
• The interaction term Γ is supposed to be bounded by }Γ }8 and globally Lipschitz-

continuous on pX ˆ Eq2, with a Lipschitz constant }Γ }Lip.

We also assume that for fixed θ̄, ω, ω̄, the functions θ ÞÑ cpθ, ωq and θ ÞÑ Γpθ, ω, θ̄, ω̄q are
twice differentiable with continuous derivatives.
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Remark 2.3. Assumption 2.2 is in particular satisfied for the FitzHugh-Nagumo case.
One technical difficulty is the dynamics is not globally Lispchitz continuous. This will
entail some technical complications in the following. Note also that the constant ~ c~
mentioned in (2.3) does not take part in the estimates of Sections 4 to 6. It only enters
into account in Section 3.

Assumption 2.4 (Assumptions on µ and ζ). We suppose that the initial distribution
ζ of θ satisfies the following moment condition:

(2.5)

ż

X

} θ }κ ζpdθq ă 8,

and that the law of the disorder µ satisfies the moment condition:

(2.6)

ż

E

}ω }ι µpdωq ă 8,

where the constants κ and ι are given by (2.4) in Assumption 2.2.

Assumption 2.5 (Assumptions on the weight Ψ). In order to cover the case of both
the P -nearest model and the power-law interaction introduced in § 1.2.2, we suppose that
either Hypothesis (H1) or Hypothesis (H2) is true:

(H1) P -nearest-neighbor:

(2.7) @x, y P
“

´ 1

2
,
1

2

‰d
, Ψpx, yq :“ χRpx, yq

where χR is defined in (1.10).

(H2) Power-law: the function Ψ is supposed to be a nonnegative function on
“

´ 1
2
, 1
2

‰d ˆ
“

´ 1
2
, 1
2

‰d
such that the following properties are satisfied:

I1pΨq :“ sup

a, xP
“

´ 1

2
, 1
2

‰d

} x´ a }αΨpx, aq ă 8,(2.8)

I2pΨq :“ sup

x, y P
“

´ 1

2
, 1
2

‰d

ş

|Ψpx, x̄q ´ Ψpy, x̄q| dx̄
}x´ y }pd´αq^1

ă 8,(2.9)

I3pΨq :“ sup

a, x, y P
“

´ 1

2
, 1
2

‰d

ˇ

ˇ

ˇ
}x ´ a }2γ Ψpx, aq ´ } y ´ a }2γ Ψpy, aq

ˇ

ˇ

ˇ

}x´ y }p2γ´αq^1
ă 8,(2.10)

for some parameters α P r0, dq and γ chosen to be

(2.11)

#

γ P
“

α, d
2

˘

if α P
“

0, d
2

˘

γ “ d
2

otherwise.

Remark 2.6. Note that we could have chosen simply γ “ d
2
in any case. But this would

have led to worse convergence rates than the ones that we obtain below in Theorem 2.18.
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Of course, the main prototype for Hypothesis (H2) is when Ψ px, yq “ }x´ y }´α, for
α ă d (recall (1.11)). But, the assumptions made in (H2) cover a larger class of examples:
the reader may think of the general case of Ψpx, yq :“ ψpx, yq } x ´ y }´α, for a bounded
Lipschitz-continuous function ψ. Note also that the case of bounded Lispchitz interactions
is also captured (take α “ 0).

Remark 2.7 (About the supercritical case). The case of a power-law interaction with
α > d is more delicate and requires more attention. Note that, to our knowledge, no
proposition for any continuous limit has been made in the literature in this case. We are
only aware of [9], where the system (2.12) below is considered for finite N .

One trivial observation is that the series
ř

jPΛN ,
j‰i

} i ´ j }´α is in this case already conver-

gent. Consequently, an interaction term of the form 1
|ΛN |

ř

jPΛN
j‰i

Γ pθi, ωi, θj , ωjq } i ´ j }´α

simply vanishes to 0 as N Ñ 8. Hence, the correct model in this case is where the factor
1

|ΛN | is absent

(2.12) dθiptq “ cpθi, ωiqdt`
ÿ

jPΛN
j‰i

Γ pθi, ωi, θj, ωjq } i ´ j }´α dt` σ.dBiptq, i P ΛN .

The main difficulty for the derivation of the correct continuous limit in the case of (2.12)
lies in the fact that the interaction term

ř

jPΛN
j‰i

Γ pθi, ωi, θj , ωjq } i´ j }´α is not sufficiently

mixing: if it exists, the McKean-Vlasov limit in this case should be random. We believe that
the correct continuous limit should be governed by a stochastic partial differential equation
instead of a deterministic PDE. This case is currently under investigation and will be the
object of a future work.

2.3. The empirical measure. Let us consider for fixed horizon T and time t P r0, T s,
the empirical measure ν

pNq
t (introduced in (1.4)):

(2.13) ν
pNq
t pdθ, dω, dxq :“ 1

|ΛN |
ÿ

j

δpθj ptq, ωj , xjqpdθ, dω, dxq,

as a probability measure on X ˆ E ˆ
“

´ 1
2
, 1
2

‰d
. Here

(2.14) xj :“
j

2N
P

”

´ 1

2
,
1

2

ıd

, j P ΛN .

2.4. The McKean-Vlasov equation. The convergence of the empirical measure at t “ 0
is clear: since pθip0q, ωiq1 6 i 6 N are i.i.d. random variables sampled according to ζbµ, the

initial empirical measure ν
pNq
0 converges, as N Ñ 8, to

(2.15) ν0pdθ, dω, dxq :“ ζpdθqµpdωqdx.

An application of Ito’s formula to (2.2) (for any pθ, ω, xq ÞÑ fpθ, ω, xq bounded function of
class C2 w.r.t. θ with bounded derivatives) leads to the following martingale representation
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for νpNq:

(2.16)
A

ν
pNq
t , f

E

“
A

ν
pNq
0 , f

E

`
ż t

0

B

νpNq
s ,

1

2
divθ

`

σσT∇θf
˘

` ∇θf ¨ cp¨, ¨q
F

ds

`
ż t

0

B

νpNq
s , ∇θf ¨

ż

Γp¨, ¨, θ̄, ω̄qΨp¨, x̄qνpNq
s pdθ̄, dω̄, dx̄q

F

ds`M
pNq
t pfq,

where M
pNq
t pfq :“ 1

|ΛN |

ř

j

şt

0
∇θfpθjpsq, ωj , xjq ¨ σ dBjpsq is a martingale. Note that we

use here the usual duality notation xν , fy “
ş

f dν for the integral of a test function f

against a measure ν.
Taking formally N Ñ 8 in (2.16) shows that any limit point of νpNq should satisfy the

following nonlinear McKean-Vlasov equation

(2.17) Bt xνt , fy “
B

νt ,
1

2
divθ

`

σσT∇θf
˘

` ∇θf ¨ cp¨, ¨q
F

`
B

νt , ∇θf ¨
ż

Γp¨, ¨, θ̄, ω̄qΨp¨, x̄qνtpdθ̄, dω̄, dx̄q
F

,

where Ψp¨, ¨q is the weight function introduced either in Hypothesis (H1) or in Hypothe-
sis (H2).

Remark 2.8. An important remark about a priori properties of (2.17) is the following:
taking a test function f in (2.17) that does not depend on θ implies

xν0 , fy “ xνt , fy , @t P r0, T s.

In particular, the marginal distribution of pω, xq w.r.t. the measure νt is independent of t
and equal to dµb dx. This implies that, for the class of singular weight we consider here,
Ψ is always integrable against νt, for all t, since the function y ÞÑ }x ´ y }´α is integrable

w.r.t. to the Lebesgue measure on
“

´ 1
2
, 1
2

‰d
.

Moreover, since the function c is supposed to have a polynomial growth (recall (2.4)),
one has to justify in particular the term xνt , ∇θf ¨ cp¨, ¨qy in (2.17) (the others are easily
integrable). Thus, one should look for solutions t ÞÑ νt having finite moment: for all t P
r0, T s,

ş

XˆE
} θ }κ }ω }ι νtpdθ, dω, dxq ă 8.

In particular, well-posedness in (2.17) will be addressed within the class of all measure-
valued processes satisfying the properties mentioned above.

Formally integrating by parts in equation (2.17), assuming the existence of a density
νtpdθ, dω, dxq “ qtpθ, ω, xqdθµpdωqdx, qt satisfies

(2.18)

Btqt “ 1

2
divθ

`

σσT∇θqt
˘

´ divθ pqtpθ, ω, xqcpθ, ωqq

´ divθ

ˆ

qtpθ, ω, xq
ż

Γpθ, ω, θ̄, ω̄qΨpx, x̄qqtpθ̄, ω̄, x̄qdθ̄µpdω̄qdx̄
˙

, t ą 0,

In the case where σ is non degenerate, one can make this integration by parts rigorous:
using the same arguments as in [17, Appendix A], one can show that for any measure-
valued initial condition in (2.17), by the regularizing properties of the heat kernel, the
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solution of (2.17) has a regular density qt for all positive time that solves (2.18). We
refer to [17, Prop. A.1] for further details. But of course, if σ is degenerate, the strong
formulation (2.18) does not necessarily make sense and one has to restrict to the weak
formulation (2.17) in that case.

2.5. Results. The first result of this paper, whose proof is given in Section 3, concerns
the existence of a weak solution to the McKean-Vlasov equation (2.17):

Proposition 2.9. Under Assumptions 2.2, 2.4 and 2.5, for any initial condition
ν0pdθ, dω, dxq “ ζpdθqµpdωqdx, there exists a solution t ÞÑ νt to (2.17).

Having proven the existence of at least one such solution in the general case, we turn to
the issue of the convergence of the empirical measure to any of such solution. From now
on, we specify the problem to the case of Hypothesis (H1) (§ 2.5.1) and of Hypothesis (H2)
(§ 2.5.2). For each case, in order to state the convergence result, one needs to define an
appropriate distance between two random measures that is basically the supremum over
evaluations against a set of test functions. Such a space of test functions must incorporate
the kind of singularities that are present either in Hypothesis (H1) or (H2).

2.5.1. The P -nearest-neighbor case. Suppose that the weight function Ψ satisfies Hy-
pothesis (H1) of Assumption 2.5.

Definition 2.10 (Test functions for P -nearest-neighbor). For fixed R P p0, 1s and

a P
“

´ 1
2
, 1
2

‰d
, let CR,a be the set of functions f on X ˆ E ˆ

“

´ 1
2
, 1
2

‰d
of the form:

f : pθ, ω, xq ÞÑ gpθ, ωq ¨ χR px´ aq ,
where χR is given in (1.10) and g is globally Lipschitz-continuous w.r.t. pθ, ωq:
(2.19) DC ą 0,@pθ, ω, θ̄, ω̄q,

›

› gpθ, ωq ´ gpθ̄, ω̄q
›

› 6 C
`›

›θ ´ θ̄
›

› ` }ω ´ ω̄}
˘

.

Let

} f }R,a :“ sup
θ,θ̄,ω,ω̄

›

› gpθ, ωq ´ gpθ̄, ω̄q
›

›

›

› θ ´ θ̄
›

› ` }ω ´ ω̄ }
be the corresponding seminorm.

Remark 2.11. Note that for any f P CR,a that is C1 in the variable θ, the following
estimate holds:

(2.20) @θ, ω, x, }∇θfpθ, ω, xq } 6 } f }R,a χR px´ aq .

We now turn to the appropriate distance between two random measures:

Definition 2.12 (Distance for P -nearest neighbor). For random probability measures

λ and ν on X ˆ E ˆ
“

´ 1
2
, 1
2

‰d
, let

dRpλ, νq :“ sup
f

´

E } xf , λy ´ xf , νy }2
¯1{2

where the supremum is taken over all functions f P Ť

aPr´1,1sd CR,a, such that } f }R,a 6 1,
} f }8 6 1.
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Our convergence result is given in the following

Theorem 2.13 (Law of Large Numbers). Under Assumptions 2.2, 2.4 and Hypothe-
sis (H1) of Assumption 2.5, for all R P p0, 1s, for any arbitrary solution ν to the mean-field
equation (2.17), we have:

(2.21) sup
0 6 t 6 T

dRpνpNq
t , νtq 6

C

N1^ d
2

where the constant C ą 0 only depends on T , Γ, R and c.

2.5.2. The case of the power-law interaction. Assume that the weight function Ψ sat-
isfies Hypothesis (H2). In view of the form of Ψ in this case (recall Assumption 2.5),
the main idea is to consider test functions pθ, ω, xq ÞÑ fpθ, ω, xq that become regular when
renormalized by }x´ a }α. The seminorm } ¨ }a introduced in (2.25) below should therefore
be thought of as a weighted Hölder seminorm.

Definition 2.14 (Test functions for power-law interaction). For fixed α and γ as in

Assumption 2.5 and for fixed a P
“

´ 1
2
, 1
2

‰d
, let Ca be the set of functions pθ, ω, xq ÞÑ

fpθ, ω, xq on X ˆ E ˆ
“

´ 1
2
, 1
2

‰d
satisfying:

• Regularity w.r.t. pθ, ωq: pθ, ωq ÞÑ }x ´ a }α fpθ, ω, xq is globally Lipschitz-continuous
on X ˆ E, uniformly in x, that is
(2.22)

DC ą 0,@pθ, ω, θ̄, ω̄q, }x´ a }α
›

› fpθ, ω, xq ´ fpθ̄, ω̄, xq
›

› 6 C
`›

›θ ´ θ̄
›

› ` }ω ´ ω̄}
˘

• Regularity w.r.t. x: x ÞÑ }x ´ a }α fpθ, ω, xq is uniformly bounded

(2.23) DC ą 0, } x´ a }α } fpθ, ω, xq } 6 C,

and x ÞÑ |x´ a|2γ fpθ, ω, xq is globally p2γ ´ αq ^ 1-Hölder, uniformly in pθ, ωq:

(2.24) DC ą 0,
›

›

›
}x´ a }2γ fpθ, ω, xq ´ } y ´ a }2γ fpθ, ω, yq

›

›

›
6 C }x´ y }p2γ´αq^1 .

Denote by

(2.25) } f }a :“ sup
θ,θ̄,ω,ω̄,x

}x´ a }α
›

› fpθ, ω, xq ´ fpθ̄, ω̄, xq
›

›

›

› θ ´ θ̄
›

› ` }ω ´ ω̄ } ` sup
θ,ω,x

}x ´ a }α } fpθ, ω, xq }

` sup
θ,ω,x,y

›

›

›
}x´ a }2γ fpθ, ω, xq ´ } y ´ a }2γ fpθ, ω, yq

›

›

›

}x´ y }p2γ´αq^1

the corresponding seminorm.

Remark 2.15. Note that for any f P Ca that is C1 in the variable θ, the following
holds:

(2.26) @θ, ω, x, }∇θfpθ, ω, xq } 6
} f }a

}x´ a }α .
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The corresponding definition of the distance between two random measures is similar
to Definition 2.12 given in the P -nearest neighbor case. The main difference here is that
one needs to take care of test functions with singularities. Since those singularities happen

at points of the form i
2N

(for some i and N) that are regularly distributed on
“

´ 1
2
, 1
2

‰d
,

we first need to introduce some further notations: for all integer K > 1, we denote by DK

the regular discretization of
“

´ 1
2
, 1
2

‰d
with mesh of length 1

2K
:

(2.27) DK :“
"ˆ

j1

2K
, . . . ,

jd

2K

˙

; ´K 6 j1 6 K, . . . ,´K 6 jd 6 K

*

Ă
”

´ 1

2
,
1

2

ıd

.

The appropriate distance between two random measures is then:

Definition 2.16 (Distance for power-law interaction). Let α ă d and p > 2 be defined
by:

(2.28) p :“
#

2 if α P r0, d
2

q,
r d
d´α

s if α P rd
2
, dq,

where rxs stands for the smallest integer strictly larger than x. On the set of random prob-

ability measures on X ˆE ˆ
“

´ 1
2
, 1
2

‰d
, let us define a sequence of distances

´

d
ppq
K p¨, ¨q

¯

K > 1

indexed by K > 1, between two elements λ and ν by

d
ppq
K pλ, νq “ sup

f

pE } xf , λy ´ xf , νy }pq1{p

where the supremum is taken over all the functions f P
Ť

aPDK1

1 6 K 1 6 K

Ca, such that } f }a 6 1.

Let us then define the distance d
ppq
8 p¨, ¨q by

(2.29) d
ppq
8 pλ, νq :“

ÿ

K > 1

1

2K
e´CK

dp
q

K2d

´

d
ppq
K pλ, νq ^ 1

¯

,

for a sufficiently large constant C (that depends on the parameters of our model) and where
q is the conjugate of p: 1

p
` 1

q
“ 1. For a precise estimate on C, we refer to Proposition 6.5

below.

Apart from the weight e´CK

dp
q

K2d (which is precisely here to compensate the estimate

that we find in Proposition 6.5 below), the definition of d
ppq
8 p¨, ¨q exactly follows the usual

Fréchet construction (see e.g. [16]).

Remark 2.17. The choice of the integer p in (2.28) is made for integrability reasons
that will become clear in the proof of Theorem 2.18. One only has to notice here that p has
been precisely defined so that its conjugate q always satisfies qα ă d.

The main result of this work is the following:
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Theorem 2.18 (Law of Large Numbers in the power-law case). Under Assump-
tions 2.2, 2.4 and Hypothesis (H2) of Assumption 2.5, for any arbitrary solution ν to the
mean-field equation (2.17), we have:

(2.30) sup
0 6 t 6 T

d
ppq
8 pνpNq

t , νtq 6 C

$

’

’

’

’

&

’

’

’

’

%

1
Nγ^1 , if α P

“

0, d
2

˘

,

lnN

N
d
2

^1
, if α “ d

2
,

lnN
Npd´αq^1

, if α P
`

d
2
, d

˘

,

where the constant C ą 0 only depends on T , Γ, Ψ, α and c.

Note that the speed of convergence found in Theorem 2.18 is never smaller that N´ d
2

which is the optimal speed for the case without spatial extension (recall the CLT results
in the mean field case in [23]). Note also that, in the case where 0 6 α ă d

2
, we have

obtained a speed of convergence which is arbitrarily close to N´pd
2

^1q (since in that case γ
is arbitrarily close to d

2
). We believe that the optimal speed in this case should be exactly

N´pd
2

^1q, but the proof we propose in this work does not seem to reach this optimal result.
Nevertheless, in the case where we only consider a bounded Lispchitz-continuous weight

function Ψ (i.e. with no singularity at all), the proof of Theorem 2.18 can be considerably

simplified and one obtains a speed that is N´ d
2 .

Note also that the fluctuations when α P
“

d
2
, d

˘

appear to be nontrivial. A natural
perspective of this work would be to prove a precise Central Limit Theorem in this case
and to study the limiting fluctuation process in details.

2.6. Well-posedness of the McKean-Vlasov equation. A straightforward corollary of
Theorems 2.13 and 2.18 is that uniqueness holds for the McKean-Vlasov equation (2.17):

Proposition 2.19 (Well-posedness of the McKean-Vlasov equation). Under Assump-
tions 2.2, 2.4 and 2.5, for every initial condition ν0pdθ, dω, dxq “ ζpdθqµpdωqdx, there
exists a unique solution t ÞÑ νt P M1

´

Cpr0, T s,X q ˆ E ˆ
“

´ 1
2
, 1
2

‰d
¯

to the McKean-

Vlasov equation (2.17).

3. The non-linear process and the existence of a continuous-limit. The pur-
pose of this paragraph is to prove Proposition 2.9 concerning the existence of a solution
to the McKean-Vlasov equation (2.17). This part is reminiscent of the techniques used by
Sznitman ([36]) in order to prove propagation of chaos for non disordered models.

3.1. Distance on probability measures. Let us first consider the set MX of probability
measures on Cpr0, T s,X q with finite moments of order κ (where κ > 2 is given in (2.4))
and endow this set with the Wasserstein metric

(3.1) δ
pT q
X

pp1, p2q :“ inf

#

E

ˆ

sup
s 6 T

›

›

›
ϑp1q
s ´ ϑp2q

s

›

›

›

κ
˙

1

κ

+

,

where the infimum in (3.1) is considered over all couplings
`

ϑp1q, ϑp2q
˘

with respective

marginals p1 and p2. Here, the ϑpiq are understood as random variables on a certain
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probability space pΩ,Pq. Note however that the definition of (3.1) does not depend on
its particular choice. (3.1) defines a complete metric on MX encoding the topology of
convergence in law with convergence of moments up to order κ (see [38, Th. 6.9, p. 96]).
We endow MX with the corresponding Borel σ-field.

Fix some probability measure m on Cpr0, T s,X q ˆE ˆ
“

´ 1
2
, 1
2

‰d
(endowed with its Borel

σ-field) such that its marginal on E ˆ
“

´ 1
2
, 1
2

‰d
is absolutely continuous w.r.t. µpdωqb dx.

Thanks to a usual disintegration result (see e.g. [13, Th. 10.2.2]) one can write m as

mpdθ, dω, dxq “ mω,xpdθqµpdωqdx,

where pω, xq ÞÑ mω,xpdθq is a measurable map from E ˆ
“

´ 1
2
, 1
2

‰d
(endowed with its Borel

σ-field) into MX . We consider the set M of such measures m such that for all pω, xq, mω,x

belongs to MX , endowed with the following metric:

Definition 3.1. Fix p to be equal to 2 in the case of Hypothesis (H1) or as in (2.28)
in the case of Hypothesis (H2). Then define

(3.2) @m1,m2 P M, δT pm1,m2q :“
«

ż

Eˆ
“

´ 1

2
, 1
2

‰d

´

δ
pT q
X

pmω,x
1 ,m

ω,x
2 q

¯p

µpdωqdx
ff

1

p

.

The space M endowed with δT is a complete metric space (see [36, p.173]).

Note that, by construction (see (2.15)), the initial condition dν0pθ, ω, xq “ ζpdθqµpdωqdx
belongs to M.

3.2. The nonlinear process. The proof of Proposition 2.9 is based on a Picard iteration
in the space M endowed with the metric introduced in Definition 3.1. For fixed ω P E and
Brownian motion B in X , independent of the sequence pBkqk > 1, and for a fixed m P M,
consider the following stochastic differential equation in X :

dθptq “ cpθptq, ωqdt`
ż

Γpθptq, ω, θ̄, ω̄qΨpx, x̄qmtpdθ̄, dω̄, dx̄qdt` σ ¨ dBptq,(3.3)

with initial condition θp0q „ ζ. Note here that for all t > 0, mtpdθ, dω, dxq, probability
measure on X ˆ E ˆ

“

´ 1
2
, 1
2

‰d
, stands for the projection of m at time t. The integral term

in (3.3) is well-defined since

ż

›

›Γpθptq, ω, θ̄, ω̄q
›

›Ψpx, x̄qmtpdθ̄, dω̄, dx̄q

6 }Γ }8

ż

“

´ 1

2
, 1
2

‰d
Ψpx, x̄q

ż

XˆE

m
ω̄,x̄
t pdθ̄qµpdω̄q

looooooooooooomooooooooooooon

“1

dx̄ 6 }Γ }8 SpΨq,

where the quantity

(3.4) SpΨq :“ sup
x

ż

“

´ 1

2
, 1
2

‰d
Ψpx, x̄qdx̄
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is smaller than 1 in case of Hypothesis (H1) and smaller that I1pΨq (using (2.8)) in the
case of Hypothesis (H2). Moreover, thanks to the regularity properties of Γ and c, equation
(3.3) has a unique (strong) solution.

Let us denote by Θ : M Ñ M the functional which maps any measure mpdθ, dω, dxq P
M to the law Θpmq of pθ, ω, xq where pθtq0 6 t 6 T is the unique solution to (3.3). Note that
the functional Θ effectively preserves the set M. Proposition 2.9 is a direct consequence
of the following lemma:

Lemma 3.2. The functional Θ admits a fixed point ν̄ in M.

Proof of Lemma 3.2. As in [36], we prove the following

(3.5) @m1,m2 P M, @t 6 T, δtpΘpm1q,Θpm2qqκ 6 CT

ż t

0

δupm1,m2qκ du.

If (3.5) is proved, the proof of Proposition 2.9 will be finished since in that case, one can
iterate this inequality and find

@k > 1, δT pΘk`1pν0q,Θkpν0qqκ 6 Ck
T

T k

k!
δT pΘpν0q, ν0qκ,

which gives that
`

Θkpν0q
˘

k > 1
is a Cauchy sequence, and thus converges to some fixed-

point ν̄ of Θ. Let us now prove (3.5). The key calculation is the following: there exists a

constant C ą 0 such that for all θ1, θ2 P X , ω P E , x P
“

´ 1
2
, 1
2

‰d
, for all m1,m2 P M,

(3.6) δΓ :“
›

›

›

›

ż

Γ pθ1, ω, ¨, ¨qΨpx, ¨qdm1,t ´
ż

Γ pθ2, ω, ¨, ¨qΨpx, ¨qdm2,t

›

›

›

›

6 C p} θ2 ´ θ1 } ^ 1 ` δtpm1,m2qq .

Indeed,

δΓ 6

›

›

›

›

ż

Γ pθ1, ω, ¨, ¨qΨpx, ¨qdm1,t ´
ż

Γ pθ2, ω, ¨, ¨qΨpx, ¨qdm1,t

›

›

›

›

`
›

›

›

›

ż

Γ pθ2, ω, ¨, ¨qΨpx, ¨qdm1,t ´
ż

Γ pθ2, ω, ¨, ¨qΨpx, ¨qdm2,t

›

›

›

›

:“ δΓ1 ` δΓ2.

(3.7)

The first term δΓ1 in (3.7) is easily bounded by }Γ }Lip SpΨq } θ2 ´ θ1 }, where SpΨq is
defined by (3.4). The second term δΓ2 in (3.7) can be successively bounded by

δΓ2 “
›

›

›

›

›

ż

“

´ 1

2
, 1
2

‰d
ˆE

Ψpx, x̄q
ˆ

ż

Γ
`

θ2, ω, θ̄, ω̄
˘

m
ω̄,x̄
1,t pdθ̄q ´

ż

Γ
`

θ2, ω, θ̄, ω̄
˘

m
ω̄,x̄
2,t pdθ̄q

˙

dx̄µpdω̄q
›

›

›

›

›

6

˜

ż

“

´ 1

2
, 1
2

‰d
Ψpx, x̄qq dx̄

¸
1

q

¨

˜

ż

“

´ 1

2
, 1
2

‰d
ˆE

›

›

›

›

ż

Γ
`

θ2, ω, θ̄, ω̄
˘

m
ω̄,x̄
1,t pdθ̄q ´

ż

Γ
`

θ2, ω, θ̄, ω̄
˘

m
ω̄,x̄
2,t pdθ̄q

›

›

›

›

p

dx̄µpdω̄q
¸

1

p

.
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Note that the first term in the last inequality is always bounded: it is straightforward in
the P -nearest neighbor case and comes from Remark 2.17 in the power-law case. Indeed,
q has been precisely chosen so that qα ă d, so that Ψpx, ¨qq is integrable.

Using the Lipschitz-continuity of Γ, we see that, for any coupling mω,xpdϑ1, dϑ2q of
m

ω,x
1 and mω,x

2

δΓ2 6 C }Γ }Lip

˜

ż

“

´ 1

2
, 1
2

‰d
ˆE

pEmω,x }ϑ1ptq ´ ϑ2ptq }qp dx̄µpdω̄q
¸ 1

p

,

6 C }Γ }Lip

˜

ż

“

´ 1

2
, 1
2

‰d
ˆE

´

rEmω,x }ϑ1ptq ´ ϑ2ptq }κs
1

κ

¯p

dx̄µpdω̄q
¸

1

p

.

By Definition 3.1, this gives δΓ2 6 C }Γ }Lip δtpm1,m2q, which proves (3.6). We are now
in position to prove (3.5). Let us consider pθ1, ω, xq and pθ2, ω, xq solutions to (3.3) for two
different measures m1 and m2 in M driven by the same Brownian motion, with the same
initial condition. We have for all 0 6 t 6 T ,

} θ1ptq ´ θ2ptq }2 “ 2

ż t

0

xθ1psq ´ θ2psq , cpθ1psq, ωq ´ cpθ2psq, ωqy ds

`2

ż t

0

B

θ1psq ´ θ2psq ,
ż

Γ pθ1psq, ω, ¨, ¨qΨpx, ¨qdm1 ´
ż

Γ pθ2psq, ω, ¨, ¨q Ψpx, ¨qdm2

F

ds.

Using the one-sided Lipschitz condition (2.3) and (3.6), we obtain

} θ1ptq ´ θ2ptq }2 6 C

ż t

0

} θ1psq ´ θ2psq }2 ds` C

ż t

0

} θ1psq ´ θ2psq } δspm1,m2qds,

6 C

ż t

0

} θ1psq ´ θ2psq }2 ds` C

ż t

0

δspm1,m2q2 ds.

Consequently, using Gronwall’s Lemma

sup
s 6 t

} θ1psq ´ θ2psq }2 6 CeCT

ż t

0

δspm1,m2q2 ds.

Elevating this inequality to the power κ
2
> 1 gives

sup
s 6 t

} θ1psq ´ θ2psq }κ 6
`

CeCT
˘

κ
2

ˆ
ż t

0

δspm1,m2q2 ds
˙

κ
2

6
`

CeCT
˘

κ
2 T

κ´2

2

ż t

0

δspm1,m2qκ ds,

which gives

δ
ptq
X

pΘpm1qω,x,Θpm2qω,xq 6
`

CeCT
˘

1

2 T
κ´2

2κ

ˆ
ż t

0

δspm1,m2qκ ds
˙

1

κ

.

Elevating this inequality to the power p and integrating over ω and x leads to the desired
result (3.5). Lemma 3.2 is proved.
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We are now in position to prove Proposition 2.9.

Proof of Proposition 2.9. It remains to prove that if ν̄ is a fixed point of Θ then
ν̄ is a solution to the weak formulation of the continuous limit (2.17). Indeed if ν̄ “ Θpν̄q,
one can write ν̄pdθ, dω, dxq “ ν̄ω,xpdθqµpdωqdx where, for fixed ω, x, ν̄ω,xpdθq is the law
of the process solution to (3.3). Applying Ito’s formula, one obtains for all fpθ, ω, xq, C2

w.r.t. θ with bounded derivatives,

(3.8)

fpθptq, ω, xq “ fpθ0, ω, xq ` 1

2

ż t

0

divθ
`

σσT∇θf
˘

pθpsq, ω, xqds`
ż t

0

∇θf ¨ cpθpsq, ωqds

`
ż t

0

∇θf ¨
ż

Γpθptq, ω, θ̄, ω̄qΨpx, x̄qν̄ω̄,x̄t pdθ̄qµpdω̄qdx̄ds`
ż t

0

∇θfpθpsq, ω, xq ¨ pσ dBsq.

Taking the expectation in (3.8) leads to (2.17). But in order to do so, we need to know
that the term ∇θfpθ, ω, xq ¨ cpθ, ωq is integrable w.r.t. the measure ν̄ω,xpdθqµpdωqdx (the
other terms are integrable, by assumptions on f). This is ensured by (2.5), the fact that
(by construction) ν̄ω,xpdθq has finite moments up to order κ, and the fact that µ has finite
moment of order ι (recall (2.6)).

The rest of the document is devoted to provide a proof for Theorems 2.13 and 2.18.

4. Definition and properties of the propagator. For reasons that will be made
clear in Remark 4.2 below, we make in this section, as well as in Sections 5 and 6 some
supplementary assumption on the regularity on the dynamics c:

Assumption 4.1 (Additional regularity on c). We assume that for all ω, the function
θ ÞÑ cpθ, ωq is globally Lispchitz continuous.

Of course, the FitzHugh-Nagumo case does not enter into the framework of Assump-
tion 4.1. Assumption 4.1 is made in order to ensure the existence of a backward Kolmogorov
equation (see Remark 4.2). The purpose of Section 7 will be to discard this assumption.

In this section, the function Ψ is either defined as in Hypothesis (H1) or as in Hypoth-
esis (H2). We know from Proposition 2.9 that there exists at least one measure-valued
solution t ÞÑ νt to the continuous equation (2.17). We fix once and for all one such solu-
tion. We can then consider the stochastic differential equation:

dθptq “ cpθptq, ωqdt`
ż

Γpθptq, ω, θ̄, ω̄qΨpx, x̄qνtpdθ̄, dω̄, dx̄qdt` σ ¨ dBptq

“: cpθptq, ωqdt` vpt, θptq, ω, xqdt` σ ¨ dBptq,
(4.1)

where θp0q „ ζ. Thanks to the regularity properties of Γ and c and to the integrability
of Ψ, (4.1) has a unique solution. Define the propagator corresponding to (4.1):

(4.2) @s, t P r0, T s, Ps,tfpθ, ω, xq :“ EBfpΦt
spθ;ω, xq, ω, xq,

where EB is the expectation w.r.t. the Brownian motion B, f is a bounded measurable

function on X ˆ E ˆ
“

´ 1
2
, 1
2

‰d
, 0 6 s 6 t and t ÞÑ Φt

spθ;ω, xq is the unique solution to
(4.1) such that Φs

spθ;ω, xq “ θ.
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Remark 4.2. If f is C2 w.r.t. the variable θ, under Assumptions 2.2 and 4.1 made
about c and Γ, it is standard to see that the function Ps,tf is of class C2 in θ and C1 in s
and satisfies the Backward Kolmogorov equation (see for example [32, Remark 2.3]):

(4.3) @pθ, ω, x, s, tq, BsPs,tfpθ, ω, xq ` 1

2
divθ

`

σσT∇θPs,t

˘

pθ, ω, xq

` prcpθ, ωq ` vpt, θ, ω, xqs ¨ ∇θqPs,tfpθ, ω, xq “ 0.

The main problem which motivates the work of Section 7 at the end of this paper is that
proving similar Kolmogorov when Assumption 4.1 is discarded appears to be difficult (see
in particular the recent work in this direction [20]). Nevertheless, we work in this section
under this additional hypothesis and we provide in Section 7 a way to bypass this technical
difficulty.

The key calculation of this work is the object of Lemma 4.3:

Lemma 4.3. Let f : X ˆ E ˆ
“

´ 1
2
, 1
2

‰d Ñ R, be C2 w.r.t. the variable θ. Then,

(4.4)
A

f , ν
pNq
T ´ νT

E

“
A

P0,T f , ν
pNq
0 ´ ν0

E

` 1

|ΛN |
ÿ

k

ż T

0

∇θ pPt,T fq pθkptq, ωk, xkq ¨σ dBkptq

` 1

|ΛN |
ÿ

k

ż T

0

∇θ pPt,T fq pθkptq, ωk, xkq ¨
”A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
t ´ νt

Eı

dt.

Proof of Lemma 4.3. An application of Ito’s formula gives: for all k and 0 ă t ă T ,

Pt,T f pθkptq, ωk, xkq “ P0,T f pθkp0q, ωk, xkq `
ż t

0

BsPs,T f pθkpsq, ωk, xkq ds

`
ż t

0

∇θPs,T f pθkpsq, ωk, xkq ¨ dθkpsq ` 1

2

ż t

0

divθ
`

σσT∇θPs,T f
˘

pθkpsq, ωk, xkq ds.

Using the definition of θk (recall (2.2)) and (4.3) we obtain:

Pt,T f pθkptq, ωk, xkq “ P0,T f pθkp0q, ωk, xkq ´
ż t

0

vps, θkpsq, ωk, xkq ¨ ∇θPs,T f pθkpsq, ωk, xkq ds

`
ż t

0

∇θPs,T f pθkpsq, ωk, xkq ¨
A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
s

E

ds

`
ż t

0

∇θPs,tfpθkpsq, ωk, xkq ¨ pσ dBkpsqq.

Then, using the definition of vp¨q (recall (4.1)) and summing over k lead to:

A

Pt,T f , ν
pNq
t

E

“
A

P0,T f , ν
pNq
0

E

` 1

|ΛN |
ÿ

k

ż t

0

∇θPs,tfpθkpsq, ωk, xkq ¨ pσ dBkpsqq

` 1

|ΛN |
ÿ

k

ż t

0

∇θPs,T f pθkpsq, ωk, xkq ¨
A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
s ´ νs

E

ds.
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A straightforward calculation using (4.3) shows that Bt xPt,T f , νty “ 0. Using this and the
previous equality, one obtains the desired result (choose t “ T and recall that PT,T f “ f).
Lemma 4.3 is proved.

The purpose of the following lemma is to establish regularity properties of the propa-
gator Pt,T :

Lemma 4.4 (Estimates on the propagator Pt,T ). Fix T ą 0, 0 ă t ă T and a P
“

´ 1
2
, 1
2

‰d
.

1. Assume Ψ satisfies Hypothesis (H1). For any R P p0, 1s and any f in CR,a, Pt,T f is
also in CR,a and one has the following estimate

(4.5) }Pt,T f }
R,a

6
?
2e~P~pT´tq } f }R,a ,

for some constant ~P~ (that can be chosen equal to L` 3{2 }Γ }Lip, recall (2.3)).
2. Assume Ψ satisfies Hypothesis (H2). For every a P

“

´ 1
2
, 1
2

‰d
, for any f in Ca, Pt,T f

is also in Ca and one has the following estimate

(4.6) }Pt,T f }
a
6 ~P~e~P~pT´tq } f }a ,

for some constant ~P~ (that only depends on Γ, Ψ and c).

Proof. Note that, by a usual density argument, one only needs to prove (4.5) and (4.6)

for test functions f that are C2 w.r.t. θ. Fix T ą 0, 0 ă t ă T , a P
“

´ 1
2
, 1
2

‰d
and consider

two different flows for (4.1) Φt
spθi;ωi, xq, for i “ 1, 2, with different initial condition and

parameter but at the same site x, with the same Brownian motion. For simplicity, we write
Φt
spiq instead of Φt

spθi;ωi, xq. Then, using the one-sided Lipschitz condition (2.3) on c, we
obtain

›

›Φt
sp2q ´ Φt

sp1q
›

›

2 “ } θ2 ´ θ1 }2 ` 2

ż t

s

xΦu
s p2q ´ Φu

s p1q , cpΦu
s p2q, ω2q ´ cpΦu

s p1q, ω1qy du

` 2

ż t

s

xΦu
s p2q ´ Φu

s p1q , vpu,Φu
s p2q, ω2, xq ´ vpu,Φu

s p1q, ω1, xqy du,

6 } θ2 ´ θ1 }2 ` 2L

ż t

s

´

}Φu
s p2q ´ Φu

s p1q }2 ` }ω2 ´ ω1 }2
¯

du

` 2

ż t

s

}Φu
s p2q ´ Φu

s p1q } } vpu,Φu
s p2q, ω2, xq ´ vpu,Φu

s p1q, ω1, xq }
looooooooooooooooooooooooomooooooooooooooooooooooooon

:“δvpuq

du,

where the definition of vp¨q is given in (4.1). The Lipschitz-continuity of Γ implies

δvpuq 6
ż

›

›ΓpΦu
s p2q, ω2, θ̄, ω̄q ´ ΓpΦu

s p1q, ω1, θ̄, ω̄q
›

›Ψpx, x̄qνω̄,x̄u pdθ̄qµpdω̄qdx̄

6 }Γ }Lip SpΨq p}Φu
s p2q ´ Φu

s p1q } ` }ω2 ´ ω1 }q ,
where SpΨq has already been defined in (3.4). Putting things together we see that, for
C “ 2L` 3 }Γ }Lip SpΨq,

(4.7)
›

›Φt
sp2q ´ Φt

sp1q
›

›

2
6 } θ2 ´ θ1 }2 ` C

ż t

s

´

}Φu
s p2q ´ Φu

s p1q }2 ` }ω2 ´ ω1 }2
¯

du.
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An application of Gronwall’s lemma leads to

›

›Φt
spθ2, ω2, xq ´ Φt

spθ1, ω1, xq
›

›

2 ` }ω2 ´ ω1 }2 6 eCpt´sq
´

} θ2 ´ θ1 }2 ` }ω2 ´ ω1 }2
¯

.

(4.8)

Then, in the case where Ψ satisfies Hypothesis (H1), we have Pt,T fpθ, ω, xq “ χRpx ´
aqgpΦT

t pθ;ω, xq, ωq, when fpθ, ω, xq “ χRpx´ aqgpθ, ωq. But then,
›

› gpΦT
t pθ2;ω2, xq, ω2q ´ gpΦT

t pθ1;ω1, xq, ω1q
›

›

2
6 } f }2R,a

`›

›ΦT
t p2q ´ ΦT

t p1q
›

› ` }ω2 ´ ω1 }
˘2
,

6 2 } f }2R,a

´

›

›ΦT
t p2q ´ ΦT

t p1q
›

›

2 ` }ω2 ´ ω1 }2
¯

,

6 2 } f }2R,a e
CpT´tq

´

} θ2 ´ θ1 }2 ` }ω2 ´ ω1 }2
¯

,

so that
›

› gpΦT
t pθ2;ω2, xq, ω2q ´ gpΦT

t pθ1;ω1, xq, ω1q
›

› 6
?
2 } f }R,a e

C
2

pT´tq
´

} θ2 ´ θ1 }`}ω2 ´ ω1 }
¯

,

which is the desired estimate (2.19) and gives (4.5). The same kind of calculation in the
case of Hypothesis (H2) leads to the estimate (2.22) for Pt,T f .

Thus, it remains to prove estimates (2.23) and (2.24) for Pt,T f in the case of Hypoth-
esis (H2). The case of (2.23) is straightforward. As far as (2.24) is concerned, the same
kind of calculation with two different flows Φt

spxq :“ Φt
spθ;ω, xq and Φt

spyq :“ Φt
spθ;ω, yq,

with the same θ and ω but at different sites x and y leads to

›

›Φt
spxq ´ Φt

spyq
›

›

2
6 2L

ż t

s

}Φu
s pxq ´ Φu

s pyq }2 du

` 2

ż t

s

}Φu
s pxq ´ Φu

s pyq } } vpu,Φu
s pxq, ω, xq ´ vpu,Φu

s pyq, ω, yq }
loooooooooooooooooooooooomoooooooooooooooooooooooon

:“δvpu,x,yq

du,

with,

δvpu, x, yq 6
ż

›

›ΓpΦu
s pxq, ω, θ̄, ω̄qΨpx, x̄q ´ ΓpΦu

s pyq, ω, θ̄, ω̄qΨpy, x̄q
›

› νω̄,x̄u pdθ̄qµpdω̄qdx̄

6

ż

›

›ΓpΦu
s pxq, ω, θ̄, ω̄q ´ ΓpΦu

s pyq, ω, θ̄, ω̄q
›

›Ψpx, x̄qνω̄,x̄u pdθ̄qµpdω̄qdx̄

`
ż

›

›ΓpΦu
s pyq, ω, θ̄, ω̄q

›

› |Ψpx, x̄q ´ Ψpy, x̄q|νω̄,x̄u pdθ̄qµpdω̄qdx̄

6 }Γ }Lip SpΨq p}Φu
s pxq ´ Φu

s pyq }q

` }Γ }8

ż

r´1,1sd
|Ψpx, x̄q ´ Ψpy, x̄q|

ż

XˆE

νω̄,x̄u pdθ̄qµpdω̄q
loooooooooooomoooooooooooon

“1

dx̄

6 }Γ }Lip SpΨq }Φu
s pxq ´ Φu

s pyq } ` I2pΨq }Γ }8 }x´ y }pd´αq^1 ,

where SpΨq is defined in (3.4) and where we used assumption (2.9). This gives, for C “
2L ` 2 }Γ }Lip SpΨq ` I2pΨq }Γ }8,

›

›Φt
spxq ´ Φt

spyq
›

›

2
6 C

ż t

s

}Φu
s pxq ´ Φu

s pyq }2 du ` I2pΨq }Γ }8 pt´ sq }x ´ y }2ppd´αq^1q ,
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Consequently, by Gronwall’s lemma,

(4.9)
›

›Φt
spθ;ω, xq ´ Φt

spθ;ω, yq
›

›

2
6 I2pΨq }Γ }8 pt´ sqeCpt´sq }x´ y }2ppd´αq^1q .

Then, for any 0 ă t 6 T , we have

} δPt,T f }2 :“
›

›

›
}x´ a }2γ Pt,T fpθ, ω, xq ´ } y ´ a }2γ Pt,T fpθ, ω, yq

›

›

›

2

“
›

›

›
}x ´ a }2γ fpΦT

t pθ;ω, xq, ω, xq ´ } y ´ a }2γ fpΦT
t pθ;ω, yq, ω, yq

›

›

›

2

,

6

˜

}x´ a }2γ
›

› fpΦT
t pθ;ω, xq, ω, xq ´ fpΦT

t pθ;ω, yq, ω, xq
›

›

`
›

›

›
}x ´ a }2γ fpΦT

t pθ;ω, yq, ω, xq ´ } y ´ a }2γ fpΦT
t pθ;ω, yq, ω, yq

›

›

›

¸2

,

6 } f }2a
´

›

›ΦT
t pxq ´ ΦT

t pyq
›

› ` }x´ y }p2γ´αq^1
¯2

,

(4.10)

6 2 } f }2a
´

›

›ΦT
t pxq ´ ΦT

t pyq
›

›

2 ` }x´ y }2pp2γ´αq^1q
¯

,

6 2 } f }2a pI2pΨq }Γ }8 pT ´ tq _ 1q eCpT´tq
´

} x´ y }2ppd´αq^1q ` }x ´ y }2pp2γ´αq^1q
¯

,

(4.11)

where we used assumptions (2.23) and (2.24) in (4.10) and the estimation (4.9) in (4.11).
Using the definition of γ (recall (2.11)), it is always true that d´α > 2γ´α. Consequently,

›

›

›
}x´ a }2γ Pt,T fpθ, ω, xq ´ } y ´ a }2γ Pt,T fpθ, ω, yq

›

›

›

6 2 pTI2pΨq }Γ }8 _ 1q
1

2 e
C
2

pT´tq } f }a }x´ y }p2γ´αq^1 ,

which leads to (2.24). Lemma 4.4 is proved.

Remark 4.5. One could wonder why we have not simply used in the calculation above
the global Lipschitz assumption about c (recall Assumption 4.1), instead of the more in-
volved one-sided Lipschitz inequality used here. The crucial reason for this is that in order
to be able to discard Assumption 4.1 in Section 7 below, we need to ensure that the es-
timates of Lemma 4.4 do not depend on the modulus of continuity of c, but only on its
one-sided Lipschitz constant L.

Using (4.5) (respectively (4.6)) in (4.4), we easily see that for every a P
“

´ 1
2
, 1
2

‰d
, for

any given f P CR,a with } f }R,a 6 1 (respectively f P Ca with } f }a 6 1), we have

(4.12)
›

›

›

A

f , ν
pNq
T

E

´ xf , νT y
›

›

›
6

›

›

›

A

P0,T f , ν
pNq
0

E

´ xP0,T f , ν0y
›

›

›

`
›

›

›

›

›

1

|ΛN |
ÿ

k

ż T

0

∇θ pPt,T fq pθkptq, ωk, xkq ¨ pσ dBkptqq
›

›

›

›

›

` 1

|ΛN |
ÿ

k

ż T

0

}∇θPt,T f }
›

›

›

A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
t ´ νt

E ›

›

›
dt.
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Using (2.20) and (4.5) (resp. (2.26) and (4.6)), the term }∇θPt,T f } pθkptq, ωk, xkq in the
third summand of (4.12) can be bounded by

?
2e~P~pT´tq }χR }8 in case of Hypothe-

sis (H1) and by }xk ´ a }´α ~P~e~P~pT´tq in case of Hypothesis (H2). In both cases, the
bound that we find can be written in the form

(4.13) }∇θPt,T f } pθkptq, ωk, xkq 6 e~P~pT´tqρpxkq

(ρ is a constant in the first case and proportional to }xk ´ a }´α in the second). In par-
ticular, it is uniform in f and pθk, ωkq. Let us now fix the integer p equal to 2 in the
case of Hypothesis (H1) or defined as in (2.28) in the case of Hypothesis (H2). Elevating
inequality (4.12) to the power p and taking the expectation lead to

1

3p´1
E

›

›

›

A

f , ν
pNq
T ´ νT

E ›

›

›

p

6 E

›

›

›

A

P0,T f , ν
pNq
0 ´ ν0

E ›

›

›

p

` E

›

›

›

›

›

1

|ΛN |
ÿ

k

ż T

0

∇θ pPt,T fq pθkptq, ωk, xkq ¨ pσ dBkptqq
›

›

›

›

›

p

` E

ˇ

ˇ

ˇ

ˇ

ˇ

1

|ΛN |
ÿ

k

ż T

0

e~P~pT´tqρpxkq
›

›

›

A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
t ´ νt

E ›

›

›
dt

ˇ

ˇ

ˇ

ˇ

ˇ

p

.

(4.14)

Let us concentrate on the third term of the last inequality, that we denote by DN . By
successive use of Hölder’s inequality (recall that 1

p
` 1

q
“ 1), one has:

DN 6

ˆ
ż T

0

eq~P~pT´tq dt

˙

p
q

E

ż T

0

ˇ

ˇ

ˇ

ˇ

ˇ

1

|ΛN |
ÿ

k

ρpxkq
›

›

›

A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
t ´ νt

E ›

›

›

ˇ

ˇ

ˇ

ˇ

ˇ

p

dt

6

˜

eq~P~T ´ 1

q~P~

¸
p
q

˜

1

|ΛN |
ÿ

k

ρpxkqq
¸

p
q ż T

0

1

|ΛN |
ÿ

k

E

›

›

›

A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
t ´ νt

E ›

›

›

p

dt.

(4.15)

At this point, here are the main steps of proof that we will follow in the remaining of
this paper: we have built the spaces of test functions (recall Definitions 2.10 and 2.14)
in such a way that they precisely include the functions pθ, ω, xq ÞÑ Γ pθk, ωk, θ, ωqΨ pxk, xq
for all k (in this case, a is equal to xk). Since the distances between two random measures
introduced in Definitions 2.12 and 2.16 are exactly the suprema of evaluations over all
such test functions, we are thus able to bound the term within the integral in (4.15) in
terms of the distance between νpNq and ν.

The second point of the proof is to obtain an estimate (uniform in f) of the speed
of convergence to 0 of the two first terms in (4.14). Taking the supremum over all test
functions f and applying Gronwall’s Lemma lead to the conclusion.

Those steps are somehow easy to follow in the P -nearest neighbor case (see Section 5)
but are more technically demanding in the power-law case (see Section 6).

5. Law of Large Numbers in the P -nearest neighbor case. The purpose of
this section is to prove Theorem 2.13. Thus, throughout this section, we suppose that Ψ
satisfies Hypothesis (H1) for some R P p0, 1s. In this case, the integer p introduced in (4.14)
is equal to 2 and the function ρ in (4.13) is bounded (equal to

?
2 }χR }8). In particular,
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the two terms in front of the integral in (4.15) are trivially bounded by a constant, equal

to e2~P~T ´1
2~P~ }χR }28.

The following proposition proves the convergence to 0 of the first term in (4.14) together
with explicit rates:

Proposition 5.1 (Convergence of the initial condition). There exists a numerical
constant C1 ą 0 (independent of R) such that for all f P Ť

aP
“

´ 1

2
, 1
2

‰d CR,a with } f }R,a 6 1

and } f }8 6 1

(5.1) E

›

›

›

A

P0,T f , ν
pNq
0

E

´ xP0,T f , ν0y
›

›

›

2

6
C1

Nd^2
.

Proof of Proposition 5.1. Recall that the couples pθip0q, ωiq1 6 i 6 N are supposed
to be i.i.d. samples of the law ζpdθq b µpdωq on X ˆ E . Let f P CR,a: by definition,
fpθ, ω, xq “ gpθ, ωqχRpx ´ aq so that P0,T f “ χpx ´ aqP0,T g. Let write ϕ :“ P0,T g for
simplicity. Then:

δN pfq :“ E

›

›

›

A

P0,T f , ν
pNq
0

E

´ xP0,T f , ν0y
›

›

›

2

“ E

›

›

›

›

›

1

|ΛN |
ÿ

j

ϕpθj , ωjqχRpxj ´ aq ´
ż

ϕpθ, ωqχRpx´ aqζpdθqµpdωqdx
›

›

›

›

›

2

6 2E

›

›

›

›

›

χRpxj ´ aq 1

|ΛN |
ÿ

j

ˆ

ϕpθj , ωjq ´
ż

ϕpθ, ωqζpdθqµpdωq
˙

›

›

›

›

›

2

` 2

›

›

›

›

›

ż

ϕpθ, ωqζpdθqµpdωq
˜

1

|ΛN |
ÿ

j

χRpxj ´ aq ´
ż

χRpx ´ aqdx
¸ ›

›

›

›

›

2

6
2

p2Rq2dE
›

›

›

›

›

1

|ΛN |
ÿ

j

ˆ

ϕpθj , ωjq ´
ż

ϕpθ, ωqζpdθqµpdωq
˙

›

›

›

›

›

2

` 2 }ϕ }28

ˇ

ˇ

ˇ

ˇ

ˇ

1

|ΛN |
ÿ

j

χRpxj ´ aq ´
ż

χRpx ´ aqdx
ˇ

ˇ

ˇ

ˇ

ˇ

2

:“ AN `BN .(5.2)

Since the pθi, ωiq are i.i.d. random variables (with law ζbµ), a standard calculation shows

AN “ 2

|ΛN |2 p2Rq2d
ÿ

j

E

›

›

›

›

ϕpθj , ωjq ´
ż

ϕpθ, ωqζpdθqµpdωq
›

›

›

›

2

6
8 } f }28
2dNd

,

since }ϕ }8 “ }P0,T g }8 “ p2Rqd } f }8 and |ΛN | “ p2N ` 1qd > p2Nqd.
Let us now turn to the case of the term BN in (5.2). We place ourselves in the case

of non-periodic boundary condition (recall Remark 2.1). The periodic case is simpler and
left to the reader. Let a “ pa1, . . . , adq. One has

(5.3)

ż

r´ 1

2
, 1
2
sd
χRpx´ aqdx “

d
ź

l“1

˜

1

2R

ż 1

2

´ 1

2

1|x´al| 6 R dx

¸

:“
d

ź

l“1

Ipalq.
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In the same way,

1

|ΛN |
ÿ

j

χRpxj ´ aq “
d

ź

l“1

˜

1

2Rp2N ` 1q

N
ÿ

j“´N

1|xj´al| 6 R

¸

:“
d

ź

l“1

IN palq.

Then, from the obvious equality

d
ź

l“1

IN palq ´
d

ź

l“1

Ipalq “
d

ÿ

k“1

IN pa1q . . . IN pak´1q pIN pakq ´ Ipakqq Ipak`1q . . . Ipadq.

and a recursion argument, one only needs to consider the case d “ 1 in order to prove
(5.1). An easy calculation shows the following: for all a P

“

´1
2
, 1
2

‰

, for all R P
`

0, 1
‰

,

Ipaq “ 1

2R

ż 1

2

´ 1

2

1|x´a| 6 R dx “

$

’

&

’

%

1
2R

`

R ` 1
2

` a
˘

, if ´ 1
2
6 a 6 ´ 1

2
`R,

1 if ´ 1
2

`R 6 a 6
1
2

´R,
1
2R

`

R ` 1
2

´ a
˘

, if 1
2

´R 6 a 6 1
2
.

Thus, in the one-dimensional case, we need to distinguish three cases, depending on the
position of a P

“

´1
2
, 1
2

‰

w.r.t. R; we only treat the case ´1
2
6 a 6 ´ 1

2
`R, the two others

being similar and left to the reader. In this case, one has successively,

|IN paq ´ Ipaq|2 “ 1

4R2

ˇ

ˇ

ˇ

ˇ

ˇ

1

2N ` 1

N
ÿ

j“´N

1|j´2aN | 6 2RN ´
ˆ

R ` 1

2
` a

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ 1

4R2

ˇ

ˇ

ˇ

ˇ

1

2N ` 1
pt2NpR ` aqu `Nq ´

ˆ

R ` 1

2
` a

˙ˇ

ˇ

ˇ

ˇ

2

6
pR ` aq2

4R2p1 ` 2Nq2 6
p2R ´ 1{2q2
16R2N2

6
1

4N2
.

Proposition 5.1 is proved.

We are now in position to prove Theorem 2.13:

Proof of Theorem 2.13. Fix some a P
“

´ 1
2
, 1
2

‰d
and some f P CR,a such that

} f }R,a 6 1 and } f }8 6 1. Let us first give an estimate of the second term in (4.12).
Recall that Bk is a Brownian motion in X “ Rm so that Bk may be written as m i.i.d.

Brownian motions
´

B
p1q
k , . . . , B

pmq
k

¯

. Then, using (2.20) (recall Remark 2.11) in (5.4) and

using (4.5) (recall Lemma 4.4) in (5.5)

E

›

›

›

›

›

1

|ΛN |
ÿ

k

ż T

0

∇θ pPt,T fq pθkptq, ωk, xkq ¨ dBkptq
›

›

›

›

›

2

“ 1

|ΛN |2
ÿ

k

m
ÿ

l“1

E

ż T

0

Bθplq pPt,T fq2 dt

6
m }χR }28

|ΛN |

ż T

0

}Pt,T f }2
R,a

dt(5.4)

6
m }χR }28

|ΛN | 2

ż T

0

e2~P~pT´tq dt(5.5)

“ mpe2~P~T ´ 1q
p2Rq2d |ΛN | 6

C2

Nd
.(5.6)
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where C2 “ mpe2~P~T ´1q
8dR2d and where ~P~ is defined by (4.5).

Let us now give an estimate of the term DN in (4.15): by Definition 2.10, due to the as-
sumptions made on Γ, it is easy to see that for fixed k the function fk :“ Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q
belongs to CR,xk

with norm } fk }R,xk
“ }Γ }Lip. Consequently, by construction of the dis-

tance dR (recall Definition 2.12), one has the following:

@t ą 0, E

›

›

›

A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
t ´ νt

E ›

›

›

2

6 }Γ }2Lip dRpνpNq
t , νtq2.

Putting together (4.14), (5.1) and (5.6), we obtain finally

E

›

›

›

A

f , ν
pNq
T ´ νT

E ›

›

›

2

6 3
C1

N2^d
` 3

C2

Nd
` 3

e2~P~T ´ 1

p2Rq2d~P~ }Γ }2Lip
ż T

0

dRpνpNq
t , νtq2 dt.

Taking the supremum over all functions f in
Ť

aPr´1,1sd CR,a and applying Gronwall’s
lemma leads to the result. Theorem 2.13 is proved.

6. Law of Large Numbers in the power-law case. We suppose in this section
that the weight Ψ satisfies Hypothesis (H2).

Let us begin with a technical lemma that will be of constant use throughout this part:

Lemma 6.1. There exists a constant C0 ą 0 (that only depends on β), such that for
all N,K > 1, for all a P DK ,

1. for all 0 ă β ă d, one has

(6.1)
ÿ

j; j{N‰a

›

›

›

›

j

2N
´ a

›

›

›

›

´β

6 C0

#

NdKd if a R DN

Nd if a P DN .

2. for β “ d, one has

(6.2)
ÿ

j; j{N‰a

›

›

›

›

j

2N
´ a

›

›

›

›

´d

6 C0

#

KdNd lnN if a R DN

Nd lnN if a P DN .

3. for all β ą d, one has

(6.3)
ÿ

j; j{N‰a

›

›

›

›

j

2N
´ a

›

›

›

›

´β

6 C0

#

NβKβ if a R DN

Nβ if a P DN .

Remark 6.2. The estimates given in Lemma 6.1 in the case a P DN are standard and
optimal. The main technical problem of Lemma 6.1 lies in the case of a R DN : in this
case, the point a of the discretization DK can be arbitrarily close to one point j

2N
in the

above sum. Those points belong to the discretization DN . The minimal distance between
a and the discretization DN depends on K (actually it depends on the greatest common
divisor of K and N , see the proof of Lemma 6.1). This explains the dependence in K of
the estimations of Lemma 6.1.

The proof of Lemma 6.1 is postponed to the appendix. Lemma 6.1 will be at the basis of
most of the estimations in this section.
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Theorem 2.18 is a consequence of the two following propositions:

Proposition 6.3. Let fix α P r0, dq, γ and p defined in (2.11) and (2.28) respectively.
There exists a constant C1 ą 0 (that only depends on p and C0 defined in Lemma 6.1)
such that for all K > 1, N > 1, a P DK and f P Ca with } f }a 6 1,

(6.4) E

›

›

›

A

P0,T f , ν
pNq
0

E

´ xP0,T f , ν0y
›

›

›

p

6 C1

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´

Kd

Nγ^1

¯p

, if α P
“

0, d
2

˘

,

´

Kd lnN

N
d
2

^1

¯p

, if α “ d
2
,

ˆ

K
3d
2 lnN

Npd´αq^1

˙p

, if α P
`

d
2
, d

˘

.

Moreover, in the case where a P DN , the previous estimates are true for K “ 1.

Proposition 6.4. Let fix α P r0, dq, γ and p defined in (2.11) and (2.28) respectively.
There exists a constant C2 ą 0 such that for all K > 1, for all a P DK , for all f P Ca such
that } f }a 6 1
(6.5)

E

›

›

›

›

›

1

|ΛN |
ÿ

k

ż T

0

∇θ pPt,T fq pθkptq, ωk, xkq ¨ dBkptq
›

›

›

›

›

p

6 C2

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´

Kd

Nd

¯
p
2

, if α P
“

0, d
2

˘

,

´

Kd lnN
Nd

¯
p
2

, if α “ d
2
,

´

Kd

Nd´α

¯p

, if α P
`

d
2
, d

˘

.

Moreover, in the particular case where a P DN , the previous estimates are true for K “ 1.

Let us admit for a moment Propositions 6.3 and 6.4. Then the result of Theorem 2.18
is a straightforward consequence of the following proposition:

Proposition 6.5. Under the assumptions made above, there exist constants C3 and
C4 such that for all K,N > 1, one has:

(6.6) sup
0 6 t 6 T

dKpνpNq
t , νtq 6 C3

$

’

’

’

’

’

&

’

’

’

’

’

%

1
Nγ^1K

deC4K
d
, if α P

“

0, d
2

˘

,

lnN

N
d
2

^1
KdeC4K

2d
, if α “ d

2
,

lnN
Npd´αq^1

K
3d
2 eC4K

dp
q
, if α P

`

d
2
, d

˘

,

where q in (6.6) is the conjugate of p and where C3 and C4 are large enough constants that
depend only on p, T , Γ, Ψ, c and on the constants C1 and C2 defined in Propositions 6.3
and 6.4.

Proof of Proposition 6.5. Let us fix K > 1, a P DK and f P Ca with } f }a 6 1.
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Let us recall the estimate obtained in (4.14) and (4.15):

(6.7) E

›

›

›

A

f , ν
pNq
T ´ νT

E ›

›

›

p

6

3p´1E

›

›

›

A

P0,T f , ν
pNq
0 ´ ν0

E ›

›

›

p

`3p´1E

›

›

›

›

›

1

|ΛN |
ÿ

k

ż T

0

∇θ pPt,T fq pθkptq, ωk, xkq ¨ pσ dBkptqq
›

›

›

›

›

p

` 3p´1

˜

eq~P~T ´ 1

q~P~

¸
p
q

˜

1

|ΛN |
ÿ

k

1

|xk ´ a|qα

¸
p
q

¨
ż T

0

1

|ΛN |
ÿ

k

E

›

›

›

A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
t ´ νt

E ›

›

›

p

dt.

We understand here the necessity of choosing p (and its conjugate q) different from 2.
Indeed, the integer q (recall Remark 2.17) has been precisely chosen such that qα ă d

which ensures that the term
´

1
|ΛN |

ř

k
1

}xk´a }qα

¯

p
q
is finite: more precisely, an application

of Lemma 6.1, (6.1) shows that this quantity is smaller than K
dp
q whenever a P DK and

smaller than 1 in the particular case where a P DN .
Let us now prove (6.6) in the case whereK ą N . Notice first that, thanks to the assump-

tions made on Ψ and Γ in § 2.2, for all k the function fk : pθ, ω, xq ÞÑ Γ pθk, ωk, θ, ωqΨ pxk, xq
belongs to the space Cxk

where xk P DN . Indeed (recall the definition of I1pΨq (2.8)), for
all k and pθ, ω, θ̄, ω̄, xq,
}x´ xk }αΨ pxk, xq

›

›Γpθk, ωk, θ, ωq ´ Γpθk, ωk, θ̄, ω̄q
›

› 6 I1pΨq }Γ }Lip
`›

› θ̄ ´ θ
›

› ` } ω̄ ´ ω }
˘

,

and
}x ´ xk }α Ψ pxk, xq }Γpθk, ωk, θ, ωq } 6 I1pΨq }Γ }8 .

As far as condition (2.24) is concerned, we have (using (2.10)):
›

›

›
}x´ xk }2γ fkpθ, ω, xq ´ } y ´ xk }2γ fkpθ, ω, yq

›

›

›

6 }Γ }8

ˇ

ˇ

ˇ
}x´ xk }2γ Ψpxk, xq ´ } y ´ xk }2γ Ψpxk, yq

ˇ

ˇ

ˇ
6 I3pΨq }Γ }8 |x´ y|p2γ´αq^1 .

Therefore, since K ą N , by definition of the distance d
ppq
K p¨, ¨q (recall Definition 2.16), for

all k, the following holds

E

›

›

›

A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
t ´ νt

E ›

›

›

p

6 η1d
ppq
K pνpNq

t , νtqp,

for the constant η1 :“ max
´

I1pΨq }Γ }Lip , I1pΨq, I3pΨq }Γ }8

¯p

. Using this estimate in

(6.7) and taking the supremum over all functions f in
Ť

aPDL
1 6 L 6 K

Ca, one obtains

d
ppq
K pνpNq

T , νT qp 6 3p´1 sup
f

E

›

›

›

A

P0,T f , ν
pNq
0

E

´ xP0,T f , ν0y
›

›

›

p

` 3p´1 sup
f

E

›

›

›

›

›

1

|ΛN |
ÿ

k

ż T

0

∇θ pPt,T fq pθkptq, ωk, xkq ¨ pσ dBkptqq
›

›

›

›

›

p

` 3p´1η2K
dp
q

ż T

0

d
ppq
K pνpNq

t , νtqp dt,
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for η2 :“ η1

´

eq~P~T ´1
q~P~

¯
p
q
. The results of Propositions 6.3 and 6.4 together with an appli-

cation of Gronwall’s lemma leads to the estimate (6.6) in the case where K ą N . Note

that one can choose in this case the constants C3 :“ 3
p´1

p p2max pC1, C2qq
1

p (where C1 and

C2 come from Propositions 6.3 and 6.4) and C4 :“ 3p´1

p
Tη2.

Let us now turn to the case where K 6 N . In this situation, we cannot use Gronwall’s

inequality in order to obtain an analogous estimate on d
ppq
K pνpNq, νq, since the function

fk (k P ΛN ) defined at the beginning of this proof has not the sufficient regularity (fk
belongs to Cxk

where xk P DN and hence may not belong to
Ť

aPDK1

1 6 K 1 6 K

Ca for K ă

N). Nonetheless, one can bound the term 1
η1
E

›

›

›

A

Γ pθk, ωk, ¨, ¨qΨ pxk, ¨q , νpNq
t ´ νt

E ›

›

›

p

by

supf E
›

›

›

A

f , ν
pNq
t

E

´ xf , νty
›

›

›

p

, where the supremum is taken over functions f in
Ť

aPDN
Ca

with } f }a 6 1. Using this estimate in (6.7) and a calculation similar to the previous one
gives the following estimate:
(6.8)

sup
0 6 t 6 T

sup
fP

Ť

aPDN
Ca

´

E

›

›

›

A

f , ν
pNq
t

E

´ xf , νty
›

›

›

p¯

6
`

C3e
C4

˘p

$

’

’

’

&

’

’

’

%

`

1
Nγ^1

˘p
, if α P

“

0, d
2

˘

,
´

lnN

N
d
2

^1

¯p

, if α “ d
2
,

´

1
Npd´αq^1

¯p

, if α P
`

d
2
, d

˘

.

But then, for instance in the case α P
“

0, d
2

˘

(we let the two other cases to the reader), for
all K 6 N , for all f P Ť

aPDK1
Ca for K 1 6 K, inserting directly (6.8) into (6.7) and using

again Propositions 6.3 and 6.4 leads to:

E

›

›

›

A

f , ν
pNq
t

E

´ xf , νT y
›

›

›

p

6 3p´1C1

ˆ

Kd

Nγ^1

˙p

` 3p´1C2

˜

Kd{2

Nd{2

¸p

` 3p´1

˜

eq~P~T ´ 1

q~P~

¸
p
q

T
`

C3e
C4

˘p

˜

K
d
q

Nγ^1

¸p

.

Up to a change in the constant C3, this term is anyway smaller than
´

C3

Nγ^1K
deC4K

d
¯p

.

Taking the supremum over all f in
Ť

aPDK1

K 1 6 K

Ca, one obtains the result.

The rest of this part is devoted to prove Propositions 6.3 and 6.4:

Proof of Proposition 6.3. Recall that the couples pθip0q, ωiq1 6 i 6 N are supposed
to be chosen i.i.d. according to the law ζpdθq b µpdωq on X ˆ E . Fix a “ l

K
P DK , f P Ca

with } f }a 6 1 as well as α P p0, dq and the integer p > 2 defined in (2.28). Write again
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ϕ :“ P0,T f for simplicity. Then,

δN pfq :“ E

›

›

›

A

P0,T f , ν
pNq
0

E

´ xP0,T f , ν0y
›

›

›

p

“ E

›

›

›

›

›

1

|ΛN |
ÿ

j

ϕpθj , ωj , xjq ´
ż

ϕpθ, ω, xqζpdθqµpdωqdx
›

›

›

›

›

p

,

6 2p´1E

›

›

›

›

›

1

|ΛN |
ÿ

j

ϕpθj , ωj, xjq ´ 1

|ΛN |
ÿ

j

ż

ϕpθ, ω, xjqζpdθqµpdωq
›

›

›

›

›

p

` 2p´1

›

›

›

›

›

1

|ΛN |
ÿ

j

ż

ϕpθ, ω, xjqζpdθqµpdωq ´
ż

ϕpθ, ω, xqζpdθqµpdωqdx
›

›

›

›

›

p

,

:“ AN `BN .

For simplicity, let us writeXj :“ ϕpθj , ωj, xjq´
ş

ϕpθ, ω, xjqζpdθqµpdωq; note that EXj “ 0
for all j. Since the pθi, ωiq are i.i.d. random variables with law ζ b µ, the first term AN

becomes

AN “ 1

|ΛN |p
tp{2u
ÿ

l“1

ÿ

pk1`...`kl“tp{2uq

ÿ

j1,...,jl

E
´

X2k1
j1

¨ ¨ ¨X2kl
jl

¯

,

6
22tp{2u

|ΛN |p
tp{2u
ÿ

l“1

ÿ

pk1`...`kl“tp{2uq

ÿ

j1,...,jl

1

}xj1 ´ a }2αk1
¨ ¨ ¨ 1

}xjl ´ a }2αkl
,(6.9)

where we used } f }a 6 1 and assumption (2.23) in (6.9). Let us concentrate on the
contribution of l “ 1 to the sum in (6.9), that we call ÃN (where p̃ “ 2tp{2u):

ÃN “ 2p̃

|ΛN |p
ÿ

j

1

}xj ´ a }2p̃α
.

Here, one has to distinguish two cases, depending on the value of α P r0, dq:
1. If 0 6 α ă d

2
then by definition p “ 2 and pα ă d so that an application of

Lemma 6.1, (6.1) leads to

(6.10) ÃN 6
1

N2d
C0 ¨ KdNd “ C0

Kd

Nd
.

2. If α >
d
2
, then p is chosen such that p ą d

d´α
so that pα ą d. Then Lemma 6.1, (6.3)

leads to:

(6.11) ÃN 6
1

Npd
C0 ¨KpαNpα “ C0

Kpα

Nppd´αq
.

It is also easy to see that the other terms in (6.9) are negligible w.r.t. ÃN as N Ñ 8.

Let us now turn to the second term BN : pBN q
1

p is the difference between the Riemann
sum of the function Φ :“ x ÞÑ

ş

ϕpθ, ω, xqζpdθqµpdωq and its integral, so that it should
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be small with N . But one has to be careful since ϕ as a discontinuity (ϕ belongs to some
Ca for some a) and since we want to have a result uniform in the function ϕ:

1

2p´1
BN “

›

›

›

›

›

1

|ΛN |
ÿ

j

Φpxjq ´
ż

Φpxqdx
›

›

›

›

›

p

6

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

ż

∆j

}Φpxjq ´ Φpxq } dx

ˇ

ˇ

ˇ

ˇ

ˇ

p

,(6.12)

where ∆j :“
!

z P
“

´ 1
2
, 1
2

‰d
; @k “ 1, . . . , d, jk 6 zk ă jk ` 1

2N

)

is the infinitesimal sub-

domain of ΛN of size 1
2N

of corner j. Let us begin with the following straightforward
inequality:

}Φpxq ´ Φpyq } 6
›

› }x´ a }´γ ´ } y ´ a }´γ
›

› } }x´ a }γ Φpxq ` } y ´ a }γ Φpyq }

` 1

}x ´ a }γ } y ´ a }γ
›

›

›
Φpxq }x´ a }2γ ´ Φpyq } y ´ a }2γ

›

›

›
.

(6.13)

Using the assumptions made on f , we deduce in particular from (2.23) and } f }a 6 1 that
}x´ a }γ Φpxq is bounded by }x´ a }γ´α. Using also (2.24), it is then immediate to see
that

}Φpxq ´ Φpyq } 6
}x´ y }γ

}x ´ a }γ } y ´ a }γ
`

}x ´ a }γ´α ` } y ´ a }γ´α
˘

` }x´ y }p2γ´αq^1

}x´ a }γ } y ´ a }γ ,

“ }x ´ y }γ
}x ´ a }α } y ´ a }γ ` }x´ y }γ

}x´ a }γ } y ´ a }α ` }x´ y }p2γ´αq^1

}x´ a }γ } y ´ a }γ .(6.14)

Using (6.14) in (6.12), one obtains that

BN 6 2p´1

˜

ÿ

j

ż

∆j

}x´ xj }γ
}x´ a }α }xj ´ a }γ dx`

ÿ

j

ż

∆j

}x´ xj }γ
}x ´ a }γ }xj ´ a }α dx

`
ÿ

j

ż

∆j

}x´ xj }p2γ´αq^1

}x´ a }γ }xj ´ a }γ dx

¸p

:“ 2p´1
´

S
p1q
N ` S

p2q
N ` S

p3q
N

¯p

.

(6.15)

The first of the three sums in (6.15) can be bounded by the following quantity:

S
p1q
N 6

ÿ

j

1

min p}xj´1 ´ a }α , }xj ´ a }αq }xj ´ a }γ
ż

∆j

}x´ xj }γ dx

“ 1

Nd`γ

ÿ

j

1

min p}xj´1 ´ a }α , } xj ´ a }αq }xj ´ a }γ .

Let us once again distinguish three cases, depending on the value of α:

1. if α P
“

0, d
2

˘

, then α ` γ ă d (recall (2.11)), so that an application of Lemma 6.1,
(6.1) leads to

(6.16) S
p1q
N 6 C0

Kd

Nγ
.
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2. if α “ d
2
, then α ` γ “ d (recall (2.11)), so that Lemma 6.1, (6.2) gives

(6.17) S
p1q
N 6 C0

Kd lnN

N
d
2

.

3. if α P
`

d
2
, d

˘

then α ` γ ą d, so that Lemma 6.1, (6.3) gives

(6.18) S
p1q
N 6 C0

Kα`γ

Nd´α
6 C0

K
3d
2

Nd´α
.

The same calculation leads to the same estimates for the second term S
p2q
N in (6.15). A

very similar calculation also leads to the following estimate for the last term S
p3q
N :

(6.19) S
p3q
N 6 C0

$

&

%

Kd

Np2γ´αq^1
if α P

“

0, d
2

˘

,

Kd lnN
Npd´αq^1

if α P
“

d
2
, d

˘

.

Combining estimations (6.19) and (6.10) (resp. (6.11)) and (6.16), (resp. (6.17) or (6.18))
leads to the desired estimation (6.4). The proof of the case where a P DN is analogous and
uses the estimates for a P DN in Lemma 6.1. Proposition 6.3 is proved.

It remains to prove Proposition 6.4, whose purpose is to control the martingale term in
(4.12):

Proof of Proposition 6.4. Fix someK > 1, a P DK and f P Ca such that } f }a 6 1.

The martingale MN
t :“ 1

|ΛN |

ř

k

şT

0
∇θ pPt,T fq pθkptq, ωk, xkq ¨ dBkptq may be written as

MN
t “ 1

|ΛN |

ř

k

řm
l“1

şT

0
Bθplq pPt,T fq pθkptq, ωk, xkq dB

plq
k ptq, where for all k, Bk “ pBp1q

k , . . . , B
pmq
k q.

Consequently, its quadratic variation process is given by

xMNyt “ 1

|ΛN |2
ÿ

k

m
ÿ

l“1

ż T

0

} BθplqPt,T f pθkptq, ωk, xkq }2 dt.

Applying Remark 2.15 and Lemma 4.4, we have almost surely that

xMNyt 6
m~P~2

|ΛN |2
ÿ

k

1

|xk ´ a|2α
ż T

0

e2~P~pT´tq dt

An argument repeatedly used in this work shows that one can bound the quadratic
variation by CKd

Nd (respectively CKd lnN
Nd and C K2α

N2pd´αq ) when α ă d
2
(respectively α “

d
2

and α ą d
2
), for some constant C ą 0. Then, Burkholder-Davis-Gundy inequality

E
`›

›MN
t

›

›

p˘

6 CpE
´

xMN y
p
2

t

¯

gives the result. Proposition 6.4 is proved.

7. The case of a locally Lipschitz dynamics cp¨q. One of the key arguments of the
proofs of Theorems 2.13 and 2.18 is the fact that one can derive a Kolmogorov equation
(recall (4.3)) for the propagator Ps,tf defined in (4.2). Under Assumption 2.2 on the
dynamics cp¨q (one-sided Lipschitz condition and absence of global Lispchitz continuity),
deriving such a Kolmogorov equation appears to be problematic (see in particular [22, 20]).
Even if such a result existed, we could not find a proper reference in the literature.

One can bypass this technical difficulty and prove nevertheless Theorem 2.13 and 2.18
by an approximation argument. We will suppose throughout this section that c satisfies
only Assumption 2.2.
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7.1. Yosida approximation. Let us denote for all pθ, ωq, c̃pθ, ωq :“ cpθ, ωq ´ Lθ, where
we recall that L is the constant appearing in the one-sided Lipschitz continuity assumption
(2.3). In terms of c̃, (2.3) reads:

(7.1) @pθ, ωq, pθ̄, ω̄q,
@

θ ´ θ̄ , c̃pθ, ωq ´ c̃pθ̄, ω̄q
D

6 0,

and, for example, the mean field evolution (4.1) reads:

dθptq “ c̃pθptq, ωqdt` ṽpt, θptq, ω, xqdt` σ ¨ dBptq,(7.2)

where ṽpt, θptq, ω, xq :“ vpt, θptq, ω, xq ` Lθptq.
For all λ ą 0, consider c̃λ the Yosida approximation of c̃ (see [8, Appendix A] for a

review of the basic properties of Yosida approximations):

(7.3) @pθ, ωq, c̃λpθ, ωq :“ c̃pRλpλθq, ωq,

for

(7.4) @pθ, ωq, Rλpθ, ωq :“ pλ ´ c̃p¨, ωqq´1 pθq.

Consider now the solution θλ of the following SDE (with the same initial condition and
driven by the same Brownian motion B as in (7.2))

dθλptq “ c̃λpθλptq, ωqdt ` ṽpt, θλptq, ω, xqdt` σ ¨ dBptq,(7.5)

that is, the analog of (7.2) where c̃ has been replaced by its Yosida approximation. Note
that one can proceed exactly in the same way for the microscopic system (2.2). From now
on, whatever X may be, the subscript notation Xλ will refer to the analog of X when the
dynamics has been replaced by its Yosida approximation. Note that we will most of the
time drop the dependencies of the functions in ω, for simplicity of notations.

It is easy to see that c̃ and c̃λ have the same regularity in θ (see e.g. [8, p.304]). Moreover,
c̃λ has the supplementary property to be uniformly Lipschitz continuous. In other words,
c̃λ satisfies Assumption 2.2 as well as Assumption 4.1, so that everything that has been
done before is applicable: Theorems 2.13 and 2.18 are true in the case of an interaction
ruled by c̃λ:

(7.6) sup
tPr0,T s

d
´

ν
pNq
t,λ , νt,λ

¯

6 CN´β,

for d either equal to dRp¨, ¨q or d
ppq
8 p¨, ¨q and β one of the appropriate exponent appearing

in the formulation of Theorems 2.13 and 2.18. Note that the constant C in (7.6) does
not depend on λ. Indeed, the assumption made in Section 4 about the global Lipschitz
continuity of c was made only to ensure the existence of the Kolmogorov equation. In
particular, the modulus of continuity of c did not enter into the calculation made in
Section 4: the only dependence in the dynamics c was in its one sided-Lipschitz constant
L (recall Lemma 4.4), which is conserved by the Yosida approximation. In other words,
every constant estimates made upon evolution (7.5) is independent on λ.

Now, Theorems 2.13 and 2.18 in our general framework are an easy consequence of the
triangular inequality and the proposition:
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Proposition 7.1. For all N > 1,

sup
tPr0,T s

d
´

ν
pNq
t,λ , ν

pNq
t

¯

ÑλÑ8 0(7.7)

sup
tPr0,T s

d pνt,λ, νtq ÑλÑ8 0.(7.8)

The rest of this section is devoted to prove Proposition 7.1. Let us begin with some a
priori estimate:

Lemma 7.2. We have the following a priori estimates

(7.9) sup
λą0

E

˜

sup
tPr0,T s

} θλptq }2
¸

ă 8.

and,

(7.10) P

ˆ

sup
λą0

ż T

0

} c̃λpθλpsqq }2 ds ă 8
˙

“ 1.

Proof of Lemma 7.2. Let us first prove the first estimate (7.9): applying Ito formula,

} θλptq }2 “ } θλp0q }2 ` 2

ż t

0

xθλpsq , c̃λpθλpsqq ` ṽps, θλpsq, ω, xqy ds

` 2

ż t

0

xθλpsq , dBpsqy ` trpσσT qt,

6 } θλp0q }2 ` 2 p} c̃p0q } ` L` }Γ }8 SpΨqq
ż t

0

} θλpsq }2 ds

` 2

ż t

0

xθλpsq , dBpsqy ` trpσσT qT.

Taking expectations and using Burkholder-Davis-Gundy inequality, we obtain that for
some constant C ą 0 (independent of λ),

E

ˆ

sup
s 6 t

} θλpsq }2
˙

6 E
´

} θp0q }2
¯

` trpσσT qT ` 2C

ż t

0

E

ˆ

sup
u 6 s

} θλpuq }2
˙

ds

` 6trpσσT q1{2E

˜

ˆ
ż t

0

} θλpuq }2 du

˙

1

2

¸

6 E
´

} θp0q }2
¯

` trpσσT qT ` 2C

ż t

0

E

ˆ

sup
u 6 s

} θλpuq }2
˙

ds

` 18trpσσT qT ` 1

2
E

ˆ

sup
u 6 t

} θλpuq }2
˙

which implies

E

ˆ

sup
s 6 t

} θλpsq }2
˙

6 2
´

E
´

} θp0q }2
¯

` 19trpσσT qT
¯

` 4C

ż t

0

E

ˆ

sup
u 6 s

} θλpuq }2
˙

ds
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and Gronwall lemma leads to the result.
Let us now turn to the second estimate (7.10): define Yλptq :“ θλptq ´ σ ¨ Bptq. Then,

Yλ satisfies:

(7.11) dYλptq “ pc̃λpYλptq `Bptq, ωq ` ṽpt, Yλptq `Bptq, ω, xqq dt.

Clearly,

}Yλptq }2 “ }Yλp0q }2 ` 2

ż t

0

xYλpsq , c̃λpYλpsq ` σ ¨Bpsqqy ds

` 2

ż t

0

xYλpsq , ṽps, Yλpsq ` σ ¨ Bpsqq, ω, xy ds

6 }Yλp0q }2 ` 2 p} c̃p0q } ` L` }Γ }8 SpΨqq
ż t

0

}Yλpsq }2 ds

` 2

ż t

0

xYλpsq , c̃λpσ ¨ Bpsqqy ds

6 }Yλp0q }2 ` 2

ˆ

} c̃p0q } ` L ` }Γ }8 SpΨq `
ż t

0

} c̃λpσ ¨ Bpsqq }2 ds

˙
ż t

0

}Yλpsq }2 ds

taking the supremum in λ and using Yλp0q “ θλp0q “ θp0q, we have

sup
λ

}Yλptq }2 6 } θp0q }2 ` 2

ˆ

C `
ż t

0

} c̃λpσ ¨Bpsqq }2 ds

˙
ż t

0

sup
λ

}Yλpsq }2 ds

6 } θp0q }2 ` 2

ˆ

C `
ż t

0

} c̃pσ ¨ Bpsqq }2 ds

˙
ż t

0

sup
λ

}Yλpsq }2 ds

where we used the pointwise estimate } c̃λpθq } 6 } c̃pθq }. Gronwall lemma gives

sup
λ

}Yλptq }2 6 } θp0q }2 exp
ˆ

2

ˆ

C `
ż T

0

} c̃pσ ¨ Bpsqq }2 ds

˙

T

˙

that is almost surely finite, since c̃ is locally bounded and the trajectories of B are almost
surely bounded. Consequently

sup
λ

sup
t 6 T

} θλptq }2 6 sup
λ

sup
t 6 T

}Yλptq }2 ` sup
t 6 T

}Bptq }2 ă 8, a.s.

Since c̃ is polynomially bounded, this implies now that

sup
λ

ż T

0

} c̃λpθλptqq }2 dt ă 8, a.s.

which is the result.

The key estimate of this section is the following

Proposition 7.3. Almost surely, the following holds

(7.12) lim sup
λÑ8

sup
tPr0,T s

} θptq ´ θλptq } “ 0.
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Proof of Proposition 7.3. Let us fix λ ă µ. Since the Brownian motion is the same,
one has successively (for a constant C “ L` }Γ }Lip SpΨq)

d

dt
e´2Ct } θµptq ´ θλptq }2 “ ´2Ce´2Ct } θµptq ´ θλptq }2

` 2e´2Ct xθµptq ´ θλptq , c̃µpθµptqq ´ c̃λpθλptqqy
` 2e´2Ct xθµptq ´ θλptq , ṽpt, θµptq, ω, xq ´ ṽpt, θλptq, ω, xqy
6 ´ 2Ce´2Ct } θµptq ´ θλptq }2

` 2e´2Ct xθµptq ´ θλptq , c̃µpθµptqq ´ c̃λpθλptqqy

` 2e´2Ct
´

L` }Γ }Lip SpΨq
¯

} θµptq ´ θλptq }2

6 2e´2Ct xθµptq ´ θλptq , c̃µpθµptqq ´ c̃λpθλptqqy

“ 2e´2Ct

C

ˆ

Rµpµθµptqq ´ 1

µ
c̃pRµpµθµptqqq

˙

´
ˆ

Rλpλθλptqq ´ 1

λ
c̃pRλpλθλptqqq

˙

, c̃pRµpµθµptqqq ´ c̃pRλpλθλptqqq
G

6 ´ 2e´2Ct

B

1

µ
c̃µpθµptqq ´ 1

λ
c̃λpθλptqq , c̃µpθµptqq ´ c̃λpθλptqq

F

.

Integrating this inequality gives (since the initial condition is the same)

1

2
e´2CT } pθµ ´ θλqpT q }2 6 ´

ż T

0

e´2Ct

B

1

µ
c̃µpθµptqq ´ 1

λ
c̃λpθλptqq , c̃µpθµptqq ´ c̃λpθλptqq

F

dt.

This gives in particular that

ż T

0

e´2Ct

B

1

µ
c̃µpθµptqq ´ 1

λ
c̃λpθλptqq , c̃µpθµptqq ´ c̃λpθλptqq

F

dt 6 0.

Let us denote as } ¨ }H the Hilbert norm in H :“ L2pr0, T s, e´2Cs ds;X q. Then, from the
identity

2

B

c̃µpθµq ´ c̃λpθλq , 1
µ
c̃µpθµq ´ 1

λ
c̃λpθλq

F

H

“
ˆ

1

µ
` 1

λ

˙

} c̃µpθµq ´ c̃λpθλq }2H

`
ˆ

1

µ
´ 1

λ

˙

´

} c̃µpθµq }2
H

´ } c̃λpθλq }2H
¯

one obtains that

(7.13)

ˆ

1

µ
` 1

λ

˙

} c̃µpθµq ´ c̃λpθλq }2H 6

ˆ

1

λ
´ 1

µ

˙

´

} c̃µpθµq }2H ´ } c̃λpθλq }2H
¯

which gives in particular that λ ÞÑ } c̃λpθλq }2H is increasing and by (7.10) bounded and thus,
convergent. The same inequality (7.13) shows also that } c̃µpθµq ´ c̃λpθλq }2

H
Ñλ,µÑ8 0, so

that pc̃λpθλqptqq converges in H to some c8ptq.
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Going back to the first inequality of the proof, one has

1

2
sup

tPr0,T s
e´2Ct } θµptq ´ θλptq }2 6

ż T

0

e´2Ct xθµptq ´ θλptq , c̃µpθµptqq ´ c̃λpθλptqqy dt

6
1

4T

ż T

0

e´2Ct } θµptq ´ θλptq }2 dt

` T

ż T

0

e´2Ct } c̃µpθµptqq ´ c̃λpθλptqq }2 dt

6
1

4
sup

tPr0,T s
e´2Ct } θµptq ´ θλptq }2

` T

ż T

0

e´2Ct } c̃µpθµptqq ´ c̃λpθλptqq }2 dt.

Hence

sup
tPr0,T s

e´2Ct } θµptq ´ θλptq }2 6 4T

ż T

0

e´2Ct } c̃µpθµptqq ´ c̃λpθλptqq }2 dt,

which goes to 0 as λ, µ Ñ 8. This implies that there exists an adapted process θ̄ with con-
tinuous trajectories such that limλÑ8 θλ “ θ̄, uniformly and almost surely. Clearly, for all t,
the strong continuity limλÑ8 Rλpλθ̄ptqq “ θ̄ptq of the resolvent and the uniform Lipschitz
continuity

›

›Rλpλθλptqq ´Rλpλθ̄ptqq
›

› 6 } θλptq ´ θptq } implies that limλRλpλθλptqq “
θ̄ptq. Finally, continuity of c̃ gives limλÑ8 c̃λpθλptqq “ c̃pRλpλθλptqqq “ c̃pθ̄ptqq. Conse-
quently, we have that, almost surely c̃pθ̄tq “ c8ptq, so that θ̄ solves equation (7.2), so that
by uniqueness θ̄ “ θ almost surely.

We are now in position to prove Proposition 7.1:

Proof of Proposition 7.1. We only prove (7.8), the proof of (7.7) follows from anal-
ogous estimates with the microscopic equation (2.2). We only treat the (more complicated)
case of the power-law interaction. Fix any f in Ca for some a with } f }a 6 1. Then, by
Lispchitz continuity of f in the variable θ

|xf , νt,λy ´ xf , νty| 6 SpΨqEB } θλptq ´ θptq } .

Taking the supremum in f and in t leads to

sup
tPr0,T s

d pνt,λ, νtq 6 SpΨqEB sup
tPr0,T s

} θλptq ´ θptq } .

By (7.12) we have the almost sure convergence to 0 of suptPr0,T s } θλptq ´ θptq } and (7.9)

gives the boundedness in L2 implying uniform integrability. The result follows.

APPENDIX A: PROOF OF A TECHNICAL LEMMA

Proof of Lemma 6.1. Let us proceed by induction on the dimension d. Let fix d “ 1:
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• Let us begin with the case where a R DN : let J be the integer such that J
2N

ă a ă
J`1
2N

. Then, an easy comparison with integrals shows the following

ÿ

j

ˇ

ˇ

ˇ

ˇ

j

2N
´ a

ˇ

ˇ

ˇ

ˇ

´β

6 2βNβ
´

ż J

0

|2aN ´ t|´β dt` |2aN ´ J |´β ` |2aN ´ pJ ` 1q|´β

`
ż N

J`1

|t´ 2aN |´β dt
¯

“ 2βNβ

ż J

0

|2aN ´ t|´β dt ` 2βNβ

ż N

J`1

|t´ aN |´β dt

`
ˇ

ˇ

ˇ

ˇ

a´ J

2N

ˇ

ˇ

ˇ

ˇ

´β

`
ˇ

ˇ

ˇ

ˇ

a´ J ` 1

2N

ˇ

ˇ

ˇ

ˇ

´β

.

It is straightforward to see that the two first integral terms are smaller than N
d´β

whereas each of the two remaining terms is smaller than ρpN,Kq´β , where ρpN,Kq :“
inf |j| 6 N

|l| 6 K
j{N‰l{K

ˇ

ˇ

ˇ

j
2N

´ l
2K

ˇ

ˇ

ˇ
“ gcdpK,Nq

2KN
>

1
2KN

. Consequently, since K > 1 and β ă 1,

ÿ

j

ˇ

ˇ

ˇ

ˇ

j

N
´ a

ˇ

ˇ

ˇ

ˇ

´β

6
2N

d ´ β
` 2KβNβ

6 C0NK.

• The case where a P DN is easier: in that case, a “ k
2N

for some k. Then, once again
by comparison with integrals,

ÿ

j; j{N‰a

ˇ

ˇ

ˇ

ˇ

j

2N
´ a

ˇ

ˇ

ˇ

ˇ

´β

“ 2βNβ
ÿ

j‰k

|j ´ k|´β
6

Nβ

1 ´ β

´

pN ` kq1´β ` pN ´ kq1´β
¯

6
22´βN

1 ´ β
.

The other cases (β “ 1 and β ą 1) are similar and left to the reader. Lemma 6.1 is proved
in the particular case of d “ 1.

The case of higher dimension is nothing but a technical complication of the previous
case d “ 1. Let us fix d ą 1, a “ pa1, . . . , adq P DK and denote by j “ pj1, . . . , jdq any
element of Zd.

Let us begin with the case where a R DK . Let pJ1, . . . , Jdq the d integers between ´N
and N such that for all l “ 1, . . . , d, Jl 6 2alN 6 Jl ` 1, with at least one inequality that
is strict. The coordinates Jl and Jl ` 1 are by construction the closest integers to 2alN
in ´N, . . . ,N . For the rest of this proof, we will refer to them as critical coordinates.

Then, one can decompose the sum
ř

j

›

›

›

j
2N

´ a
›

›

›

´β

according to the number p of critical

coordinates among pj1, . . . , jdq “ j, where j s a typical index:

ÿ

j

›

›

›

›

j

2N
´ a

›

›

›

›

´β

“
d

ÿ

p“0

ÿ

pi1,...,ipq

ÿ

jPJpi1,...,ipq

›

›

›

›

j

2N
´ a

›

›

›

›

´β

,(A.1)

where the second sum is taken over all the vectors pi1, . . . , ipq with strictly increasing
indices taken among 1, . . . , d and where J pi1, . . . , ipq is a notation for the set of vectors
j “ pj1, . . . , jdq such that jil is critical for every l “ 1, . . . , p.
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In the sum (A.1), let us treat the cases p “ 0 and p ą 0 separately. Let us first focus on
the case p “ 0: it corresponds to vectors j without critical coordinates, which means that
we restrict ourselves to j such that for every k “ 1, . . . , d, either jk ă Jk (in such case
|jk ´ 2akN | “ 2akN ´ jk) or either jk ą Jk `1 (in such case |jk ´ 2akN | “ jk ´2akN). In

particular, this sum can be divided into 2d sums
ř

jPD

›

›

›

j
2N

´ a
›

›

›

´β

where D is a connected

subdomain of r´1{2, 1{2sd, which is defined by this binary choice for each jk. For simplicity,
we only treat the case of D0 :“ tj “ pj1, . . . , jdq; @k “ 1, . . . , d, jk ă Jku. The case of the
other 2d ´ 1 subdomains can be treated in a similar way.

We have successively,

ÿ

jPD0

›

›

›

›

j

2N
´ a

›

›

›

›

´β

“ 2βNβ
ÿ

jkăJk´1

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

l“1

p2alN ´ jlq2
ˇ

ˇ

ˇ

ˇ

ˇ

´β{2

(A.2)

6 2βNβ

ż J1

´N

¨ ¨ ¨
ż Jd

´N

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

l“1

p2alN ´ tlq2
ˇ

ˇ

ˇ

ˇ

ˇ

´β{2

dt1 . . . dtd(A.3)

“ 2βNβ

ż N`2a1N

2a1N´J1

¨ ¨ ¨
ż N`2adN

2adN´Jd

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

l“1

u2l

ˇ

ˇ

ˇ

ˇ

ˇ

´β{2

du1 . . . dud(A.4)

6 CNβ

ż 2N

wN

1

rβ
rd´1 dr,(A.5)

where wN ą 0 is the distance to 0 of the point of coordinates p2a1N ´ J1, . . . , 2ad ´ Jdq.
The estimates found in Lemma 6.1 are then straightforward: for example in the case β ă d,
an upper bound for the last quantity is CNβNd´β “ CNd. The other cases are treated in
the same manner and lead to the same desired estimate.

As far as the case 0 ă p 6 d is concerned, the particular case p “ d is a bit special: it

corresponds to vectors j with only critical coordinates. Since in that case, each
ˇ

ˇ

ˇ

jk
2N

´ ak

ˇ

ˇ

ˇ

is either equal to
ˇ

ˇ

ˇ

Jk
2N

´ ak

ˇ

ˇ

ˇ
or

ˇ

ˇ

ˇ

Jk`1
2N

´ ak

ˇ

ˇ

ˇ
and is anyway larger than ρN,K >

1
2NK

(where

the quantity ρN,K has been defined in the beginning of this proof), the contribution of

this case to the whole sum can be bounded by 2d ¨ 1
pdρ2

N,K
qβ{2 6

2d2β

dβ{2 N
βKβ “ CNβKβ.

Let us now concentrate on the case 0 ă p ă d: Then for a fixed choice of indices
pi1, . . . , ipq, we have

ÿ

jPJpi1,...,ipq

›

›

›

›

j

2N
´ a

›

›

›

›

´β

“
ÿ

jPJpi1,...,ipq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i“i1,...,ip

ˆ

ji

2N
´ ai

˙2

`
ÿ

i‰i1,...,ip

ˆ

ji

2N
´ ai

˙2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´β{2

6
ÿ

jPJpi1,...,ipq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰i1,...,ip

ˆ

ji

2N
´ ai

˙2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´β{2

.

But this last sum is nothing else than
ř

j̄

›

›

›

j̄
2N

´ ā
›

›

›

´β

, where ā (resp. j̄) is the vector in

r´1, 1sd´p, built upon the vector a (resp. j) with all its coordinates of index in ti1, . . . , ipu
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removed. Since p ą 0, we see that, by induction hypothesis, that the previous sum can be
bounded by

#

CNd´pKd´p lnN if β 6 d´ p

CNβ if β ą d´ p.

In particular, if β > d, then the contribution to (A.1) of the sum over 0 ă p ă d can be
bounded by CNd´pKd´p lnN 6 min

`

CKdNd lnN,CNβ
˘

. If β ă d, it is also straightfor-
ward to see that this contribution is also smaller than CNdKd. The proof of Lemma 6.1
follows, by induction.
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